تعداد نشریات | 161 |
تعداد شمارهها | 6,495 |
تعداد مقالات | 70,192 |
تعداد مشاهده مقاله | 123,356,213 |
تعداد دریافت فایل اصل مقاله | 96,577,140 |
اثر تیمار پس از برداشت متیلجاسمونات بر بیان برخی ژنهای مسیر بیوسنتزی اتیلن و خواص کیفی میوه توتفرنگی | ||
علوم باغبانی ایران | ||
دوره 54، شماره 4، دی 1402، صفحه 685-702 اصل مقاله (1.35 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.343066.2028 | ||
نویسندگان | ||
ساوه واعظی1؛ محمدرضا اصغری* 1؛ علیرضا فرخزاد1؛ ناصر مهنا2؛ مرتضی سلیمانی اقدم3 | ||
1گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2گروه علوم باغبانی دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران | ||
3گروه علوم باغبانی دانشکده کشاورزی دانشگاه بین المللی امام خمینی، قزوین، ایران | ||
چکیده | ||
در این مطالعه از کاربرد متیلجاسمونات در 0، 10 و 100 میکرومول در لیتر به مدت 16 ساعت در دمای 20 درجه سلسیوس جهت به تاخیر انداختن پیری و حفظ کیفیت در میوههای توتفرنگی رقم سابروسا در طول دوره نگهداری در دمای 5/0 ± 3 درجه سلسیوس به مدت 12 روز استفاده گردید. میوههای تیمار شده با متیلجاسمونات سطح بالایی از اسیدیته کل و ویتامین ث را نشان دادند. همچنین سفتی این میوهها بعد از 12 روز نگهداری در مقایسه با شاهد بیشتر بود. بیشترین میزان فنل کل و آنتوسیانین کل در میوه های توتفرنگی تیمار شده با 100 میکرومولار متیلجاسمونات و بعد از 8 روز نگهداری مشاهده شد. تیمار متیلجاسمونات در مقایسه با شاهد کاهش معنیداری در افزایش پی اچ، پوسیدگی و مواد جامد محلول (p˂0/01) داشت. میزان بیان ژنهای 1-آمینوسیکلوپروپان 1- کربوکسیلیک اکسیداز (ACO) و 1- آمینوسیکلوپروپان 1- کربوکسیلیک سینتاز (ACS) در مسیر بیوسنتزی اتیلن در روز 8 نگهداری در میوههای تیمار شده با 10 و 100 میکرومولار متیلجاسمونات کمی افزایش نشان داد، اما پس از آن کاهش یافت. بیشترین میزان بیان ژنها در روز 8 نگهداری مربوط به تیمار 10 میکرومولار بود. نتایج پژوهش حاضر نشان داد که متیلجاسمونات میتواند با تحریک مسیر بیوسنتزی اتیلن در حدی که فقط سیستم دفاعی و مکانیسمهای درگیر در افزایش تحمل تنش های زنده و غیر زنده را فعال کند و نیز با افزایش ترکیبات آنتیاکسیدانی، موجب حفظ کیفیت و عمر پس از برداشت میوه توتفرنگی رقم سابروسا در طول دوره نگهداری شود. | ||
کلیدواژهها | ||
1-آمینوسیکلوپروپان 1- کربوکسیلیک اکسیداز (ACO)؛ 1- کربوکسیلیک سینتاز (ACS)؛ آنتوسیانین؛ سفتی؛ فنل کل | ||
مراجع | ||
اثنی عشری، محمود و زکایی خسروشاهی، محمد رضا (1387). فیزیولوژی و تکنولوژی پس از برداشت. چاپ اول. همدان: انتشارات دانشگاه همدان. اصغری، محمدرضا (1394). هورمونها و تنظیمکنندههای رشد گیاهی جدید (غیر کلاسیک). چاپ اول. ارومیه: انتشارات دانشگاه ارومیه. بی ستی، علی و حسن پور، حمید (1395). کاربرد پس از برداشت متیلجاسمونات بر ظرفیت آنتیاکسیدانی و آنزیمهای آنتیاکسیدان گیلاس رقم تکدانه مشهد. پژوهش در میوهکاری، ۲ ، ۷۳ – ۵۶. رنجبر، حمید؛ ذوالفقاری نسب، رحیم؛ قاسم نژاد، محمود و سرخوش، علی (1386). تأثیر متیلجاسمونات در القاء مقاومت به سرمازدگی میوه انار رقم ملس ترش ساوه. پژوهش و سازندگی در زراعت و باغبانی، 75: ۴۹ – 43. ساربانی، اکبر؛ ارشد، موسی و نظری دلجو، محمد جواد (1399). تأثیر متیل جاسمونات بر بیوسنتز اتیلن، ظرفیت آنتیاکسیدانی و ماندگاری میوه توتفرنگی طی دوره پس از برداشت. نشریه تولید و فرآوری محصولات زراعی و باغی، 107-93. عین الدین، محمد صفا و حاجیلو، جعفر (1395). تأثیر کاربرد پس از برداشت متیل جاسمونات روی خواص کیفی توتفرنگی رقم کاماروسا. پژوهشهای صنایع غذایی, ۲۶ ، ۲ : ۲۷۷ – ۲۸۸. REFERENCES Asghari, M. R. (2015). Novel (Non-classic) Plant hormones and growth regulators. (1th ed.). Urmia University Publication. (In Persian). Asghari, M. (2019). Impact of jasmonates on safety, productivity and physiology of food crops. Trends in Food Science & Technology, 91, 169–183. Asghari, M. & Hasanlooe, A. R. (2015). Interaction effects of salicylic acid and methyl jasmonate on total antioxidant content, catalase and peroxidase enzymes activity in “Sabrosa” strawberry fruit during storage. Scientia Horticulturae, 197, 490–495. Asghari, M., & Hasanlooe, A. R. (2016). Methyl jasmonate effectively enhanced some defense enzymes activity and total antioxidant content in harvested “Sabrosa” strawberry fruit. Food Science and Nutrition, 33, 1-6. Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & Gonzalez-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT - Food Science and Technology, 37, 687–695. Ayala-Zavala, F., Wang, S. Y., Wang, C. Y., & Gonzalez-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity. Volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221, 731–738. Bisti, A., & Hassanpour, H. (2017). Postharvest application of methyl jasmonate on antioxidant capacity and antioxidant enzymes of sweet cherry cv. Tak Daneye Mashhad. Research in Pomology, 1(2), 56-73. (In Persian). Cass, C., Peraldi, A., & Dowd, P. (2015). Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility and biotic stress responses in branchy podium. Experimental Botany, 19, 1- 26. Chanjirakul, K., Wang, S. Y., Wang, C. H., & Siriphanich, J. (2006). Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biology and Technology, 40, 106–115. Cioroi, M. (2007). Study on L-ascorbic acid contents from exotic fruits. Cercetari Agronomicin Moldova, 1, 23-27. Concha, C. M., Figueroa, N. E., Poblete, L. A., Qate, F. A., Schwab, W., & Figueroa, C. R. (2013). Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiology and Biochemistry, 70, 433–444. Creelman, R. A. and Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355–381.Cristina, L., Aizza, B., & Dornelas, M. C. (2011). A genomic approach to Study anthocyanin synthesis and flower pigmentation in Passionflowers. Journal of Nucleic Acids Article ID, 371517. Devore, E. E., Kang, J. H., Breteler, M. M. B., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72, 135-143. Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2001). Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Science, 161, 1153–1159. Esna-Ashari, M., & Zokaee Khosroshahi, M. R. (2008). Post-harvest physiology and technology (2th ed.). Bu-Ali Sina University Publication. (In Persian). Eynalladin, M. S., & Hajiloo, J. (2016). Effect of methyl jasmonate on qualitative traits and vase life of strawberry cv. “Camarosa”. Journal of Food Research, 26(2), 277- 288. (In Persian). Fawbush, F., Nock, J. F., & Watkins, C. B. (2009). Antioxidant contents and activity of 1-methylcyclopropene (1-MCP)-treated ‘Empire’ apples in air and controlled atmosphere storage. Postharvest Biology and Technology, 52,30-37. Geransayeha, M., Sepahvandb, S., Abdossic, V., & Zarrinniad, V. (2015). Effect of methyl jasmonate treatment on decay, post-harvest life and quality of Strawberry (Fragaria ananassa L. cv. Gaviota) fruit. International Journal of Current Science, 15, E 123-131. Gonzalez-Aguilar, A. B., Buta, J. G., & Wang, C. Y. (2002). Methyl jasmonate reduces decay and maintains postharvest quality of papaya 'sunrise'. Postharvest Biology and Technology, 28, 361-370. Gonzalez-Aguilar, A. B., Buta, J. G., & Wang, C. Y. (2003). Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya ‘Sunrise’. Postharvest Biology and Technology, 28, 361-370. Gonzalez-Aguilar, G., Tiznado-Hernandez, M. E., & Wang C. Y. (2006). Physiological and biochemical responses of horticultural products to methyl jasmonate. Stewart Postharvest Review, 32, 52-565. Gould, K. S., & Lister, C. (2006). Flavonoids: Chemistry, Biochemistry and Applications. In Q. M. Andersen, & K. R. Markham (Eds.), Flavonoid functions in plants. (pp. 397-441). Boca. Raton, FL: CRC Press, 55, 32-42.
Guan, Y., Hu, W., Jiang, A., Xu, Y., Sa, R., Feng, K., Zhao, M., Yu, J., Ji, Y., Hou, M., & Yang, X. (2019). Effect of methyl jasmonate on phenolic accumulation in wounded broccoli. Molecules, 24, 3537. Heredia J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115, 1500- 1508. Hernandez-Munaz, P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries. Postharvest Biology and Technology, 39, 247-253. Hong, K., Gong, D., Xu, H., Wang, S., Jia, Z., Chen, J., & Zhang, L. (2014). Effects of salicylic acid and nitric oxide pretreatment on the expression of genes involved in the ethylene signaling pathway and the quality of postharvest mango fruit. New Zealand Journal of Crop and Horticultural Science, 42, 205-216. Huang, X., Li, J., Shang, H., & Menga, X. (2014). Effect of methyl jasmonate on the anthocyanin content and antioxidant activity of blueberries during cold storage. Journal of the Science Food Agriculture, 95, 337–343. Jaakola, L. (2003). Flavonoid biosynthesis in bilberry (Vaccinium myrtillus L.). Academic Dissertation. Faculty of Agriculture and Forestry. University of Helsinki, 65, 57-95. Kano, Y., & Asahira, T. (1981). Roles of cytokinin and abscisic acid in the maturing of strawberry fruits. Journal of the Japanese Society for Horticultural Science, 50, 31–36. Kondo, S., Yamada, H., & Setha, S. (2007). Effect of jasmonates differed at fruit ripening stages on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in pears. Journal of the American Society Horticultural, 132, 120–125. Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC INTERNATIONAL, 88, 1269–1278. Lv, J., Zhang, M., Zhang, J., Ge, Y., Li, C., Meng, K., & Li, J. (2018). Effects of methyl jasmonate on expression of genes involved in ethylene biosynthesis and signaling pathway during postharvest ripening of apple fruit. Scientia Horticulturae, 229, 157–166. Mohammadrezakhani, S., Pakkish, Z., & Saffari, V. R. (2017). Effect of putresine and methyl jasmonate on antioxidant responses in peel and pulp of orange (Citrus sinensis L. var. Valencia) fruit. Journal of Plant Physiology and Breeding, 7(2), 41-52. Monsalve, L., Bernales, M., Ayala-Raso, A., Álvarez, F., Valdenegro, M., Alvaro, J. E., Figueroa, C. R. Defilippi, B. G., & Fuentes, L., (2022). Relationship between endogenous ethylene production and firmness during the ripening and cold storage of raspberry (Rubus idaeus ‘Heritage’) fruit. Horticulturae, 8, 262. Moreno, C. S. (2002). Review. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science Technology, 8, 121-137. Oeller, P.W., Min-Wong, L., Taylor, L. P., Pike, D. A., & Theologis, A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254, 437– 439. Ozturk, B., & Yucedag, F. (2021). Effects of methyl jasmonate on quality properties and phytochemical compounds of kiwifruit (Actinidia deliciosa cv. ‘Hayward’) during cold storage and shelf life. Turkish Journal of Agriculture and Forestry, 45, 154-164. Perez, A. G., Sanz, C., Olias, R., & Olias, M. (1997). Effect of methyl jasmonate on in vitro strawberry ripening. Journal of Agricultural and Food Chemistry, 45, 3733–3737. Pilati, S., Bagagli, G., Sonego, P., Moretto, M., Brazzale, D., Castorina, G., Simoni, L., Tonelli, C., Guella, G., & Engelen, K. (2017). Abscisic acid is a major regulator of grape berry ripening onset: New insights into ABA signaling network. Frontiers in Plant Science, 8, 1093. Ranjbar, H., Zolfegharinasab, R., Ghasemnezhad, M., & Sarkhosh, A. (2006). Effect of methyl jasmonate on inducing chilling tolerance in pomegranate fruits (Malas Save). Pajouhesh & Sazandegi, 75, 43-49. (In Persian). Sammi, S., & Masud, T. (2007). Effect of Different packaging systems on storage life and quality of tomato (Lycopersicom esculentum var. Rio Grando) during different ripening stages. Journal of Food Safety, 9, 37-44. Saniewski, M. (1997). The role of jasmonates in ethylene biosynthesis. In Kanellis, A.K., Chang, C. Kende, H. & Grierson, D. (eds.), Biology and biotechnology of the plant hormone ethylene (pp. 39–45). Kluwer Academic Publishers, Dordrecht. Sarebani, A., Arshad, M., & Nazari Delju. M. J. (2019). The effect of postharvest methyl jasmonate treatment on ethylene biosynthesis, antioxidant capacity and shelf life of strawberry. Journal of Crop Production and Processing, 10, 93-107. (In Persian). Sayyari, M., Babalar, M., Kalantari, S., Martinez-Romero, D., Guillén, F., Serrano, M., & Valero, D. (2011). Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chemistry, 124, 964-970. Seo, H. S., Song, J. T., Cheong, J. J., Lee, Y. W., Hwang, I., Lee, J. S. and Choi, Y. D. (2001). Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate regulated plant responses. Proceedings of the National Academy of Sciences of the United States of America, 10: 4788-4793. Sha, S. F., Li, J. C., & Zhang, S. L. (2011). Change in the organic acid content and related metabolic enzyme activities in developing Xinping pear fruit. African Journal of Agricultural Research, 6, 3560-3566. Singh, Z., & Khan, A. S. (2010). Physiology of plum fruit ripening. Stewart Postharvest Review, 6(2), 751-753. Smimoff, N. (1995). Antioxidant system and plant response to the environment. In: Smimoff, N. (Ed.), Environment and Plant Metabolism. Bios Scientific Publisher, Oxford, United Kingdom, 217-243. Steyn, W. J. W., Holcroft, S. J. E., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist, 155, 349- 361. Valero, D., Martinez-Romero, A. D., Valverde, J. M., Guillen, F., & Serrano, M. (2003). Quality improvement and extension of shelf life by 1- methylcyclopropene in plumas affected by ripening stage at harvest. Food Sciences Emergency and Technology, 4, 339–348. Wang, S. Y., Bowman, L., & Ding, M. (2008). Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes antiproliferation of human cancer cells. Food Chemistry, 107, 1261–1269. Wang, K., Jin, P., Cao, S., Shang, H., Yang, Z., & Zheng, Y. (2009). MeJA reduces decay and enhances antioxidant capacity in Chinese bayberries. Journal of Agricultural and Food Chemistry, 57, 5809–5815. Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 3, 18-19. Yu, Z., Song, C. K., Jun, C. Q., Long, Z. S., & Ping, R. Y. (2003). Effects of acetylsalicylic acid (ASA) and ethylene treatments on ripening and softening of postharvest kiwifruit. Acta Botanica Sinica, 45, 1447-1452. Zapata, P. J., Martínez-Esplá, A., Guillén, F., Díaz-Mula, H. M., Martínez-Romero, D. and Serrano, M. (2014). Preharvest application of methyl jasmonate (MeJA) in two plum cultivars. 2. Improvement of fruit quality and antioxidant systems during postharvest storage. Postharvest Biology and Technology, 98: 115-122. Zarei, A., Zamani, Z., Fatahi, R., Mousavi, A., Salami, S. A., Avila, C., & Canovas, F. M. (2016). Differential expression of cell wall related genes in the seeds of soft- and hard-seeded pomegranate genotypes. Scientia Horticulturae, 205, 7-16. Zhang, F. S., Wang, X. Q., Ma, S. J., Cao, N., Li, X. X., Wang, Y. H., & Zheng, X. (2005). Effects of methyl jasmonate on postharvest decay in strawberry fruit and the possible mechanisms involved. Acta Horticulturae, 712, 693-698. Zhao J, Davis, L. C., & Verpoorte, R. (2005). Elicitors signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283-333. Zheng, Y., Wang, C. Y., Wang, S. Y., & Zheng, W. (2003). Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity. Journal of Agricultural and Food Chemistry, 51, 7162-7169. | ||
آمار تعداد مشاهده مقاله: 191 تعداد دریافت فایل اصل مقاله: 239 |