تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,506,819 |
تعداد دریافت فایل اصل مقاله | 98,770,780 |
معرفی عوامل ضدتغذیه ای موجود در اقلام خوراکی با منشاءگیاهی و راهکارهای کاهش محتوای آن ها | ||
شیلات | ||
دوره 76، شماره 3، مهر 1402، صفحه 377-396 اصل مقاله (1.14 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22059/jfisheries.2023.352551.1356 | ||
نویسندگان | ||
احمد ایمانی* 1؛ زهرا محمودی کیا2 | ||
1دانشیار گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران | ||
2دانشجوی دکتری گروه شیلات، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
با رشد صنعت آبزی پروری و عرضة محدود پودر ماهی، استفاده از مواد گیاهی مانند دانههای حبوبات (لوپین و نخود)، دانههای روغنی (سویا، پنبه، کلزا و آفتابگردان)، غلات (ذرت، برنج و گندم) را ضروری میسازد. کنجالة برگ های غنی از پروتئین، کنسانتره و ایزولة دانه های روغنی غیرخوراکی (جاتروفا، کرچک و چریش) بهعنوان ترکیبات خوراک ماهی استفاده می شوند. با این حال، چالش اصلی در استفاده از ترکیبات گیاهی غنی از پروتئین در تغذیة ماهی، وجود عوامل ضدتغذیه ای در این نهاده های خوراکی است. عوامل ضد تغذیه ای ترکیباتی هستند که استفاده از مواد مغذی و یا مصرف خوراک را در آبزیان کاهش می دهند و نقش مهمی در تعیین میزان استفاده از گیاهان در خوراکدهی حیوانات دارند. این عوامل می توانند باعث سوء تغذیه ریزمغذی ها و کمبود مواد معدنی شوند. مهمترین عوامل ضدتغذیه ای شامل مهارکننده های پروتئاز، اسید فیتیک، ساپونین، تانن، سیانید، اگزالات، گوسیپول، پلیساکاریدهای غیرنشاسته ای، فیتواستروژن ها، میموزین و مایکوتوکسین ها هستند. روش ها و فناوری های متداول مختلفی وجود دارد که می توان از آنها برای کاهش سطوح این عوامل ضد مغذی استفاده کرد. چندین فناوری و روش فرآوری مانند تخمیر، جوانهزنی، سبوسزدایی، اتوکلاو نمودن، خیساندن و ... برای کاهش محتوای ضدمغذی در غذاها استفاده می شود. با این حال، مطالعه و شناخت شیوه های مؤثر و بهینهسازی شرایط بکارگیری آن ها همچنان از اهمیت زیادی برخوردار است. علاوه براین، هر گونة آبزی یک آستانة تحمل امن برای هر یک از مواد ضد تغذیه ای برخوردار است، که پیش از انتخاب شیوة فرآوری باید مدنظر قرار گیرد. مؤلفه های دیگری چون آثار محیط زیستی و ملاحظات اقتصادی شیوة فرآوری مورد نظر نیز مستلزم توجه ویژه است. | ||
کلیدواژهها | ||
عوامل ضد تغذیه ای؛ فرآوری؛ نهاده های خوراکی گیاهی؛ خوارک آبزیان | ||
مراجع | ||
Falah, M., Dastar, B., Ganji, F., Ashayerizadeh, A., 2016. Effects of fermented soybean meal and dietary protein level on performance and gasterointestinal microbial population in broiler chickens. Animal Sciences Journal 28(109), 53-66. (in Persian). DOI: 10.22092/ASJ.2016.106085 Ayet, G., Burbano, C., Cuadrado, C., Pedrosa, M.M., Robredo, L.M., Muzquiz, M., Osagie, A., 1997. Effect of germination, under different environmental conditions, on saponins, phytic acid and tannins in lentils (Lens culinaris). Journal of the Science of Food and Agriculture 74(2), 273-279. DOI: 10.1002/(SICI)1097-0010(199706)74:2<273::AID-JSFA800>3.0.CO2-L Bureau, D.P., Harris, A. M., Bevan, D.J., Simmons, L.A., Azevedo, P.A., Cho, C.Y., 2000. Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture 181(3-4), 281-291. DOI: 10.1016/S0044-8486(99)00232-X Choct, M., Dersjant-Li, Y., McLeish, J., Peisker, M., 2010. Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australasian Journal of Animal Sciences 23(10), 1386-1398. DOI: 10.5713/ajas.2010.90222. Diouf, A., Sarr, F., Sene, B., Ndiaye, C., Fall, S.M., Ayessou, N.C., 2019. Pathways for reducing anti-nutritional factors: Prospects for Vigna unguiculata. Journal of Nutritional Health & Food Science 7(2), 1-10. DOI:10.15226/JNHFS.2019.001157 D’Mello, J.P.F., Macdonald, A.M.C., 1998. Fungal toxins as disease elicitors. In Environmental Toxicology (pp. 267-304). CRC Press. edited by J Rose. DOI: 10.4324/9780203305515 Donangelo, C.M., Trugo, L.C., Trugo, N.M.F., Eggum, B.O., 1995. Effect of germination of legume seeds on chemical composition and on protein and energy utilization in rats. Food Chemistry 53(1), 23-27. DOI: https://doi.org/10.1016/0308-8146(95)95781-Z FAO., 2020. Food and Agriculture Organization of the United Nation. The State of World Fisheries and Aquaculture. Sustainability in Action. Rome. 1-244. DOI: 10.4060/ca9229en Francis, G., Makkar, H.P., Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3-4), 197-227. DOI: https://doi.org/10.1016/S0044-8486(01)00526-9 Freeland, W.J., Calcott, P.H., Anderson, L.R., 1985. Tannins and saponin: interaction in herbivore diets. Biochemical Systematics and Ecology 13(2), 189-193. DOI: 10.1016/0305-1978(85)90078-X Ghafarifarsani, H., Kachuei, R., Imani, A., 2021. Dietary supplementation of garden thyme essential oil ameliorated the deteriorative effects of aflatoxin B1 on growth performance and intestinal inflammatory status of rainbow trout (Oncorhynchus mykiss). Aquaculture 531, 735928. DOI: 10.1016/j.aquaculture.2020.735928 Ghafarifarsani, H., Imani, A., Niewold, T.A., Pietsch-Schmied, C., Moghanlou, K.S., 2021. Synergistic toxicity of dietary aflatoxin B1 (AFB1) and zearalenone (ZEN) in rainbow trout (Oncorhynchus mykiss) is attenuated by anabolic effects. Aquaculture 541, 736793. DOI: 10.1016/J.AQUACULTURE.2021.736793 Ghosh, K., Ray, A.K., 2017. Aquafeed formulation using plant feedstuffs: Prospective application of fish-gut microorganisms and microbial biotechnology. In Soft chemistry and food fermentation (pp. 109-144). Academic Press. DOI: 10.1016/B978-0-12-811412-4.00005-9 Ghosh, K., Ray, A.K., Ringo, E., 2019. Applications of plant ingredients for tropical and subtropical freshwater finfish: possibilities and challenges. Reviews in Aquaculture 11(3), 793-815. DOI:10.1111/raq.12258 Gopan, A., Sahu, N.P., Varghese, T., Sardar, P., Maiti, M.K., 2019a. Karanj protein isolate prepared from karanj seed cake: Effect on growth, body composition and physiometabolic responses in Labeo rohita fingerlings. Aquaculture Nutrition 26(3), 737-751. DOI:10.1111/anu.13033 Gopan, A., Lalappan, S., Varghese, T., Kumar Maiti, M., Peter, R.M., 2020. Anti-Nutritional Factors in Plant-Based Aquafeed Ingredients: Effects on Fish and Amelioration Strategies. Biosc.Biotech. Res. Comm. Thomson Reuters ISI Web of Science Clarivate Analytics USA and Crossref Indexed Journal pp. 01-09 Hajra, A.A., Mazumder, A., Verma, D.P., Ganguly, B.P., Mohanty, B.P., Sharma, A.P., 2013. Antinutritional factors in plant origin fish feed ingredients: the problems and probable remedies. Advances in Fish Research 5, 193-202. https://www.researchgate.net/publication/283318816 Imani, A., Salimi Bania, M., Noori, F., Farzaneh, F., Sarvi Moghanloua, K., 2017. The effect of bentonite and yeast cell wall along with cinnamon oil on aflatoxicosis in rainbow trout (Oncorhynchus mykiss): Digestive enzymes, growth indices, nutritional performance and proximate body composition. Aquaculture 476 (2017), 160-167. DOI: 10.1016/j. aquaculture.2017.04.023 Jirapa, P., Normah, H., Zamallah, M.M., Asmah, R., Mohamad, K., 2001. Nutritional quality of germinated cowpea flour (Vigna unguiculata) and its application in home prepared powdered weaning foods. Plant Foods for Human Nutrition 56, 203-16. DOI: 10.1023/a:1011142512750 Kiers J.L, Van Laeken A.E., Rombouts F.M., Nout M.J., 2000. In vitro digestibility of bacillus fermented soya bean. International Journal of Food Microbiolgy 60, 163-169. DOI: 10.1016/S0168-1605(00)00308-1. DOI: 10.1016/s0168-1605(00)00308-1 Lee, C.S., Donaldson, E.M., 2001. General discussion on reproductive biotechnology in finfish aquaculture. Aquaculture 197, 303-320. DOI: 10.1016/S0044-8486(01)00591-9 Liener, I.E., 1980. Toxic Constituents of Plant Foodstuffs. Academic Press, New York 10003, NY, pp. 1-502. Liang, Q., Yuan, M. Xu, L., Lio, E., Zhang, F. Mou, H., Secundo, F., 2022. Application of enzymes as a feed additive in aquaculture. Marine Life Science and Technology 4, 208-221. DOI: 10.1007/s42995-022-00128-z Lim S.J., Kim S.S., Pham M.A, Song J.W., Cha J.H., Kim J.D, Kim J.U., Lee K.J., 2010. Effects of fermented cottonseed and soybean meal with phytase supplementation on gossypol degradation, phosphorus availability, and growth performance of olive flounder (Paralichthys olivaceus). Fisheries and Aquatic Sciences 13, 284-293. DOI: 10.5657/fas.2010.13.4.284 Makkar, H.P.S., Francis, G., Becker, K., 2007. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1(9), 1371-1391. DOI: 10.1017/S1751731107000298 Mahdi, T., Al-Kaisey, Abdul-Kader, H., Alwan, Mohammad, M.H., Saeed, A.H., 2003. Effect of gamma irradiation on antinutritional factors in broad bean. Radiation Physics and Chemistry 67, 493-496. DOI: 10.1016/S0969-806X(03)00091-4 Maas R.M., Verdegem M.C.J, Stevens, T.L., Schrama, J.W., 2020 Effect of exogenous enzymes (phytase and xylanase) supplementation on nutrient digestibility and growth performance of Nile tilapia (Oreochromis niloticus) fed different quality diets. Aquaculture 529, 723-735. DOI: 10.1016/j.aquaculture.2020.735723 Mohammadi, M. Imani, A. Farhangi, M. Gharaei, A. Hafeziyeh, M., 2020. Replacement of fishmeal with processed canola meal in diets for juvenile Nile tilapia (Oreochromis niloticus): growth performance, mucosal innate immunity, hepatic oxidative status, liver and intestine histology. Aquaculture 734824. DOI: 10.1016/j.aquaculture.2019.734824 Mohammadi, M., Imani, A., Farhangi, M., Gharaei, A., Hafeziyeh, M., 2022. Efficacy of various processed canola meals to replace fish meal in Nile tilapia Oreochromis niloticus diet: Growth performance, digestive enzymes, immune parameters, and liver antioxidative status. Iranian Journal of Fisheries Sciences 21(4), 966-986. DOI: 10.22092/ijfs.2022.127517 Morgan, E.D., 2009. Azadirachtin, a scientific gold mine. Bioorganic and Medicinal Chemistry 17(12), 4096-4105. DOI: 10.1016/j.bmc.2008.11.081 Murugkar, D.A., Gulati, P. and Gupta, C., 2012. Effect of sprouting on physicalproperties and functional and nutritional components of multi-nutrient mixes. International Journal of Food and Nutritional Sciences 2(2), 8. DOI: ID: 41691149 Nath, H., Samtiya, M., Dhewa. T., 2022. Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Human Nutrition and Metabolism 200147. DOI: 10.1016/j.hnm.2022.200147 Naylor, R., Hardy, R., Bureau, D., Chiu, A., Elliott, M., Farrell, A., Forster, I., Gatlin, D., Goldberg, R., Hua, K., Nichols, P., 2009. Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences 106(36), 15103-15110. DOI: 10.1073/pnas.0905235106 Rahman, M. M., Abdullah, R. B., Wan Khadijah, W. E., Nakagawa, T., Akashi, R., 2013. Feed intake, digestibility and growth performance of goats offered napier grass supplemented with molasses protected palm kernel cake and soya waste. Asian Journal of Animal and Veterinary Advances 8(3), 527-534. DOI: 10.3923/ajava.2013.527.534 Refstie, S., Storebakken, T., Roem, A.J., 1998. Feed consumption and conversion in Atlantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens. Aquaculture 162, 301-312. DOI: 10.1016/S0044-8486(98)00222-1 Refstie, S., Sahlström, S., Bråthen, E., Baeverfjord, G., Krogedal, P., 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246, 331-345. DOI: 10.1016/j.aquaculture.2005.01.001 Sadati, F., Shahsavani, D and Baghshani, H., 2013. Biochemical alterations induced by sublethal cyanide exposure in common carp (Cyprinus carpio). Journal of Biological and Environmental Sciences 7(20): 65-69. DOI: ID: 37203508 Sadeghi, A.A., Shawrang, P., 2006. Effects of microwave irradiation on ruminal degradability and in vitro digestibility of canola meal. Animal Feed Science and Technology 127(1-2), 45-54. DOI: https://doi.org/10.1016/j.anifeedsci.2005.08.016 Sanz, A., Morales, A. E., De la Higuera, M., Gardenete, G., 1994. Sunflower meal compared with soybean meals as partial substitutes for fish meal in rainbow trout (Oncorhynchus mykiss) diets: protein and energy utilization. Aquaculture 128(3-4), 287-300.DOI: 10.1016/0044-8486(94)90318-2 Shawrang, P., Sadeghi, A.A., Behgar, M., Zareshahi, H., Shahhoseini, G., 2011. Study of chemical compositions, antinutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chemistry 125: 376-379. DOI: 10.1016/j.foodchem.2010.09.010 Siddhuraju, P., Makkar, H.P.S., Becker, K., 2002. The effect of ionizing radiation on antinutritonal factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry 78, 187-205. DOI: https://doi.org/10.1016/S0308-8146(01)00398-3 Smith, K.J., 1970. Practical significance of gossypol in feed formulation. Journal of the American Oil Chemists Society 47, 448-450. DOI: 10.1007/BF02632964 Sotodeh, E., Amirimoghadam, J., Shahhosseini, G.R., Bagheri, D., 2016. Changes in the final weight, survival rate and fatty acids of the Caspian Sea salmon (Salmo trutta caspius) fed with irrigated and fermented soybean meal. Nutrition and Aquaculture 2, 33-46. DOI: 10.22124/JANB.2017.3167 Sampath W.W.H.A., Rathnayake R.M.D.S., Yang M, Zhang. W, Mai. K., 2020. Roles of dietary taurine in fish nutrition. Marine Life Science and Technology 2(4), 360-375. DOI: 10.1007/s42995-020-00051-1. Storebakken, T., Shearer, K.D., Roem, A.J., 1998. Availability of protein, phosphorus and other elements in fish meal, soy-protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar. Aqauculture 161, 365-379. DOI: 10.1016/S0044-8486(97)00284-6 Tasa, H., Imani, A., Moghanlou, K. S., Nazdar, N and Moradi-Ozarlou, M., 2020. Aflatoxicosis in fingerling common carp (Cyprinus carpio) and protective effect of rosemary and thyme powder: Growth performance and digestive status. Aquaculture 527: 735437. DOI: 10.1016/j.aquaculture.2020.735437 Tidwell, J.H., Allan, G.L., 2002. Fish as food: aquaculture's contribution. World Aquaculture 33, 44-48. Van Immerseel, F., Fievez, V., De Buck, J., Pasmans, F., Martel, A., Haesebrouck, F and Ducatelle, R., 2004. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poultry Science 83(1), 69-74. DOI: 10.1093/ps/83.1.69 Vikram, N., Katiyar1, S. K., Singh, C, B., Husain, R., Kumar Gangwar, L., 2020. A Review on Anti-Nutritional Factors. International Journal of Current Microbiology and Applied Sciences 9(5), 1128-1137. DOI: https://doi.org/10.20546/ijcmas.2020.905.123 Way, J.L., 1984. Cyanide intoxication and its mechanism of antagonism. Annual Review of Pharmacology and Toxicology 24(1), 451-481. DOI: 10.1146/annurev.pa.24.040184.002315 Wanasundara, P. K.J.P.D., Shahidi, F., Brosnan, M.E., 1999. Changes in flax (Linum usitatissmum) seed nitrogenous compounds during germination. Food Chemistry 65(3), 289-295. DOI: 10.1016/S0308-8146(98)00176-9 Yamamoto M., Saleh F., Hayashi K., 2004. A fermentation method to dry and convert shochu distillery byproduct to a source of protein and enzymes. Journal of Poultry Science 41, 275-280. DOI:10.2141/jpsa.41.275 Yamamoto, T., Iwashita, Y., Matsunari, H., Sugita, T., Furuita, H., Akimoto, A., Okamatsu, K., Suzuki, N., 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout (Oncorhynchus mykiss). Aquaculture 309, 173-180. DOI: 10.1016/j.aquaculture.2010.09.021 Yasar, S., 2003. Performance, gut size and ileal digesta viscosity of broiler chickens fed with a whole wheat added diet and the diets with different wheat particle sizes. International Journal of Poultry Science 2(1): 75-82. DOI: 10.3923/ijps.2003.75.82. Yuan, L., Wu, L., Yang, C. and Lv, Q., 2013. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Journal of the Science of Food and Agriculture 93(2), 254-261. DOI: 10.1002/jsfa.5749 Yigit M., Erdem M., Koshio S., Ergün S., Tür-ker A., and Karaali B., 2006. Substituting fish meal with poultry by-product meal in diets for Black Sea turbot Psetta maeotica. Aquaculture Nutrition 12, 340-347. DOI: 10.1111/j.1365-2095.2006.00409. | ||
آمار تعداد مشاهده مقاله: 398 تعداد دریافت فایل اصل مقاله: 334 |