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Abstract: Of late, three dimensional slope stability analysis has gained popularity among the geothechnical engineers 

so that the actual response of slope failure, which essentially occurs in 3D, can be captured. However, three 

dimensional slope failure analysis necessitates the proper consideration of the third/longitudinal dimension of the 

slope. Three dimensional slope stability analysis can yield erroneous results if inadequate length of the third dimension 

of the slope is used during analysis. This study employs Bishop's simplified approach to find the minimum length of 

a 3D soil slope's third/longitudinal direction to be considered during analysis. A parametric study compares the 

findings of 3D and 2D analyses for different geometries, pore pressure ratios, and seismic loading for a cohesive-

frictional slope. A total of 15 loading cases have been analyzed to study the convergence behaviour of the 3D and 2D 

factor of safety (FS) values for slopes with different inclination angles and longitudinal length-to-height (l/h) ratios. 

The results presented in this study dictate that the longitudinal/third dimension of a 3D slope model should be at least 

five times the slope's height for accurate 3D slope analysis. For all loading situations, whether a slope will collapse at 

the base or toe and the failure mass volumes are estimated. As the base inclination angle increases for a particular 

slope, the type of failure gradually shifts from base failure to toe failure. The volume of failure mass is seen to follow 

a decreasing trend with an increase in the slope angle. 

Keywords: Limit equilibrium method · Safety factor · Slope angle · Bishop's simplified method · Critical failure 

surface  

1 Introduction 

Problems with the stability of slopes are widespread in many civil engineering projects. Construction of large and 

important projects like embankments, dams, and highways often requires slope stability analysis (Komasi and 

Beiranvand, 2021; Pourkhosravani and Kalantari, 2011; Soralump et al., 2021). The failure of a slope can cause 

enormous economic and social losses. The limit equilibrium (LE), Strength Reduction Technique based on finite 

element (FE), and limit analysis (LA) methods are the most common procedures adopted for analysing soil slopes 

(Liu et al., 2020; Qi et al., 2021; Su and Shao, 2021; Wang et al., 2019). Limit equilibrium procedures have been 
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extensively used in the past as well as in the present day to determine the slope safety factor (FS) against failure (Alan 

W. Bishop, 1955 and Janbu, 1973) and it remains the most preferred method of slope analysis. Initially, a slope's 

stability check was formulated in two dimensions (2D), assuming plane strain conditions existed. However, in many 

situations where the section changes along the longitudinal direction of the Slope, the plane strain assumption loses 

its validity. In such cases, a three-dimensional (3D) slope stability analysis is desirable to obtain the correct failure 

mechanism. In the majority of instances, the width-to-height ratio of the Slope is insufficient and varies perpendicular 

to the movement of the slide. Therefore, applying 2D studies to 3D problems is not correct but is considered conformist 

because the end effects are ignored. So, a 2D slope analysis is noticeably conservative when a 3D failure is expected 

and commonly chosen in the design (Cornforth, 2005). The limit equilibrium method (LEM) remains the most 

preferred method for analysing slope stability, despite introducing more advanced numerical methods (Lorig, 1999; 

Zheng et al., 2018). In reality, though, the failure surfaces of all slope failures are 3D, especially for landslides or 

natural slopes. Because of this, 3D slope analyses are getting more and more attention with simultaneous advancement 

in the storage and computing power of modern-day computers.  

Several researchers presented a detailed and comprehensive account of slope stability analysis (Duncan, 

1996; Kumar et al., 2022, 2023). Several processes that account for the third dimension were created by extending 

their 2D equivalents. Based on the conventional method of slices, many researchers (Baligh & Azzouz, 1975) 

investigated the slip surface of a cylinder of limited length with either ellipsoids or cones attached to its ends. (Hungr, 

1987; Chakraborty and Goswami, 2021; Johari and Mousavi, 2019; Rao et al., 2023; Tozato et al., 2022) had all come 

up with other 3D methods that are also 3D extensions of limit equilibrium methods. These methods partly meet 

equilibrium conditions; in this case, the static indeterminate state would not hold if the failure mass had a symmetrical 

plane. It is recommended to perform a 3D analysis when performing a back analysis of a slope failure to ensure that 

the shear strength calculated in the back correctly represents the shear force under three-dimensional loading 

conditions (Arellano and Stark, 2000). The backwards-calculated shear strength can then be used to fix failed slopes 

or to design slopes at sites with identical circumstances. The back-calculated shear strengths might be excessively 

high or unconservative if the 3D end effects are not incorporated.  

The limit analysis method examines the analysis of Slope in terms of energy balance, and the analysis's 

findings are quite accurate. The upper bound LA uses a kinetically admissible velocity field to establish the slope 

failure mechanism (Qin and Chian, 2018; Wang et al., 2020). The upper bound theorem of LA has been employed to 

assess slope stability because no assumptions regarding interaction forces and predetermined failure surfaces are 

required (Michalowski, 2002). Limit finite element analysis (LFEA) was also used to study the slope stability problem. 

Complex slope geometry and constitutive relationships have been taken into account by many researchers (Loukidis 

et al., 2003). The lower bound theorem is appealing because it provides a safe estimate of the load capacity of the 

slope domain by assuming a rigid plastic material model based on an associated flow rule, and most published works 

show that LA method usually involve finite element discretization of slope problem under consideration. This leads 

to an optimization problem with large, sparse constraint matrices (Lyamin & Sloan, 2002). Many researchers 

performed 3D slope stability analysis based on an upper bound of the LA method (He et al., 2019; Qian et al., 2019; 

Wang et al., 2020). Based on the strength reduction approach, the FEM and finite difference (FD) methods, which are 

undoubtedly superior for deformation studies, have also been applied for slope stability evaluation (Dawson and Roth, 

2020; Lin et al., 2020; Yuan et al., 2020). 

During 3D slope stability analysis, one primary concern is to consider the sufficient extent of the longitudinal 

dimension of the three-dimensional slope model. If the insufficient length of the longitudinal dimension of the 3D 

slope model is considered, the analyses will fail to reflect the effects of the third dimension correctly. Chakraborty 

and Goswami (2021) recommended that the ratio of the third dimension to the Slope's height should be greater than 

four. These analyses were conducted using 3D LEM using SLIDE3 software for drained and undrained soil. The lower 

bound study performed by Li et al., (2010) showed that 2D solutions could be considered in place of 3D solutions for 

the preliminary design of the Slope when l/h > 5. These findings apply to cohesive-frictional drained slopes and purely 

cohesive undrained slopes. Additionally, this is comparable to the results of (Chugh, 2003), who analysed frictional 



 

 

soil slopes. Michalowsk and Martel (2010) demonstrate that the suggested 3D FS becomes constant when B/H = 5.0, 

where H is the slope's height, and B is its longitudinal length. 

Based on the studies of previous works related to fixing the length of longitudinal dimension during 3D 

Slope, it is evident that researchers did not consider the effects of pore pressure and seismic loadings. Usually, the 

nature of critical failure surface changes as these loadings comprise the loading pore pressure ratio and horizontal 

earthquake loading. In the present work, A parametric analysis is conducted to determine the significance of 3D 

longitudinal/end effects by examining the results of 3D and 2D analyses for various geometries, pore pressure ratios 

and horizontal earthquake loading for cohesive-frictional Slope. This study aims to establish the minimum extent of 

the third/longitudinal dimension that must be considered during 3D slope stability analysis for different loading 

combinations. 

2 Research Significance 

During a 3D slope stability study, an important consideration is the adequate incorporation of the longitudinal 

dimension in the three-dimensional slope model. If the longitudinal dimension of the 3D slope model is not adequately 

fixed, the results of 3D slope analyses will be highly erroneous. The existing literature on this subject reveals that the 

effects of only gravity loading has been considered while recommending the required extent of the third dimension of 

the slope during 3D slope analyses. The effects of other loading parameters such as pore pressure and sesismic loading 

were not accounted for while estimating the required length of the third dimension of the slope. To address these 

issues, researchers employed various geometries, pore pressure ratios, and horizontal earthquake loading for cohesive-

frictional slope. 

3 Slope Stability Analysis 

This study aims to determine the minimum extent of the third/longitudinal dimension that should be considered during 

3D slope stability analysis. While carrying out 3D slope analysis, if the insufficient length of the longitudinal 

dimension of the Slope is considered, it will lead to an incorrect estimation of 3D FS values. Hence, determining the 

correct minimum longitudinal dimension during 3D slope analysis is paramount. To assess the minimum length of 

longitudinal dimension of the Slope needed for 3D slope analysis, the convergence behaviour of the ratio of FS values 

in two and three dimensions are studied against different values of l/h where l and h represent the longitudinal 

dimension of a 3D slope and the height of the Slope respectively (refer to Fig.1a). The 2D geometry of Slope is shown 

in Fig.1b. In this study, different slope stability problems are solved in 2D and 3D based on Bishop's method to derive 

2D and 3D FS values against sliding. 2D slope stability analyses were carried out using Slope/W software to find the 

minimum FS of known shear strength parameters along the failure plane. Slope/W permits various methods to 

determine the factor of safety, but Bishop's simplified method (BSM) is used for the the current work. For 3D slope 

stability, analyses were carried out using the Scoops3D source program. The investigations have been performed for 

different slope angles ( ) . 



 

 

Fig.1a: 3D geometry of soil slope 

 

 

Fig.1b: 2D 

Fig.1b: geometry of soil slope 

3.1 2D FS Determination Using BSM 

In this study, the factor of safety of a 2D slope is determined using Slope/W software. Slope/W software permits 

various methods to determine factor of safety. But in this research work, a well-known limit equilibrium method, i.e., 

BSM, is used. This method ensures moment equilibrium of the failure mass is satisfied with any rotation point. Figure 

2 represent the free-body diagram of ith slice subjected to all possible combination of forces. 

 
Fig. 2:  Free body diagram of ith slice 

 

where, iW  is the weight of ith slice, '
iN is the effective normal force at the base of ith slice, miS  is the mobilized shear 

force at the base of ith slice, 
iLE is the interslice normal force acting on ith slice from the left direction, 

iRE is the 

interslice normal force acting on ith slice from right direction, 
iLV is Interslice shear force acting on ith slice from left 

direction, 
iRV is Interslice shear force acting on ith slice from right direction, hk is horizontal earthquake coefficient, 

dx is width of each slice, i  is length of base of ith slice, 
iLZ is the Perpendicular distance of 

iLE  from center of 

rotation, 
iRZ is Perpendicular distance of 

iRE  from center of rotation, ix  is horizontal distance of center of ith slice 

from center of rotation, ie is the vertical distance of center of ith slice from center of rotation, ir  is the perpendicular 

distance of iN  from center of rotation. 
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 Bishop's simplified method's final FS expression considering the effects of pore pressure and earthquake 

forces, is obtained by satisfying the moment equilibrium condition for sliding mass about its center of rotation, given 

in Eq. (1). 

Factor of Safety (FSm) =
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(1) 

If a circular failure surface is considered, fi = 0.0 in the above expression. Also, the term ui represents the 

pore water pressure acting on the base of ith slice. In order to determine the pore pressure u, it is necessary to know 

about the height piezometric surface of the water. In the absence of such information, an alternative approach to 

determine pore pressure can be adopted in terms of pore pressure ratio (ru) defined as: 
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Therefore, the expression of FS, in terms of ru, is expressed as follows: 

Factor of Safety (FS) =
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(3) 

 In the above relations iN  is the normal force acted at the base of the slice and obtained from the following 

relation: 
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Here, 
FS

ii
i




sintan
cos

'

+ = im , and 'c  is the effective cohesion of soil, i'  is the effective shearing resisting of 

soil. Also, the summation of the difference between the normal forces over the failure mass, i.e., ( )Ri LiE E− as 

well as the summation of shear forces acting on the sides of the columns, i.e., ( )Ri LiV V−  are equated to zero.  



 

 

3.2 3D formation of BSM 

In this work, the FS of a 3D slope is computed using a Scoops3D-based computer program. While Scoops3D 

provides both Ordinary and Bishop simplified methods for calculating the factor of safety, this study uses Bishop's 

simplified technique for the assigned problem. Fig. 3 illustrates the schematic representation of the free body diagram 

corresponding to the j,k column, depicting a scenario in which no external force influences the column while subjected 

to various force combinations. 

 

Fig. 3:  Illustrating the forces acting on the j,k column 

where, W = Column’s weight; 𝐸𝑥𝑗,𝑘
, 𝐸𝑦𝑗,𝑘

 denote x and y directions’s inter-column normal force, 

respectively; 𝐻𝑥𝑗,𝑘
, 𝐻𝑦𝑗,𝑘

𝑠ignify horizontal shear forces in the y-z plane; 𝑋𝑥𝑗,𝑘
, 𝑋𝑦𝑗,𝑘

represent the inter-column shear 

forces in the x and z directions, respectively;  𝑁𝑗,𝑘, 𝑈𝑗,𝑘 refer to the effective normal force and the pore water force; 

𝑆𝑗,𝑘 is the mobilized shear force acting on the column’s base; 𝛼𝑗, 𝑘 is the slide angle relative to the x-y plane; 𝛼𝑥 , 𝛼𝑦 

are the base inclination in the x-z and y-z planes, respectively, at the midpoint of each column. 

The Scoops3D program used the 3D modification of Bishop's 2D formulation, as suggested by earlier studies 

[26,27]. The vertical normal force component is found using the vertical force equilibrium equation for a single column 

[26,27] in terms of the trial surface dip angle at the column’s base. Moment equilibrium must be maintained according 

to Bishop's method by equating the global resisting moment to the driving moment. It has been possible to derive the 

global moment equilibrium for all columns using equation (5). 

∑ 𝑀 = ∑ 𝑅𝑗,𝑘

𝑐𝑗,𝑘𝐴𝑗,𝑘 + (𝑁𝑗,𝑘 − 𝑢𝑗,𝑘𝐴𝑗,𝑘) tan 𝜙𝑗,𝑘

𝐹𝑆
− ∑ 𝑊𝑗,𝑘𝑅𝑗,𝑘𝑚𝑧 

(5) 

The vertical force of the equation, as given in Eq. (6), is used to compute the normal force. 

𝑁𝑗,𝑘 =
𝑊𝑗,𝑘 − 𝑐𝑑

′ 𝐴𝑗,𝑘𝑚𝑧 + 𝑢𝑗,𝑘𝐴𝑗,𝑘 tan 𝜙𝑑
′ 𝑚𝑧

cos 𝜀𝑗,𝑘 + tan 𝜙𝑑
′ 𝑚𝑧

 
(6) 

Here,  cos 𝜀𝑗,𝑘 + tan 𝜙𝑑
′ 𝑚𝑧 = 𝑚𝛼𝑗,𝑘

;  𝑐𝑑
′ =

𝑐𝑗,𝑘

𝐹𝑆
;  tan 𝜙𝑑

′ =
tan 𝜙𝑗,𝑘

𝐹𝑆
 and 𝑚𝑧 = sin 𝛼𝑗,𝑘 

Bishop's simplified method's final safety factor expression can be computed as a function of ru as expressed 

in Eq. (7). 



 

 

𝐹𝑆 =
∑ 𝑅𝑗,𝑘 (𝑐𝑗,𝑘𝐴𝑗,𝑘 + 𝑊𝑗,𝑘 (1 − 𝑟𝑢𝑗,𝑘

) tan 𝜙𝑗,𝑘) 𝑚𝛼𝑗,𝑘
⁄

∑ 𝑊𝑗,𝑘[𝑅𝑗,𝑘𝑚𝑧 + 𝑘𝑒𝑞𝑒𝑗,𝑘]
 

(7) 

Here,  𝑐𝑗, 𝑘 is the effective cohesion of soil; 𝜙𝑗, 𝑘 is the soil friction angle; Rj,k is the distance between the trial slip 

region and the rotation axis of the j,k column; Nj,k is the column's normal force; 𝑟𝑢𝑗,𝑘
 is pore pressure ratio; Aj,k

 
 is the 

column's trial surface area; Wj,k is the column's weight; 𝛼𝑗, 𝑘 is the apparent dip angle between the azimuthal and slip 

directions, as shown in Fig. 3. 

3.3 2D and 3D slope geometry design 

For both 2D and 3D slope assessments, the geometry of the domain must be set up first. A method called the Entry 

and Exit approach is used in 2D slope stability analysis to determine the critical failure surface and associated 

minimum factor of safety. In Fig. 4a, two thick (red) lines run along the ground, representing the range of entry points 

of the slip circles, whereas the red line on the upper surface represents the range of exit points of the slip circles. The 

number of entry and exits can be calculated by specifying increments along these two lines. As seen in Fig. 4b, the 

2D slip circle comprises vertical slices.  

  

Fig. 4a: Trial-slip entry and exit areas Fig. 4b: 2D slope profile with vertical slice 

In SCOOPS-3D software, the three-dimensional slope profile is performed using the Digital Elevation 

Modelling (DEM) technique. DEM is a digital representation of the topographic relief. DEMs are extensively utilized 

in the field of geomorphology because of their ability to accurately depict diverse landscape features. Regular grids 

are widely found in the field of digital DEMs and are available in many forms(Xu et al., 2022). The precision of a 

DEM is impacted by a range of topographical characteristics, including landforms, altitudes, roughness, and 

vegetation. The column width, often known as the DEM cell size, is specified by the user. Surface elevation data for 

DEM cells is included in DEM input files. The Box Search Method is used in three-dimensional slope stability 

investigations to find the critical failure surface and calculate the related minimal FS. Fig. 5a depicts a three-

dimensional search lattice displaying a DEM profile, whereas Fig. 5b depicts the DEM cells from a plan perspective. 

Throughout the search process, Scoops3D maintains a record of the minimum safety factor computed for each DEM 

cell among all trial surfaces encompassing that cell. Each trial surface must be a part of a sphere with a rotational 

centre point above the DEM and a given radius. So this helps the search process.  



 

 

 

 

Fig. 5a: 3D search region of a DEM profile (Source: Reid et al. 

(Reid, Christian, Brien, & Henderson, 2015)) 

Fig. 5b:  Potential sliding mass divided in vertical 

columns 

3.4 Role of longitudinal extent in 3D Slope Analysis 

A parametric study is carried out to examine the importance of 3D longitudinal/end effects by comparing the results 

of 3D and 2D analyses for different geometries, pore pressure ratio, horizontal earthquake loading and same shear 

strength parameters along the failure surface. A problem from Arai and Tagyo (1985) work is selected to illustrate the 

use of parametric research results and the significance of doing a 3D analysis in practice. In this study, the authors 

aim to investigate the convergence behaviour of the ratio of the 3D/2D factor of safety in the longitudinal direction, 

which will help us fix the longitudinal dimension's extent of a 3D slope. At different l/h ratios and for different slope 

angles, the ratio of 3D and 2D FS values are examined, and the l/h ratio at which FS3D /FS2D attains constant value is 

chosen to fix the minimum extent of the longitudinal dimension of the 3D Slope. The ratio of 3D and 2D factor of 

safeties is expressed as follows: 

D

D

FS

FS

2

3=   
(8) 

3.5 Validation of the 2D and 3D Slope Stability Analysis Results 

Table 1 demonstrates that the results of the 2D and 3D slope analysis of homogeneous soil with no water table and 

earthquake loading, developed with Slope/W software and Scoops3D computer code, match the published results. 

This exercise determines the validity and precision of the Slope/W and Scoops3D computer programs. When 

performing 3D slope analysis, the longitudinal extent of the 3D domain must be fixed correctly in 3D. It is typically 

accomplished through trial and error by ensuring that the 3D FS value does not change after modifying the Slope's 

longitudinal dimension. For a given height of the slope H, and the length of the slope B in the longitudinal direction, 

previous research  (Deng et al., 2015; Xie et al., 2006) demonstrates that the predicted 3D FS becomes constant when 

B/H = 4.0. In all instances of 3D slope stability problems, it is a requirement that the width of the third dimension (B) 

be set to a minimum of four times the height (H) of the Slope. 

Table 1 Computed 2D and 3D FS with previously reported results 

Author 
H 

(m) 
β (°) 

'c  

(kN/m2) 

' (°) 
'

(kN/m3) 
FS(2D) FS(3D) 

Present 

Study(2D) 

Present 

Study(3D) 



 

 

(Arai & 

Tagyo, 1985) 
20 33.69 41.65 15 18.816 1.401 - 1.405 - 

(Reid et al., 

2015) 
10 26.56 3 19.60 20 0.99 1.04 0.986 1.03 

(Deng et al., 

2015) 
20 33.7 42.7 0 18.82 - 1.42 - 1.44 

(Huang, Tsai, 

& Chen, 

2002) 

12.2 26.5 28.7 20 18.84 - 2.22 - 2.23 

4 Results and Discussion 

In order to investigate the convergence behaviour of the ratio of FS3D and FS2D, a soil slope with homogenous material 

properties is chosen. The material properties considered are effective cohesion 65.41' =c  kN/m2, Effective internal 

friction angle 
15' =  and Unit weight 816.18' =  kN/m3 and height of the slope h = 20.0 m. Arai and Tagyo (1985) 

had already analyzed a 1V: 1.5H homogenous Slope with the same material properties. However, a total of four 

geometric configurations of the Slope i.e., 1V:3H, 1V:1.5H, 1V:1H and 1V:0.5H, are analyzed to estimate the 3D and 

2D FS ratios i.e.,  values as defined in Eq. (6) in the present work. Here, V and H denote the Slope's vertical and 

horizontal dimensions, respectively. All these slope problems are analyzed for different loading combinations 

involving pore pressure and earthquake loadings. The pore pressure loadings on the Slope are simulated considering 

3 values of pore pressure ratio i.e., ur =0.0, 0.25 and 0.50. Similarly, the seismic loading on the Slope is simulated by 

applying an equivalent horizontal static loading. For the 2D case, a slice is subjected to horizontal force of value h ik W

, where hk is called the pseudo-static horizontal seismic coefficient. In 3D analysis, the same horizontal seismic 

coefficient is denoted as eqk , as evident from Eq. (5). The different values of hk and eqk considered in the present 

analyses are: 0.0, 0.05, 0.10, 0.15 and 0.20, respectively. Overall, 15 loading combinations have been considered in 

the current work, out of which the case ur =0.0 and h eqk k= = 0.0 represents a soil slope subjected to only gravity 

loading.  

Figs. 6a-e present the ratio of the 3D factor of safety to the 2D factor of safety, i.e., the   values considering 

pore pressure ratio ru=0.0 and different pseudo-static horizontal seismic coefficients h eqk k= = 0.0, 0.05, 0.10, 0.15, 

and 0.20 with varying inclinations of slopes (1V:3H, 1V:1.5H, 1V:1H, and 1V:0.5H) as well as for different l h  

ratios (where l  is the length in the longitudinal direction and h is the height of the Slope). For 1V:3H Slope or Slope 

angle  =18.430, it is observed that the parameter   converges at a l h  value equal to 5.0 or more. When the slope 

angle  is high, it is noticed that the ratio of the safety factor, i.e.,   converges faster and becomes almost constant 

at l h =3.0 or more. Similarly, the variation of  values against different l h ratios is presented for ru = 0.25 and ru 

= 0.50, considering the same set of h eqk k= = h eqk k= = 0.0, 0.05, 0.10, 0.15, and 0.20 values in Fig. 7a-e and Fig. 

8a-e, respectively. In this case, similar observations regarding the convergence of FS3D and FS2D ratios can be made 

i.e.,  values converge when the longitudinal dimension l is at least equal to 5h. Therefore, in general, it can be stated 



 

 

the longitudinal dimension l should at least be considered five times the height of the Slope (h) to obtain correct 3D 

FS values. 

It is further observed that both 3D and 2D safety factor values decrease with an increase in slope angle β. It 

is also noted that there is a decrease in the safety factor for both  2D and 3D FS values as the pore pressure ratio 

increases. However, it has also been observed that an increase in pseudo-static horizontal seismic coefficients leads to 

a decrease in the safety factor for both 2D and 3D analyses. In most loading scenarios, the ratio FS3D/FS2D is seen 

to converge at l/h = 4.0. However, for the geometric configuration 1V:3H and loading level ur =0.50, eqk = 0.20, it is 

seen that FS3D/FS2D ratio achieves desired level of convergence at l/h>4.0. Hence, the authors prefers a safe choice of 

the extent of the third/logitudinal dimension of the slope equalling the 5 times the height of the slope. 

Fig. 6a: Influence of l/h on ratio of 3D/2D FS for condition 

ru=0; keq=0.0 

Fig. 6b: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0; keq=0.05 

Fig. 6c: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0; keq=0.10 

Fig. 6d: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0; keq=0.15 
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Fig. 6e: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0; keq=0.20 

Fig. 7a: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.25; keq=0.0 

Fig. 7b: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.25; keq=0.05 Fig. 7c: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.25; keq=0.10 

Fig. 7d: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.25; keq=0.15 

Fig. 7e: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.25; keq=0.20 
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Fig. 8a: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.50; keq=0.0 
Fig. 8b: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.50; keq=0.05  

Fig. 8c: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.50; keq=0.10 
Fig. 8d: Influence of l/h on ratio of 3D/2D FS for condition 

and ru=0.50; keq=0.15  

 

 

 

 

 

 

 

 

Fig. 8e: Influence of l/h on ratio of 3D/2D FS for different slope and ru=0.50; keq=0.20 

Studying the nature of 3D failure surfaces for all the loading conditions mentioned earlier is necessary. The 

present paper considers four different geometric configurations of the Slope, i.e., 1V:3H, 1V:1.5H, 1V:1H, and 

1V:0.5H. The slope angles for these cases are  =18.430, 33.690, 45.00 and 63.430, respectively. The analysis 

performed using l/h = 5.0 shows these critical failure surfaces. Figs. 9, 10, 11, and 12 present the critical failure surface 

(CFS) with minimum FS values obtained from 3D slope analysis. From Figs. 9 and 10, the nature of slope failure is 

identified as a base failure for slopes with  =18.430 and 33.690. Figs. 10 and 11 show that for  = 45.00 and 63.430, 
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the nature of CFS corresponds to toe failure. Therefore, an observation can be made that the nature of CFS gradually 

transitions towards toe failure from base failure as the slope angle  increases. 

Fig. 9: 3D critical failure surface for slope 1V:3H  Fig. 10: 3D critical failure surface for slope 1V:1.5H  

Fig. 11: 3D critical failure surface for slope 1V:1H  Fig. 12: 3D critical failure surface for slope 1V:0.5H  

 

The corresponding values of the 3D and 2D minimum safety factors are presented in Table 1 for different 

slope angles, pore pressure ratios, and horizontal earthquake loading combinations. A LEM-based, simplified Bishop's 

method calculates the minimum safety factors. For various parametric studies, the 2D safety factor is determined using 

the Slope/W software, while the 3D safety factors are determined using the Scoops 3D computer program. Table 1 

only shows the FS3D values for l/h = 5.0, as the FS3D values computed for these geometric configurations of the 3D 

Slope show desirable convergence. The safety factor values exhibit a negative correlation with the slope angle, as 

indicated in Table 1. It is also observed that safety factor values decrease with increased pore pressure ratio and 

horizontal earthquake loading, as presented in Table 1. It is also verified that the 2D safety factor of a simple slope 

(1V:1.5H) chosen by Arai and Tagyo (1985) is well matched in this study using Slope/W software. It should be further 

observed that the failure mass/volume decrease as the slope angle  increases. This fact also corresponds to the 

lowering of the resisting forces, as the resisting forces are usually calculated for the entire failure mass. As a result, it 

can be stated that when the slope angle  increases, there is an overall decrease in the factor of safety value against 

sliding failure.  

 

Table 1: Analysis of 2D and 3D safety factor for different parametric studies 

Slope Angle (β) 
ur ; eqk  FS (2D) L/H FS (3D) Volume of failure 

soil (m3) 



 

 

 

 

 

 

 

 

 

 

1V:3H 

(𝟏𝟖. 𝟒𝟑ₒ) 

 

0.0; 0.0 2.008  

 

 

 

 

 

 

 

5 

2.188   5.828×104  

0.0; 0.05 1.727 1.868 6.066×104 

0.0; 0.10 1.513 1.626 6.127×104 

0.0; 0.15 1.335 1.437 6.272×104 

0.0; 0.20 1.199 1.287 6.362×104 

0.25; 0.0 1.716 1.875 6.462×104 

0.25; 0.05 1.478 1.598 6.562×104 

0.25; 0.10 1.294 1.390 6.751×104 

0.25; 0.15 1.141 1.228 6.758×104 

0.25; 0.20 1.024 1.099 6.839×104 

0.50; 0.0 1.429 1.548 7.549×104 

0.50; 0.05 1.224 1.319 7.379×104 

0.50; 0.10 1.069 1.146 7.379×104 

0.50; 0.15 0.948 1.012 7.467×104 

0.50; 0.20 0.850 .9057 7.467×104 

 

 

 

 

 

 

 

 

1V:1.5H 

(𝟑𝟑. 𝟔𝟗ₒ) 

0.0; 0.0 1.464  

 

 

 

 

 

 

 

 

5 

1.596 1.440×104 

0.0; 0.05 1.338 1.452 1.664×104 

0.0; 0.10 1.221 1.327 1.827×104 

0.0; 0.15 1.121 1.217 2.120×104 

0.0; 0.20 1.034 1.120 2.347×104 

0.25; 0.0 1.264 1.387 1.571×104 

0.25; 0.05 1.148 1.258 1.884×104 

0.25; 0.10 1.047 1.147 1.884×104 

0.25; 0.15 0.962 1.049 2.397×104 

0.25; 0.20 0.889 0.964 2.491×104 

0.50; 0.0 1.044 1.168 2.107×104 

0.50; 0.05 0.945 1.056 2.273×104 

0.50; 0.10 0.862 0.959 2.696×104 

0.50; 0.15 0.791 0.875 2.743×104 

0.50; 0.20 0.731 0.804 2.814×104 

 

 

 

 

 

 

 

 

 

1V:1H 

(𝟒𝟓ₒ) 

0.0; 0.0 1.201  

 

 

 

 

 

 

 

 

5 

1.365 6.973×103 

0.0; 0.05 1.121 1.269 7.473×103 

0.0; 0.10 1.049 1.182 8.421×103 

0.0; 0.15 0.986 1.103 8.581×103 

0.0; 0.20 0.928 1.030 1.041×104 

0.25; 0.0 1.034 1.185 7.314×103 

0.25; 0.05 0.964 1.101 8.253×103 

0.25; 0.10 0.902 1.024 9.102×103 

0.25; 0.15 0.846 0.955 9.523×103 

0.25; 0.20 0.796 0.890 1.099×104 

0.50; 0.0 0.862 1.025 7.948×103 

0.50; 0.05 0.804 0.926 8.517×103 

0.50; 0.10 0.752 0.861 1.011×104 

0.50; 0.15 0.706 0.801 1.154×104 

0.50; 0.20 0.665 0.746 1.278×104 

 0.0; 0.0 0.922  1.061 3.675×103 



 

 

 

 

 

 

 

1V:0.5H 

(𝟔𝟑. 𝟒𝟑ₒ) 

0.0; 0.05 0.872  

 

 

 

 

 

5 

0.976 3.712×103 

0.0; 0.10 0.827 0.968 3.813×103 

0.0; 0.15 0.785 0.920 3.953×103 

0.0; 0.20 0.746 0.892 4.053×103 

0.25; 0.0 0.774 0.901 4.112×103 

0.25; 0.05 0.731 0.856 4.153×103 

0.25; 0.10 0.691 0.812 4.234×103 

0.25; 0.15 0.655 0.782 4.383×103 

0.25; 0.20 0.621 0.746 4.453×103 

0.50; 0.0 0.626 0.726 4.612×103 

0.50; 0.05 0.591 0.690 4.692×103 

0.50; 0.10 0.556 0.658 4.709×103 

0.50; 0.15 0.525 0.627 4.721×103 

0.50; 0.20 0.496 0.602 4.753×103 

5 Variation of 3D FS with soil parameters 

To firmly establish the fact that the consideration of proper extent of 3rd dimension of the slope is of utmost importance 

during 3D slope stability analysis, it is pertinent that convergence behaviour of FS3D must be studied when soil 

parameters are also varying. For this purpose, the effect of soil characteristics on the evaluated FS values of the 3D 

slope has been investigated to check the convergence of FS3D. Note that, in this study, five combinations of 'c , 
'  

have been considered for three different geometric configurations of the Slope, i.e., 1V:1.5H, 1V:1H and vertival cut. 

The slope angles for these cases are  = 33.690, 45.00 and 900 respectively. The different combinations of 'c , 
' , 

and
' are shown in Table 2. 

Table 2: Details of 'c , 
' and 

' values 

Parameter 
cases 

C 1 C 2 C 3 C 4 C 5 

'c  (kN/m2) 40 50 60 70 80 

' (°) 20° 15° 10° 5° 0° 

' (kN/m3) 18.816 18.816 18.816 18.816 18.816 

 

All these slope problems are analyzed for different loading combinations involving pore pressure and 

earthquake loadings. The pore pressure loadings on the Slope are simulated considering two values of pore pressure 

ratio i.e., ur =0.0 and 0.50. Similarly, the seismic loading on the Slope is simulated by applying an equivalent 

horizontal static loading. The different values eqk considered in the present analyses are 0.0 and 0.20, respectively. 

Overall, two loading combinations have been considered for soil characteristics in the current work, out of which the 

case ur =0.0 and eqk = 0.0 represents a soil slope subjected to only gravity loading. This investigation aims to check 

the convergence of 3D  factor of safety at different soil characteristics. For this analysis, the convergence of 3D FS is 

checked at extreme loading conditions for different soil characteristics of soil slopes represented by ur =0.50 and eqk

= 0.20. 



 

 

Fig. 13 presents the 3D factor of safety of different soil characteristics for a soil slope subjected to only 

gravity loading with varying inclinations of slopes (1V:1.5H and 1V:1H) as well as for different l h  ratios (where 

l  is the length in the longitudinal direction and h is the height of the Slope). It is noticed that the 3D safety factor 

converges at l h =3.0 or more. Similarly, the variation of 3D FS is presented for ur = 0.50 and eqk = 0.20 in Fig. 

14. In this case, similar observations regarding the convergence of FS3D can be made i.e., FS3D values converge 

when the longitudinal dimension l is at least equal to 5h. Therefore, in general, it can be stated the longitudinal 

dimension l should at least be considered five times the height of the Slope (h) to obtain correct 3D FS values. Fig. 

15 presents the 3D critical failure surface for case1 of vertical cut under gravity loading only (ru = 0.0; keq =0.0). 

The nature of the failure is observed to be compatible with toe failure. 

 

Fig.13: Variation of FS3D with different l/h ratios having different soil properties (ru=0.0; keq=0.0) 

 

 

Fig.14: Variation of FS3D with different l/h ratios having different soil properties (ru=0.50; keq=0.20) 
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Fig.15: 3D critical failure surface for case1 of vertical cut under gravity loading (ru=0.0; keq=0.0) 

 

6 Conclusions 

During 3D slope stability analysis, fixing the longitudinal direction of the 3D slope model is a very important task. If 

the longitudinal dimension of the 3D slope model is selected incorrectly, the 3D slope stability analysis will produce 

the wrong results. The present paper recommends the longitudinal dimension of a 3D slope by observing the 

convergence behaviour of the ratios FS3D and FS2D. Based on Bishop's simplified analysis, the limit equilibrium 

technique has been used to determine FS2D. On the other hand, FS3D is determined using a 3D extension of Bishop's 

simplified method through the Scoops-3D computer program of the USGS. The effects of pore pressure loading are 

incorporated by considering different pore pressure ratios (ru = 0.0, 0.25, and 0.50, respectively). The effects of seismic 

loading have been simulated in the analysis by considering different values of horizontal seismic coefficients, 

i.e., kh = keq = 0.0, 0.05, 0.10, 0.15, 0.20, etc. Altogether, 15 loading combination cases have been analyzed to study 

the variation of the ratio of   = FS3D/FS2D concerning l/h values for slopes with different inclination angles ( ) .The 

above study yields the following findings: 

1. It is observed that    converges satisfactorily for all loading combination cases at l/h=5.0.  

2. The rate of convergence   is faster for steeper slopes and vice-versa.  

3. The third/longitudinal dimension of the 3D slope model should be considered equal to five times the height 

of the slope. 

4. The 2D and 3D safety factors decrease as the slope angle increases for a certain l/h ratio.  

5. Thus, decrease in the safety factor results from a reduction of the longitudinal extent of the sliding mass. 

Similarly, the volume of the failure mass from 3D slope analyses decreases simultaneously as the slope angle 

increases.  

6. As the resisting force develops along the entire failure mass, there is a corresponding decrease in the 

generated resisting moment, resulting in an overall decrease in the factor of safety against slope failure. 

7. For all analysis cases, the type of slope failure is also closely monitored. As the slope angle increases, the 

nature of the critical failure surface gradually transitions from base failure to toe failure. 
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