تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,103,200 |
تعداد دریافت فایل اصل مقاله | 97,209,484 |
پتانسیل کنترل زیستی جدایههای باسیلوس در تعامل با بیمارگر Rhizoctonia solani سیبزمینی | ||
دانش گیاهپزشکی ایران | ||
دوره 54، شماره 1، شهریور 1402، صفحه 187-205 اصل مقاله (2.08 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijpps.2023.357079.1007026 | ||
نویسندگان | ||
حسین نوروزی1؛ ساره بقایی راوری* 2؛ شیده موجرلو3 | ||
1گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
3گروه باغبانی و گیاهپزشکی، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
چکیده | ||
در طول دوره رشد، محصول سیبزمینی در معرض ترکیبی از تنشهای زنده و غیر زنده قرار میگیرد. قارچ Rhizoctonia solani Kuhn، عامل بیماری شانکر ساقه سیبزمینی و یکی از مهمترین بیمارگرهای گیاهی خاک برد است که باعث کاهش عملکرد و کیفیت محصول سیبزمینی در سراسر جهان میشود. بهنظر می رسد باکتریهای آنتاگونیست در کنترل بیمارگرهای گیاهی جایگزین مناسبی برای مواد شیمیایی هستند. در این مطالعه، ویژگیهای بیوکنترلی (آنزیم های هیدرولیز کننده، سیدروفور، سورفاکتانت، بیوفیلم) 20 جدایه باسیلوس علیه R. solani AG3، در شرایط آزمایشگاهی بررسی شد. در مجموع جدایهها در کشت متقابل 23 تا 9/64 درصد، در تولید ترکیبات فرار 2/38 تا 4/85 درصد و در تولید آنتی بیوتیک 9/76 تا 90 درصد مهار رشد بیمارگر قارچی را نشان دادند. جدایهها از نظر ویژگیهای بیوکنترلی متغیر بودند. براساس نتایج آزمایشگاهی، پنج جدایه Ba1، Ba5، Ba8، Ba11 و Ba12 برای شناسایی و بررسیهای تکمیلی گلخانهای انتخاب شدند. جدایههای منتخب سبب بازدارندگی جوانهزنی اسکلروت قارچ و قطعه قطعه شدن و انعقاد سیتوپلاسمی در میسلیوم قارچ بیمارگر شدند. جدایههای Ba1، Ba5، Ba8، Ba11 و Ba12 به ترتیب به گونههای B. mojavensis، Bacillus sp.، B. pumilus، Bacillus sp. و velezensis B. تعلق دارند. در شرایط گلخانه، شاخص شدت بیماری در تیمارهای Ba5 (Bacillus sp.) و Ba8 (B.pumilus) همانند قارچکش رورال تی اس صفر بود و بیماری شانکر ساقه را به طور کامل کنترل نمودند. از اینرو برای بررسیهای تکمیلی و تهیه فرمولاسیون بهینه پیشنهاد میگردند. | ||
کلیدواژهها | ||
باسیلوس؛ بیوکنترل؛ سیبزمینی؛ شانکر ساقه؛ Rhizoctonia solani AG3 | ||
مراجع | ||
انتصاری، محمد.، کامکار، بهنام.، قادری فر، فرشید و احمدزاده، مسعود (1396). تأثیر جدایههای Pseudomonas fluorescens بر شدت بیماری, صفات فیزیولوژیکی و بیوشیمیایی در غدههای بذری تولیدی ارقام سیبزمینی آلوده به Rhizoctonia solani در شرایط گلخانه. مهار زیستی در گیاه پزشکی، 5 (2)،43-54. Andric, S., Meyer, T., & Ongena, M. (2020). Bacillus responses to plant-associated fungal and bacterial communities. Frontiers in Microbiology, 11, 1350. Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilus RB14. Applied and Environmental Microbiology, 62, 397–404. Atkinson, D., Thornton, M.K., & Miller, J.S. (2010). Development of Rhizoctonia solani on stems, stolons and tubers of potatoes I. Effect of inoculum source. American Journal of Potato Research, 87(4), 374-381. Bacon, C.W., Palencia, E.R., & Hinton, D.M. (2015). Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. In Plant Microbes Symbiosis: Applied Facets.Springer, New Delhi. Bradshaw, J.E., & Ramsay, G. (2009). Potato origin and production. In Advances in Potato Chemistry and Technology. Academic Press. Bredow, C., Azevedo, J.L., Pamphile, J.A., Mangolin, C.A., & Rhoden, S.A. (2015). In silico analysis of the 16S rrna gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops. Genetics and Molecular Research, 14, 9703– 9721. Brewer, M.T., & Larkin, R.P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24(11), 939-950. Chowdhury, S.P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in Microbiology, 6, 780. Entesari, M., Kamkar, B., Ghaderifar, F., & Ahmadzadeh, M. (2018). Effects of Pseudomonas fluorescens on the disease severity, physiological, and biochemical traits in the tubers of potato cultivars infected with Rhizoctonia solani under greenhouse condition. Biocontrol in Plant Protection. 5(2),43-54. (In Persian) Fernando, W.D., Ramarathnam, R., Krishnamoorthy, A.S., & Savchuk, S.C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955-964. Hankin, L., & Anagnostakis, S.L. (1977). Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. Microbiology, 98(1), 109-115. Hussain, T., & Khan, A.A. (2020). Bacillus subtilis hussaint-AMU and its Antifungal activity against Potato Black scurf caused by Rhizoctonia solani on seed tubers. Biocatalysis and Agricultural Biotechnology, 23, 101443. Idris, E.E., Iglesias, D.J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6), 619-626. Jayasankar, N.P., & Graham, P.H. (1970). An agar plate method for screening and enumerating pectinolytic microorganisms. Canadian journal of Microbiology, 16(10), 1023-1023. Kazempour, M.N. (2004). Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistic bacteria in greenhouse and field conditions. Plant Pathology Journal, 3, 88-96. Keswani C., Singh H.B., Garcıa-Estrada, C., Caradus, J., He, Y.W., & Mezaache-Aichour, S. (2020) Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied and Microbiology Biotechnology, 104,1013–1034. Khedher, S.B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M., & Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies, 338(12), 784-792. Kraus, J., & Loper, J.E. (1991). Biocontrol of Pythium damping-off of cucumber by Pseudomonas fluorescens PF-5: mechanistic studies pyoluteorin, pyoverdine, siderophore. Bulletin OILB SROP (France). Lamichhane, J.R., You, M.P., Laudinot, V., Barbetti, M.J., & Aubertot, J.N. (2020). Revisiting Sustainability of Fungicide Seed Treatments for Field Crops. Plant Disease, 104(3), 610–623. Lee, Y.S., Cho, J.Y., Moon, J.H., & Kim, K.Y. (2017). Isolation and identification of N-butyl-tetrahydro-5-oxofuran-2-carboxamide produced by Bacillus sp. L60 and its antifungal activity. Journal of Bbasic Microbiology, 57(3), 283-288. Mehmood, S., Muneer, M.A., Tahir, M., Javed, M.T., Mahmood, T., Afridi, M. S., Pakar, N.P., Abbasi, H.A., Munis, M., & Chaudhary, H.J. (2021). Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 27(9), 2101–2114. Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1488(3), 211-218. Murthy, N., & Bleakley, B. (2012). Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. International Journal of Microbiology, 10(2), e2bc3. Nyenje, M.E., Green, E., & Ndip, R.N. (2013). Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules, 18(8), 9582-9593. Olanrewaju, O.S., Ayangbenro, A.S., Glick, B.R., & Babalola, O.O. (2019). Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 103(3), 1155-1166. O'Toole, G.A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449-461. Pandin, C., Le Coq, D., Canette, A., Aymerich, S., & Briandet, R. (2017). Should the biofilm mode of life be taken into consideration for microbial biocontrol agents. Microbial Biotechnology, 10(4), 719-734. Papavizas, G.C., & Lewis, J.A. (1986). Isolating, identifying, and producing inoculum of Rhizoctonia solani. In: Hickey, K.D. (Ed.), Methods for Evaluating Pesticides for Control of Plant Pathogens. The American Phytopathological Society Press, St. Paul, MN, pp. 50–53. Pinhero, G.P.& Yada, R.Y. (2016). Postharvest storage of potatoes. In: Singh, J., Kaur, L. (Eds.), Advances in Potato Chemistry and Technology. Academic Press, London, pp. 283–314. Rahman, S.F.S., Singh, E., Pieterse, C.M., & Schenk, P.M. (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102–111. Saber, W.I., Ghoneem, K.M., Al-Askar, A.A., Rashad, Y.M., Ali, A.A., & Rashad, E.M. (2015). Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biologica Hungarica, 66(4), 436-448. Sacherer, P., Defago, G., & Haas, D. (1994). Extracellular protease and phospholipase C are controlled by the global regulatory gene gaca in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiology Letters, 116(2), 155-160. Saxena, A.K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D.J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583-1594. Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identification of plant pathogenic bacteria (No. Ed. 3). American Phytopathological Society (APS Press). Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56. Shafi, J., Tian, H., & Ji,M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment, 31(3), 446-459. Shahrokhi, S., Bonjar, G.S., & Saadoun, I. (2005). Biological control of potato isolates of Rhizoctonia solani by Streptomyces olivaceus strain 115. Biotechnology, 4(2), 132-138. Singh, M., Singh, D., Gupta, A., Pandey, K.D., Singh, P.K., & Kumar, A. (2019). Plant growth promoting rhizobacteria: application in biofertilizers and biocontrol of phytopathogens. In: PGPR Amelioration In Sustainable Agriculture (pp. 41-66). Woodhead Publishing. Srilakshmi, P., Thakur, R. P., & Satyaprasad, K. (2011). Mechanism of biocontrol of Aspergillus flavus in groundnut by species of Trichoderma. Journal of Mycology and Plant Pathology, 41(2), 249–254. Solanki, M.K., Robert, A.S., Singh, R.K., Kumar, S., Pandey, A.K., Srivastava, A.K., & Arora, D.K. (2012). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65(3), 330-336. Soltani, H, zafari, D., & rouhani, H. (2006). A study on biological control of the crown, root and tuber fungal diseases of potato by Trichoderma harzianum under in-vivo and field condition in Hamadan. Agricultural Research, 5 (3), 13-25 Srivastava, S., Bist, V., Srivastava, S., Singh, P.C., Trivedi, P.K., Asif, M.H., & Nautiyal, C.S. (2016). Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Frontiers in Plant Science, 7, 587. Taheri, P., and Tarighi, S. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167(3), 201-208. Tran, H., Ficke, A., Asiimwe, T., Höfte, M., & Raaijmakers, J.M. (2007). Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. The New Phytologist, 175(4), 731–742. Wale, S.J., Platt, H.W., & Cattlin, N.D. (2008). Diseases, pests and disorders of potatoes: a color handbook. London Pub, Elsevier. 176p. Wharton, P.S. And Wood, E. (2013). Rhizoctonia stem canker and black scurf of potato. Idao, USA: University of Idaho, Extension CIS 1198. Woodhall, A. L., Peters, J., Kiezebrink, D., Sparrow, L., & Ophelkeller, K. (2013). Informing management of potato diseases through epidemiology and diagnostics Rhizoctonia solani Reviews. Potato council agriculture & horticulture development board. 46 p. Zhang, D., Yu, S., Yang, Y., Zhang, J., Zhao, D., Pan, Y., & Zhu, J. (2020). Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Frontiers in Microbiology, 11, 1196. | ||
آمار تعداد مشاهده مقاله: 1,001 تعداد دریافت فایل اصل مقاله: 329 |