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Abstract 

Curved beams are widely used in combination with the linear elements of various 

civil engineering structures. Many researchers attempted to analyze beam curved in 

plan, beam curved in elevation, and spatial curved beam using different methods and 

different approaches and presented analytical exact solution and approximate 

numerical solution. The analytical exact integration of the governing differential 

equations is the major difficulty for the analysis of the geometrically non-linear curved 

beams. To overcome this difficulty, a finite displacement transfer method is proposed to 

eliminate analytical differentiation and integration, completely. This paper deals with 

the stiffness matrix of 3D curved beam with varying curvature and varying cross-

sectional area. A novel finite displacement transfer method is used to determine 

displacements of the freely supported node of the cantilever 3D curved beam. The 

flexibility matrix is derived using the finite displacement transfer method. The stiffness 

matrix is derived by employing equilibrium and transformation matrix. The finite 

difference method is used for the numerical solution of the differential equations. 

Results of the calculation method are compared with the results of other methods in the 

literature and the FEM based analysis software. For the circular helix with uniformly 

varying cross-sectional area and 3600 elements, the maximum and minimum 

percentage difference in the stiffness coefficient is 2.89% and −0.65% respectively. For 

the elliptic helix with the uniform cross-sectional area and 720 elements, the maximum 

and minimum percentage difference in the stiffness coefficient is 2.69% and −2.65% 

respectively. The novel of this study lies in the generation of the stiffness matrix of the 

3D curved beams without tedious analytical differentiation and integration of governing 

equations. The stiffness matrix of the spatial curved beam is applicable to the planer 

curved beam also. 

Keywords: Rotation Matrix; Transformation Matrix; Internal Forces; Equilibrium Equations; Cartesian 

Coordinates. 

1. Introduction 

Curved beams have many applications in the field of civil engineering, such as curved stairs, curved 
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balconies, curved bridges, etc. Sometimes the curved beams are used in the structure for the architectural 

purpose. 

Majority of the civil engineering structures are statically indeterminate. In the statically indeterminate 

structure, the number of reactions or the number of internal forces exceed the number of static equilibrium 

equations. To evaluate unknown reactions and internal forces, compatibility equations are required in addition to 

equilibrium equations. In the analysis of indeterminate structure, it is necessary to satisfy the equilibrium 

equations, compatibility equations and force displacement equations. There are basically two distinct methods of 

analysis for statically indeterminate structure: Force method (Also known as flexibility method, method of 

consistent deformation) and Displacement method (Also known as stiffness method). In the flexibility method, 

first redundant are identified and removed to make the structure statically determinate. This structure is also 

known as released structure. The released structure is used for computation of displacements due to unit 

redundant [1]. Four different approaches of the force method of structural analysis are topological force methods, 
algebraic force methods, mixed algebraic-combinatorial force methods, and integrated force method [2-5]. The 

Integrated Force Method was proposed by Patnaik [6] for the analysis of discrete and continuous systems. Atluri 

et al. [1] assumed arbitrary cross-section of the curved beam but it is invariant along the axis of the curved beam. 

The analysis method proposed in the literature [2-7] increases size of the flexibility matrix as the number of 

elements increases. Finite difference method and Finite element method are some of the approximate methods of 

the analysis. Finite element method is most extensive. Accuracy of the result depends on the mesh refinement 

and higher order elements, but size of the problem also increases. 

The curved beam can be analyzed applying Bernoulli–Euler and Timoshenko theories [8, 9]. The mechanical 

behaviour of the curved beam can be expressed by means of equilibrium equations, compatibility equations and 

constitutive relationships or by using energy principle [10-12]. The flexibility matrix and consequently the 

stiffness matrix of the curved beam can be obtained through force-displacement relationship derived from 
Castigliano’s theorem. In any case, analytical solution requires integration of the governing equations. Hence, 

analytical solutions can be obtained for trivial shapes of the curved beam axis, such as circular and parabolic 

shapes [13-19]. In most of the cases, numerical methods must be employed for the solution of the governing 

equations of the curved beam  [15-22]. To overcome difficulties in integration of the governing equations, many 

authors attempted different methods, such as differential quadrature method [23, 24]. 

R. Palaninathan [11] developed stiffness matrix of the circular 3D curved beam using Castigliano’s theorem. 

Tore Dahlberg [12] investigated deflection of elliptical curved beam in plan using Castigliano’s theorem in 

association with a MATLAB numerical integration algorithm and presented numerical solutions of the statically 

determinate and statically indeterminate problems. E. Marotta and P. Salvini [13] described plane curved beam 

geometry by polynomial function limited to cubic interpolation of the curvature radius and obtained stiffness 

matrix of the curved metal wire by inversion of analytical flexibility matrix (3×3) derived using Castigliano’s 

theorem. E. Tufekci and O. Y. Dogruer [14] presented exact solution and derived fundamental matrix in terms of 
the reference coordinate for out-of-plane problem of an arch with varying curvature and cross-section. 

Analytical expressions of the fundamental matrix can be obtained only if the integral can be calculated 

analytically. 

Gimena et. al. [15] presented structural behaviour of curved beam through twelve ordinary differential 

equations. Analytical solutions provided for the circular arch, circular balcony and helical beam defined in 

global coordinates. Dong Changjun [16] derived flexibility matrix of the variable curvature curved beam defined 

in polar coordinates using Castigliano’s theorem. Flexibility coefficients and thereby obtained stiffness matrix 

for the curved beam axis equation ρ=aebα (a>0). Gimena et al. [15, 17-22] represented mechanical behaviour of 

the curved beam by a system of linear ordinary differential equations and developed transfer expression using 

Runge-Kutta method. The stiffness matrix was derived by rearranging the transfer equations [18, 19, 21]. 

Numerical procedure for the analysis of curved beam presented by Gimena et al. [21] requires parametric 

equations of flexion curvature and torsion curvature of the curved beam axis line. 

Wankui Bu et al. [23] obtained partial differential governing equation of plane curved beam by theoretical 

analysis and presented finite difference scheme for governing equation, displacement component and stress 

component. 

Chang-New Chen [24] presented finite element based solution of out-of-plane deflections of nonprismatic 

curved beam structures using differential quadrature element method (DQEM). Guodong Zhang et al. [25] 

presented formulation of finite elements and derived element stiffness matrix for arbitrary spatially curved 3-D 

beams using isogeometric approach. For the purpose of integration, the Guass quadrature rule is used. 
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Arici and Granata [26] developed a solution for space curved bar surrounded by a general wrinkler medium 

using the transfer matrix method. Yoda and Fuyama [27] attempted to examine validity of an analysis of thin-

walled spatially curved beams approximated by an assemblage of straight curved beams. They concluded that 

the technique of an analysis of thin-walled spatially curved beams approximated by an assemblage of straight 

curved beams gives favorable results compared with analytically exact solution. 

Other scholarly contributions to the theory of elasticity and applications to beams, plates, nanoring and 

nanoplates could be found in references. 

Murin and Kutis [28] formulated stiffness matrix, nodal load vectors and beam transfer functions using finite 

element approach for arbitrary continuous smoothly cross-section varying 3D-beam element.  

Sarria et al. [29] presented a formulation of curved beams with elastic supports. The stiffness matrix derived 

directly rearranging the transfer matrix. They presented a unique system of twenty four equations by joining the 

twelve equations of the stiffness matrix expression with the twelve equations of support conditions. Analytical 

method and numerical method (finite transfer method) implemented for the solution of the governing system of 

equations. 

Michael N. Fardis et al. [30] constructed a stiffness matrix (12×12) of a free-standing helicoidal stair in 

terms of its geometric characteristics. Sundaramoorthy Rajasekaran and S. Padmanabhan [31] formulated 

curved beam equations using principle of virtual work. Yu Ai-min and Yi Ming [32] presented a theory for 

stresses and displacements of planer curved beam including warping. A. M. Yu et al. [33] derived differential 

equations of generalized warping coordinate for naturally curved and twisted beams with general cross-

sectional shapes subjected to arbitrary load. Mohammad Rezaiee-Pajand and Niloofar Rajabzadeh-Safaei [34] 

suggested curved beam element with two nodes and six degrees of freedom to model parabolic members. 

Liping Liu and Nanshu Lu [35] presented a variational framework for large-displacement space curved beams. 

Weitong Guo et al. [36] developed an analytical displacement and internal force equations of curved beams 

considering vertical bending-torsion coupling. Mohammad Rezaiee-Pajand et al. [37] developed a curved beam 

element including First-order Shear Deformation Theory (FSDT) and the Green-Lagrange strain for 

geometrically nonlinear analysis of planar structures. Yi-Qun Tang et al. [38] presented geometrically nonlinear 

curved beam element based on the element-independent co-rotational (EICR) method. A. Borković et al. [39] 

presented geometrically exact nonlinear analysis of elastic in-plane beams in the context of finite but small 

strain theory. A. Borković et al. [40] developed geometrically exact Bernoulli–Euler beam using isogeometric 

approach. 

Al-Azzawi AA [41] presented a finite difference equation by converting the governing differential equation 

of thin curved beams on frictional restraint Winkler foundation. Al-Azzawi et al. [42] presented finite 

differences equations of the governing differential equations for curved deep beams on elastic foundations 

represented by a Winkler model for frictional restraints. Cazzani et al. [43] analysed both straight and spatial 

Timoshenko beams using isogemetric approach, with particular emphasis on locking control. He et al. [44] 

derived generalized potential energy functional for curved beam with two kinds of variables and used B-spline 

wavelet on the interval (BSWI) as the interpolation function to construct the wavelet curved beam element. 

Pydah et al. [45] presented static analysis of bidirectional functionally graded circular beams considering 
smooth functional variations of the material properties along the beam axis and thickness simultaneously. 

Pietro et al. [46] investigated mechanical behaviour of three-dimensional curved beams through closed-form 

solution as well as one-dimensional finite elements based on Carrera’s Unified Formulation. 

Marotta et al. [47] presented finite element formulation of curved thin beams, useful for modelling 

structures made of filiform elements. They derived the stiffness matrix of the curved wire in closed form, 

through the application of Castigliano's Theorem. Horák et al. [48] extended the formulation of a 2D 

geometrically exact beam element proposed by Jirásek et al. [49] to curved elastic beams and approximated the 

first-order differential equations by the finite difference scheme and converted the boundary value problem to 

an initial value problem using the shooting method. Cammarata et el. [50] described direct kinetostatic analysis 

of a planar gripper with an elastic curved beam and calculated tangent stiffness matrix in closed form. 

Radenković and Borković [51] derived equilibrium and kinematic equations of an arbitrarily curved spatial 

Bernoulli-Euler beam with respect to a parametric coordinate; and stiffness matrix of an arbitrarily curved 

spatial beam using the flexibility approach. 

Iandiorio and Salvini [52] presented an analytical solution for large planar displacements of cantilever 
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beams, avoiding the integration of elliptic integrals. Magisano et al. [53] presented isogeometric weak 

formulations for large rotation analysis of shear deformable 3D beams and showed that coarse meshes with 

reduced number of unknowns gives accurate results compared to displacement-based isogeometric analysis and 

locking-free finite elements. Wu et al. [54] derived compliance matrix of general initially curved beams using 

Maxwell-Mohr Method under the collective framework of the polar coordinate system and Cartesian 

coordinate system. Nobaveh et al. [55] proposed adapting the endpoint stiffness of a spatially curved compliant 

beam using a movable torsional stiffener and a new graphical characterization method for the resulting 

anisotropic stiffness of the endpoint for large deflections. 

Previous scholars employed different numerical methods for the solution of the governing differential 

equations [56, 57]; some of the scholars presented rigorous mathematical formulations for the analysis of 

circular, parabolic, elliptic, etc. curved beams which are almost difficult for the computer applications for the 

generalized spatial curved beam. Also, analysis methods suggested by previous scholars requires analytical 
differentiation, hence the methods are not generalized and needed formulation of problem specific differential 

equations. This gap is addressed in this study. 

In this article, a general incremental finite displacement transfer method is proposed to obtain flexibility 

coefficients of the 3D curved beam. Stiffness matrix is derived using equilibrium conditions and transformation 

matrix. Finite difference method is used to evaluate the flexibility coefficients and stiffness coefficients of the 

spatial curved beam. The structural model presented in this article does not increase size of the stiffness matrix.  

A comprehensive C++ computer program based on the calculation procedure presented in this article has 

been developed to obtain the values of the flexibility coefficients and stiffness coefficients. The numerical 

results have been compared with those found in the literature and with the values obtained using FEM based 

analysis software.The main practical application of the finite displacement transfer method for 3D curved beam 

is in the analysis and design of reinforced concrete spatial curved beam with bisymmetric cross-section. This 

method is useful when the geometry curved beam axis vary along the length of the curved beam.  

 

2. Problem Statement 

2.1 Practical Application of the Study 

The curved beam is discretized to obtain flexibility matrix and stiffness matrix of the curved beam. 

Following assumptions have been made for the formulation of the finite displacement transfer method and 

verification of the method. (i) The material is elastic and homogeneous. (ii) The curved beam has two axes of 

symmetry in the cross section so that twisting moment and bending moment occurs independent of one another. 

(iii) Every cross-section remains rigid, i.e. undistorted, during deformation [56]. (iv) The length of the curved 

beam is large in comparison to the cross-sectional dimensions of the curved beam. (v) The interval dθ of the 
discretized elements is constant throughout length of the curved beam axis. (vi) Average values of the cross-

sectional properties of discretized element are considered. These assumptions have been used throughout the 

study. 

2.2 Difference between this Study and Previous Studies in the Literature 

The major difference between this study and previous studies in the literature is that for the first time to the 

authors’ knowledge, a rigorous, first principle approach is used to formulate the finite displacement transfer 
method; and this method is applied to derive flexibility matrix and stiffness matrix of any arbitrary 3D curved 

beams. The size of flexibility matrix 6 × 6 and size of stiffness matrix 12 × 12 remain unchanged, even if the 

curved beam discretized in to any number of elements. Cartesian coordinates of the curved beam axis, material 

properties and cross-sectional properties are sufficient to evaluate flexibility matrix and stiffness matrix of the 

curved beam; and no need to supply problem specific parametric equations of tangent, normal, binormal, 

flexion curvature or torsion curvature. The calculation method proposed in this study is applicable to the curved 

beam with any arbitrary geometrical axis and easy for the computer implementation. 

2.3 Advantages of the Finite Displacement Transfer Method 

• It makes possible to evaluate flexibility coefficients and stiffness coefficients without formulation of 

problem specific governing differential equations. 

• This method eliminates analytical differentiation and integration of the equations. 
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• It is applicable to 3D curved beam with arbitrary geometrical axis and varying cross-sectional area. 

• In this method the curved beam is divided in to several elements although size of the stiffness matrix 

remains 12×12. 

• This method is easier for the user friendly computer application. 

2.4 Disadvantages of the Finite Displacement Transfer Method 

• The main disadvantage of the finite displacement transfer method is mandatory to supply Cartesian 

coordinates of the nodes of the curved beam axis as input data. 

• It is required to supply the intervals of the discretized elements, if the interval is not uniform along the 

curved beam axis. 

3. Fundamental Formulations 

3.1 Geometry of the Curved Beam Axis 

Figure 1 shows geometry of the curved beam axis with reference to right handed axis system xyz. Local axis 

(member axis) represented by tnb i.e. tangent, normal and binormal directions. 

The Cartesian coordinates of the any node on the curved beam axis is (x(θ), y(θ), z(θ)). 

 

 

Figure 1: Geometry of the curved beam axis 

 

The position vector can be given by, 

          (1) 

where,  

θ may be any independent variable 

I, J, K are the unit vectors in the directions x, y, z respectively 

Let, s and ds are the total arc length and elemental arc length of the curved beam axis respectively. 

          (2) 

Unit tangent, 

           (3) 

  

  

  

Unit normal, 
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           (4) 

 

 

 

Unit binormal, 

             (5) 

          (6) 

  

  

  

 

Rotation matrix, 

           (7) 

Rotation matrix may be evaluated numerically as depicted in section 3.2. 

3.2  Geometry of the Curved Beam Axis 

The curved beam is discretized in to n number of segments as shown in figure 2. The interval dθ should be 

uniform throughout length of the curved beam. 

 

Figure 2: Descretization of the curved beam 

 

           (8) 
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Introducing the centered difference formula, 

          (9) 

         (10) 

Similarly, 

            (11) 

          (12) 

         (13) 

           (14) 

          (15) 

         (16) 

Two imaginary nodes are considered for the above formulations i.e. one imaginary node before the node 0 

and another after the node n. 

 

4. Formulation of Flexibility Matrix 

Concept of unit load method [56] is used to derive the flexibility matrix. A cantilever 3D curved beam is 

shown in figure 3. The node 0 is freely supported and node n is fixed. 

 

Figure 3: 3D Curved Cantilever Beam 

Let, A is the cross-sectional area; E is the Young’s modulus of elasticity; G is the shear modulus; It is the 

torsion constant; In and Ib are the moment of inertia; ξn and ξb are the shear coefficients. 

The external forces and moments at node j in the local directions tnb are, 

         (17) 

         (18) 

Also, the stress resultants (axial force, shear forces, twisting moment and bending moments) at node j in the 

local directions are, 

         (19) 

         (20) 

The stress resultants can be obtained using the recursive scheme [26] as given below. 
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    (21) 

where, Cj,(j−1) is the coordinate transformation matrix [56] defined as 

     (22) 

Now, for the jth element, the incremental finite deformations at the node j, relative to those at node j+1, 

produced by the stress resultants at node j in local directions can be obtained as follows [56]: 

         (23) 

where,  

incremental finite displacements at node j in local directions,  

        (24) 

incremental finite rotations at node j in local directions,  

        (25) 

matrices of the elastic and geometrical properties, 

        (26) 

        (27) 

The incremental finite deformations in global xyz directions can be obtained using following equation, 

         (28) 

where,  

incremental finite displacements at node j in global directions,  

        (29) 

incremental finite rotations at node j in global directions,  

        (30) 

The incremental finite deformations of the node j can be transformed to the node i in the global directions 

as given below [56]: 

         (31) 

where,  

transformed finite displacements at node i in global directions,  

        (32) 

transformed finite rotations at node i in global directions,  

        (33) 
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It is noted that,  

Cumulative transformed finite deformations is the total deformations of the node i in global directions. 

         (34) 

where, 

         (35) 

         (36) 

The total deformations of the node i in local directions can be obtained as, 

         (37) 

where, 

         (38) 

         (39) 

 To obtain flexibility coefficients, unit actions corresponding to ftj, fnj, fbj, mtj, mnj, mbj are applied one by one 

at node j (j=0). The deformations δsi, φsi (i=0) are the flexibility coefficients due to these unit actions. 

Matrices of the unit actions are, 

,  ,  , ,  ,   

Flexibility coefficients can be evaluated numerically using equations (1) to (39).  

Member flexibility matrix (6×6) corresponding to node 0 (i=0) is as follows, 

             

(40) 

 

 

5. Formulation of Stiffness Matrix 

Figure 4 shows the 3D curved beam fixed at both the ends. Properties of this curved beam are as mentioned 

in section 4. 
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Figure 4: 3D curved beam fixed at both the ends 

Stiffness matrix of the 3D curved beam can be obtained employing static equilibrium conditions as follows 

[56]. Stiffness matrix (12×12) in local directions, 

         (41) 

 

Stiffness matrix (12×12) in global directions, 

         (42) 

 

          (43) 

 

         (44) 

where,  

rotation transformation matrix,   

         (45) 

where,  

transformation matrix,   

  

 

          (46) 

 

         (47) 

 

Now, stiffness matrix in the local directions can be obtained as follows, 

     (48) 

 



562 A. G. Hansora and H. S. Patel. 

      (49) 

 

Equations 1 – 49 can be used to evaluate flexibility matrix and stiffness matrix numerically, without 

resorting to analytical differentiation and integration. 

 

6. Verification of the Formulation 

6.1 Circular helix with varying cross-sectional area 

A circular helix with initial node 0 and final node n is shown in figure 5.  

The circular helix has a radius 1m, a total angle π rad, and a height 3 m.  

The cross-section is circular and linearly variable along the helix axis, with an initial diameter d0 = 0.05 m 

and a final diameter dn = 0.1 m.  

The material of circular helix is same along the curve length, with  modulus of elasticity E = 30 GPa and 

modulus of rigidity G = 12.5 GPa. 

Shearing deformation is neglected. 

Parametric equations of the helix axis are as follows, 

 

 

 

 

Figure 5: Circular helix with variable cross-section [Error! Bookmark not defined.] 

 

Let, node 0 is freely supported and node n is fixed. The circular helix is discretized in to 3600 elements 

(interval dθ = π/3600).  Unit actions are applied at the free end of the circular helix, one by one. The 
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displacements at free end, obtained using equations (1) to (39) are compared (Figure 6) with the displacements 

obtained using FreeCAD software (version 0.18). FreeCAD .vkt file is used in the ParaView software (version 

5.2.0) to get the numerical values of the displacements. 

 

Table 1: Comparison of the displacements obtained from present study and results obtained from FreeCAD 

Displacement 

displace

ment due to 

unit force 

applied in 

tagential 

direction 

displace

ment due to 

unit force 

applied in 

normal 

direction 

displace

ment due to 

unit force 

applied in 

binormal 

direction 

displace

ment due to 

unit moment 

applied 

about 

tagential 

direction 

displace

ment due to 

unit moment 

applied 

about 

normal 

direction 

displace

ment due to 

unit moment 

applied 

about 

binormal 

direction 

δx (mm)* 7.727 -15.255 -3.581 1.958 -0.319 8.881 

δx (mm)** 7.690 -15.193 -3.565 1.962 -0.313 8.931 
δy (mm)* 8.128 -3.116 14.923 -2.747 7.500 3.022 

δy (mm)** 8.100 -3.103 14.856 -2.750 7.531 3.030 

δz (mm)* -2.418 7.926 10.031 -2.807 4.958 -3.261 

δz (mm)** -2.410 7.892 9.983 -2.818 5.000 -3.275 

% difference 

in δx -0.48 -0.41 -0.45 0.16 -1.84 0.56 

% difference 

in δy -0.35 -0.41 -0.45 0.09 0.41 0.26 

% difference 

in δz -0.32 -0.43 -0.48 0.37 0.84 0.43 

*Present Study, ** FreeCAD 

 

Results shown in Table 1 indicate that the displacement values obtained from the present study and 

displacement values obtained from the FreeCAD is found to match. The unit action (force or moment) is applied 

in tangential / normal / binormal direction and displacements are measured with reference to positive x / y / z 

axis, hence value of displacement may be positive or negative. A negative value of the percentage difference 

indicates that the result obtained from present study is higher than the results obtained from the FreeCAD. A 

positive value of the percentage difference indicates that the result obtained from present study is lesser than the 

results obtained from the FreeCAD. 

Now, the stiffness matrix [Km] evaluated by applying the calculation procedure described in this article 

with 3600 elements (dθ = π/3600) is given below. 

 

Gimena et al. [19] presented following stiffness matrix using 1000 interval and fourth-order Runge-Kutta 

approximation. 
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Percentage difference in the stiffness coefficients as given above is calculated with reference to the stiffness 

coefficients presented by Gimena et al. [19]. To calculate percentage difference, appropriate change of sign 

(+/−) is taken in to account because axis, initial node and final node are different in present study and in the 

article of Gimena et al. [19]. 

 

 

Figure 6: Elliptic–helical beam [21].  
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6.2 Elliptic–helical beam 

An elliptic-helical beam with uniform cross-sectional area is shown in figure 6. Following data of the 

elliptic-helical beam [21] are used to obtain the stiffness matrix: 

Semi-major axis, a = 4 ft; Semi-minor axis, b = 3 ft; Constant, c = 1.6 ft; Cross-sectional diameter=1 ft; 

Modulus of elasticity, E = 100000 kip/ft2; Modulus of rigidity, G = 40000 kip/ft2. 

Shearing deformation is neglected.  

Parametric equations of the elliptic-helical beam axis are as follows, 

 

 

 

Let, node 0 (θ = 2π) and node n (θ = 0) are initial node and final node respectively, as shown in figure 7. 

The stiffness matrix [Km] obtained when applying the calculation procedure described in this article with 

720 elements (dθ = − π/360) is as follows. 

 

 

Gimena et al. [Error! Bookmark not defined.] presented following stiffness matrix using fourth-order 

Runge-Kutta approximation. 

 

Percentage difference in the stiffness coefficients as given above is calculated with reference to the stiffness 

coefficients presented by Gimena et al. [21]. To calculate percentage difference, appropriate change of sign 

(+/−) is taken in to account because axis, initial node and final node are different in present study and in the 

article of Gimena et al. [21]. 
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7. Results and Discussion 

In this section, stiffness coefficients in the member directions (tnb) of the 3D curved beam are obtained for 

the different interval and the results are compared with the results available in the literature. Circular helix with 

varying cross-sectional area and elliptic–helical beam with uniform cross-sectional area are considered for the 

comparison of the results. Later, flexibility matrix and stiffness matrix are obtained for the curved beam with 

varying geometry along its axis.  

7.1 Circular helix with varying cross-sectional area 

Stiffness coefficients of the circular helix with varying cross-sectional area and parameters as given in 

section .1; are determined for the intervals π/900 (900 elements), π/1800 (1800 elements) and π/3600 (3600 

elements). The obtained results are compared and percentage difference is calculated with the results available 

in the research paper [19]. Figure 7 and figure 8 shows the comparison of the stiffness coefficients and 

percentage difference in the stiffness coefficients of the circular helix with varying cross-sectional area with 

reference to the research paper [19]. 

Comparison of the results (Figure 7 & 8) shows that the stiffness coefficients match with the stiffness 

coefficients available in the literature [Error! Bookmark not defined.]. In the case of 900 elements (interval dθ 

= π/900), the maximum and minimum percentage difference in the stiffness coefficient is 11.36% and −2.55% 
respectively. The average positive and negative percentage difference in the stiffness coefficients is 0.73% and 

0.31% respectively. In the case of 1800 elements (interval dθ = π/1800), the maximum and minimum percentage 

difference in the stiffness coefficient is 5.72% and −1.28% respectively. The average positive and negative 

percentage difference in the stiffness coefficients is 0.36% and 0.15% respectively. In the case of 3600 elements 

(interval dθ = π/3600), the maximum and minimum percentage difference in the stiffness coefficient is 2.89% 

and −0.65% respectively. The average positive and negative percentage difference in the stiffness coefficients is 

0.18% and 0.08% respectively. Figure 7 and figure 8 shows that the convergence rate is fast. The percentage 

difference in the results can be reduced to approximately half by doubling the elements. 

7.2 Elliptic–helical beam with uniform cross-sectional area 

Stiffness coefficients in the member directions (tnb) of the elliptic–helical beam with uniform cross-

sectional area and parameters as given in section 5.2; are determined for the intervals π/90 (180 elements), 

π/180 (360 elements) and π/360 (720 elements). The obtained results are compared and percentage difference is 

calculated with the results available in the research paper [21]. Figure 9 and figure 10 shows the comparison of 

the stiffness coefficients and percentage difference in the stiffness coefficients of the elliptic–helical beam with 

uniform cross-sectional area with reference to the research paper [21]. 
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Figure 7: Comparison of stiffness coefficients (k11 to k2,12) for circular helix with varying cross-sectional area 
at different interval between present study and past study. 

Comparison of the results (Figure 9 & 10) shows that the stiffness coefficients match with the stiffness 

coefficients available in the literature [21]. In the case of 180 elements (interval dθ = -π/90), the maximum and 
minimum percentage difference in the stiffness coefficient is 10.65% and −10.73% respectively. The average 

positive and negative percentage difference in the stiffness coefficients is 1.56% and 1.20% respectively. In the 

case of 360 elements (interval dθ = -π/180), the maximum and minimum percentage difference in the stiffness 

coefficient is 5.35% and −5.34% respectively. The average positive and negative percentage difference in the 

stiffness coefficients is 0.78% and 0.61% respectively. In the case of 720 elements (interval dθ = -π/360), the 

maximum and minimum percentage difference in the stiffness coefficient is 2.69% and −2.65% respectively. 

The average positive and negative percentage difference in the stiffness coefficients is 0.38% and 0.32% 

respectively. Figure 9 and figure 10 shows that the convergence rate is fast. The percentage difference in the 

results can be reduced to approximately half by doubling the elements. 

7.3 Spatial (3D) Curved Beam with varying Geometry of Curved Beam Axis 

2. Following parameters are considered to obtain flexibility matrix and stiffness matrix of the 3D curved 

beam with varying geometry of curved beam axis: 

, ,    

, ,    

, ,    

The cross-section is rectangular with a width b = 0.230 m and depth d=0.450 m. The material is same along 

the curve length, with modulus of elasticity E = 30 GPa and modulus of rigidity G = 12.5 GPa. Shearing 

deformation is neglected. 

Let, node 0 is at θ = 0 and node n is at  θ = 3π/2. 

The flexibility matrix [Fm]00 and stiffness matrix [Km] of the 3D curved beam with 540 elements (dθ = 

π/360) are given below. 
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Figure 8: Comparison of stiffness coefficients (k33 to k12,12) for circular helix with varying cross-sectional 

area at different interval between present study and past study. 
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Figure 9: Comparison of stiffness coefficients (k11 to k6,12) for elliptic-helical beam with uniform cross-

sectional area at different interval between present study and past study. 
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Figure 10: Comparison of stiffness coefficients (k77 to k12,12) for elliptic-helical beam with uniform cross-

sectional area at different interval between present study and past study. 

 

 
 

The flexibility matrix [Fm]00 and stiffness matrix [Km] of the 3D curved beam with 1080 elements (dθ = 

π/720) are given below. 
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Above practical application demonstrates that though the curved beam axis having different geometry in 

different segments, there is no need to formulate distinct system of equations for each part of the spatial curved 

beam. 

8. Conclusion 

In this article, the curved beam centroidal axis is expressed in terms of parametric equations. An 

incremental finite displacement transfer method is presented to determine the flexibility matrix and stiffness 

matrix of a geometrically nonlinear 3D structural curved beam with varying cross-sectional area. Following 

conclusions are drawn with reference to the method presented and results obtained.  

• A novel finite displacement transfer method presented in this article eliminates problem specific 

mathematical formulation of governing equations.   

• The flexibility matrix and stiffness matrix of the 3D curved beam can be evaluated numerically without 

resorting to tedious analytical differentiation and integration. 

• Finite displacement transfer method does not require creating distinct set of governing equations, if 
geometry of the curved beam is different in different segments of the curved beam. 

• The finite displacement transfer method is found to be rapidly convergent. 

• Cartesian coordinates of the curved beam axis, material properties and cross-sectional properties are 

sufficient to evaluate flexibility matrix and stiffness matrix of the curved beam, provided that the interval dθ is 

uniform throughout the length of the curved beam axis; and no need to supply problem specific parametric 

equations of tangent, normal, binormal, flexion curvature or torsion curvature. 

 

Notations / Nomenclature 

3D three-dimensional 

2D two-dimensional 

  position vector 

θ independent variable 

x(θ), y(θ), z(θ) Cartesian coordinates 

I, J, K unit vectors in the directions x, y, z respectively 

s total arc length 

ds elemental arc length 
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dθ interval 

dx, dy, dz first derivative of x(θ), y(θ), z(θ) respectively 

d2x, d2y, d2z second derivative of x(θ), y(θ), z(θ) respectively 

t, n, b tangential, normal and binormal directions respectively 

T, N, B unit tangent, unit normal and unit binormal respectively 

T1, T2, T3 resolved parts of unit tangent in the directions x, y, z respectively 

N1, N2, N3 resolved parts of unit normal in the directions x, y, z respectively 

B1, B2, B3 resolved parts of unit binormal in the directions x, y, z respectively 

[R] rotation matrix (3×3) 

[Ri] rotation matrix of the node i (3×3) 

xi, yi, zi Cartesian coordinates of the node i 

A cross-sectional area 

[fmj] matrix of external forces at node j in the local directions tnb (3×1) 

ftj, fnj, fbj external forces at node j in the local directions t, n, b respectively 

[mmj] matrix of external moments at node j in the local directions tnb (3×1) 

mtj, mnj, mbj external moments at node j in the local directions t, n, b respectively 

[Fmj] 
matrix of stress resultants / internal forces at node j in the local directions 

tnb (3×1) 

Ftj, Fnj, Fbj internal forces at node j in the local directions t, n, b respectively 

[Mmj] 
matrix of stress resultants / internal moments at node j in the local 

directions tnb (3×1) 

Mtj, Mnj, Mbj internal moments at node j in the local directions t, n, b respectively 

[Cij] coordinate transformation matrix (3×3) 

[dδmj] 
matrix of incremental finite displacements at node j in the local directions 

tnb (3×1) 

dδtj, dδnj, dδbj 
incremental finite displacements at node j in the local directions t, n, b 

respectively 

[dφmj] 
matrix of incremental finite rotations at node j in the local directions tnb 

(3×1) 

dφtj, dφnj, dφbj 
incremental finite rotations at node j in the local directions t, n, b 

respectively 

[SF], [SM] matrices of the elastic and geometrical properties (3×3) 

E modulus of elasticity 

G modulus of rigidity 

ξn, ξb shear coefficients about normal and binormal directions respectively 

It torsion constant 

In, Ib moment of inertia about normal and binormal directions respectively 

[dδsj] 
matrix of incremental finite displacements at node j in the global 

directions xyz (3×1) 

dδxj, dδyj, dδzj incremental finite displacements at node j in the global directions x, y, z 
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respectively 

[dφsj] 
matrix of incremental finite rotations at node j in the global directions xyz 

(3×1) 

dφxj, dφyj, dφzj 
incremental finite rotations at node j in the global directions x, y, z 

respectively 

[dδsji] 
matrix of transformed incremental finite displacements from node j to 

node i in the global directions xyz (3×1) 

dδxji, dδyji, dδzji 
transformed incremental finite displacements from node j to node i in the 

global directions x, y, z respectively 

[dφsji] 
matrix of transformed incremental finite rotations from node j to node i in 

the global directions xyz (3×1) 

dφxji, dφyji, dφzji transformed incremental finite rotations from node j to node i in the global 
directions x, y, z respectively 

[δsi] matrix of total displacements at node i in the global directions xyz (3×1) 

δxi, δyi, δzi total displacements at node i in the global directions x, y, z respectively 

[φsi] matrix of total rotations at node i in the global directions xyz (3×1) 

φxi, φyi, φzi total rotations at node i in the global directions x, y, z respectively 

[δmi] matrix of total displacements at node i in the local directions tnb (3×1) 

δti, δni, δbi total displacements at node i in the local directions t, n, b respectively 

[φmi] matrix of total rotation at node i in the local directions tnb (3×1) 

φti, φni, φbi total rotation at node i in the local directions t, n, b respectively 

[Fm]00 flexibility matrix corresponding to node 0 in the loacal directions tnb (6×6) 

[Km] stiffness matrix in the local directions tnb (12×12) 
[Km]00, [Km]0n, 

[Km]n0, [Km]nn 

stiffness sub-matrices in the local directions tnb (6×6) 

[Ks] stiffness matrix in the global directions xyz (12×12) 

[Ks]00, [Ks]0n, 

[Ks]n0, [Ks]nn 

stiffness sub-matrices in the global directions xyz (6×6) 

[Tr]n0 transformation matrix corresponding to node n and node 0 (6×6) 

[RT]0, [RT]n rotation transformation matrix of the node 0 and node n respectively (6×6) 

k11, k12, …, k69, …, 

(k12,12) 

stiffness coefficients of stiffness matrix [Km] 
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