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Abstract 

In this paper, a test particle model is developed to study the electron acceleration in a 

magnetized plasma-filled waveguide by a twisted electromagnetic wave with variable 

amplitude and phase along the longitudinal position. With appropriately assigned initial 

values, the electron total energy gain is obtained using numerical analysis without 

calculating the dispersion relation. Numerical results show that as long as the twisted 

electromagnetic waves significantly affect the electron acceleration, during the passage 

of an electron through the waveguide, one may employ an optimum value of the external 

magnetic field to obtain the maximum energy gain. 

 
Keywords: Electron Acceleration; Twisted Electromagnetic Waves; Magnetized Plasma-Filled 

Waveguide. 

 

Introduction 

Electron acceleration mechanics, including 

microwave acceleration, plasma acceleration, and laser 

acceleration, have been operationalized (1-13). In this 

regard, the mechanism of electron acceleration in the 

interaction of twisted electromagnetic waves with 

plasmas has attracted significant attention because of its 

fundamental interest in twisted electromagnetic waves 

physics as well as its relation to many potential 

applications such as inertial fusion (1), metal cutting (2), 

surface modification of materials (3), magnetic fusion 

(4), transmutation of fission products (5), and electron 

beam welding (6). In this field, the recent developments 

in high-power pulse lasers, e.g., twisted laser pulses (7), 

have opened new research frontiers (8-10). 

In the 1990s, for the first time, Allen et al. reported 

(7) that optical beams with helical phase fronts, like, for 

instance, Laguerre Gaussian (LG) laser modes, carry a 
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well-defined orbital angular momentum (OAM) (14), 

called twisted laser beams. Nowadays, twisted 

electromagnetic waves are used in many research fields 

of laser-plasma systems due to their unique feature, 

which allows us to employ them in a wide range of 

applications, e.g., in optical microscopy (15, 16) and 

optical micromanipulation (17, 18).  

From the laser electron acceleration point of view, it 

has been discussed how high- intensity twisted 

electromagnetic waves influence the electron 

acceleration mechanism in the vacuum (19). In this 

regard, it has been shown that using a linearly polarized 

LG laser pulse can reduce the electron beam beam’s 

divergence angle. This can also change the acceleration 

of off-axis electrons. The interaction of a twisted laser 

beam with a plasma mirror has recently been 

investigated. It has been shown that the twisted laser 

generates high-quality ultrarelativistic electron bunches 

(20).  
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This paper examines the acceleration of a relativistic 

electron during the propagation of high- intensity twisted 

electromagnetic waves in a cold magnetized plasma 

filling the cylindrical waveguide using an advanced 

mathematical method combined with numerical 

calculations. The amplitude profile and phase of the wave 

depend on the longitudinal Z component. Therefore, the 

nonlinear ponderomotive force ∝ ∇ ⃗⃗  ⃗|E2|  cannot be 

ignored in this study. In this study, we assume that an 

electron with finite initial energy injected inside the 

waveguide interacts with the TM mode excited in the 

system. The electron gets acceleration along the 

waveguide length. In the acceleration of electrons by 

twisted waves, the electric and magnetic fields play an 

important role. In our study, while the Bz component of 

the twisted wave is zero due to considering the 

propagation of the TM mode only in the system, the 

longitudinal electric fields of TM modes ( Ez) play the 

dominant role in the acceleration of the electron. The 

external magnetic field, providing electron confinement, 

enables efficient electron acceleration by the longitudinal 

electric field. 

Considering the effect of variation in the twisted 

electromagnetic waves’ amplitude and phase along the 

longitudinal position, we find that an electron with an 

initial energy of 100keV gets 1.6 GeV energy in 2.1 cm 

of propagation along the waveguide length. Results show 

that the acceleration gradient of electrons is very 

sensitive to the initial phase and amplitude of the 

nonlinear TM mode, and the external static magnetic 

field.  

 

Physical model and theoretical analyses 

Consider a circular cylindrical waveguide filled with 

a uniform plasma of density ne, immersed in a uniform 

static axial magnetic field B⃗⃗ ext = B0ẑ. For the plasma 

system under study (21), using linear perturbation theory, 

assuming small amplitude perturbations, the fluid 

equations enclosed with Maxwell equations result in the 

following dielectric tensor: 

ε⃡ = [−i

ε11 iε12 0
ε12 ε22 0
0 0 ε33

]                                             (1)   

In which the dielectric tensor elements are as follows: 

 ε11 = ε22 = 1 +
ωpe

2

(ωce
2 −ω2)

, ε12 =
(ωce)∙(ωpe

2 )

[ω∙(ωce
2 −ω2)]

  ,       

ε33 = 1 −
ωpe

2

ω2                                                                      (2)  

 ωp = √4πne e2 me⁄  is the plasma frequency, ωc =

eB0 me⁄ c  is the cyclotron frequency, c is the velocity of 

light in the vacuum, and me is the mass of the electron, 

respectively. The zero elements in the dielectric tensor 

could be attributed to neglecting the calculations’ 

pressure and temperature gradient terms. 

 

TM mode components 

To illustrate the electron acceleration mechanism by 

the twisted electromagnetic waves, the dynamics of a 

single electron in the plasma-filled circular cylindrical 

waveguide interacting with the twisted electromagnetic 

waves are considered, as shown in Figure 1. 

Let us consider the electric field component evolution 

of the TM mode in the system under study: 

∇2Ez +
ω2

c2
 [   ε⃡ ∙   E⃗⃗  ]

z
− [∇ ⃗⃗  ⃗(∇ ⃗⃗  ⃗ ∙  E⃗⃗   )]

z 
= 0               (3) 

Using the obtained dielectric tensor, the spatio 

temporal evolution of the electric field of the TM mode 

propagating in the cylindrical waveguide filled by the 

magnetized plasma could be found as follows: 

1

r
 
∂Ez

∂r
 +

∂2 Ez

∂r2
+

1

r2
 
∂2Ez

∂θ2
+

ω2

c2
ε33Ez +

i

r

 ε12

ε11

  
∂Eθ

∂z

+
iε12

ε11

∂

∂r

∂ Eθ

∂z
− 

iε12

rε11

 
∂

∂z
 
∂Er

∂θ
  

+
 ε33

ε11

∂2Ez

∂z2
= 0                                  (4) 

Now, to examine the interaction of the twisted 

electromagnetic waves with the cold magnetized plasma-

filled waveguide, consider the twisted form of the TM 

mode Ez~A(z)J(μr)eiz1 , where z1 = −ωt + nθ+kzz +
φ(z), in which the phase of the TM mode φ(z), depends 

on the Z component and kz(kr = μ), is the propagation 

constant in the Z direction. Using equation (4) for the 

defined nonlinear twisted form of the TM mode, the 

electric field components in cylindrical coordinates are 

obtained as follows:  

  

Er(r, θ, z) = Σnμf
′(z)Jn

′ (μr)ei(−ωt+nθ)                    (5)    

Eθ(r, θ, z) = Σn

f ′(z)

r
Jn(μr)e

i(−ωt+nθ)                          (6) 

Ez(r, θ, z) = Σnμ
2f(z)Jn(μr)e

i(−ωt+nθ)                                    (7) 

Where Jn(μr) is the nth-order of the Bessel function 

and 2Jn
′ (μr) = Jn−1(μr) − Jn+1(μr), 2nJn (μr) (μr)⁄ =

Jn−1(μr) + Jn+1(μr), f(z) = A(z)eikzz+iφ(z), and 

∂ Jn ∂⁄ (μr) = Jn
′ (μr). In these equations, A (z) and the 

 
Figure 1. Schematic of twisted electromagnetic waves 

interacting with a plasma-filled circular cylindrical 

waveguide. 
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φ (z) are the amplitude profile and phase of the TM 

mode wave, respectively. Using the obtained electric 

field components, Maxwell's equation results in the 

following relations for the magnetic field components:   

Bz = 0                                                                                   (8) 

Bθ(r, θ, z) = Σn

icμJn
′ (x)

ω
A(z) (μ2 + kz

2 +
b

c
) eiz1      (9) 

Br(r, θ, z) = Σn

ncJn(x)

rω
A(z) (μ2 + kz

2 +
b

c
) eiz1       (10) 

Where x = μr,  kr = μ and  Jn
′ (x) = dJn (x) dx⁄ . In 

the last step, insert the obtained electric and magnetic 

field equations (5- 10) into equation (4), separating the 

real and imaginary parts of the resulting equation. Then, 

give equations for the amplitude and phase of the twisted 

wave. 

A′′ =
d2A

dz2
= [−b1A (z) c1⁄ + 2kzAφ′ + Aφ′2]        (11) 

and 

φ′′ =
−[2kzA

′ + 2A′φ′]

A(z)
                                               (12) 

in which,   b1 = − μ4 − [
kz
2 μ2ε33

ε11
] + [(ω2ε33 μ

2)/c2] 

and c1 = ( μ2ε33)/ε11 do not change with z, A′ = dA/
dz, and φ′ = dφ/dz. It must be mentioned that while in 

the linear study of the wave propagation in the system 

finding the analytical dispersion relation is possible, in 

most nonlinear cases with boundary conditions, such as 

those we investigated in the present paper, finding the 

analytical dispersion relation is impossible. To analyze 

the system, the dispersion relation has not been 

neglected, It is considered by the numerical solution of 

the amplitude A(z) and the phase φ(z) with appropriate 

boundary conditions.  

 

Power transmission through the waveguide 

The initial amplitude of TM mode A(z = 0) could be 

related to the average wave power transmitted by the 

Poynting vector. The average wave power in cylindrical 

coordinates is obtained as follows:    

p = [
c

8π
∫ dθ

2π

0

∫ (ErBθ
∗ − EθBr

∗)
R

0

rdr]                     (13) 

Inserting equations (5)-(10) into equation (13) gives: 

p̅ =
c2A2

8ω
[( kz

2 + μ2 +
b

c
 ) (kz 

+ φ′)R2μ2Jn
′ 2(μR)]                        (14) 

Using the differential equation (12), one can obtain: 

(kz + φ′)A2 = (kz + φ0
′ )A0

2                                          (15) 

Where A0 = A (z = 0)  and φ0
′ = [dφ dz⁄ ]z=0. 

Now, substituting equation (15) into equation (14) yields: 

p̅ =
c2A0

2

8ω
[( kz

2 + μ2 +
b

c
 ) (kz 

+ φ0
′ )R2μ2Jn

′ 2(μR)]                       (16) 

Or, equivalently, 

A0
2 =

(8ωp)

[c2(kz
2+μ2+

b

c
)(kz+φ0

′ )R2μ2Jn
′ 2

(μR)]
                     (17)  

 

Boundary conditions 

The boundary conditions at the perfectly conducting 

waveguide wall requires that the component of the 

electric field vanish at the wall, i.e. 

Ez(r = R) = 0                                                            (18)  

Thus, 

Jn(μR) = 0, μR = pnm                                                    (19) 

Where pnm is the mth root of the nth-order Bessel 

function of the first kind. 

 

Acceleration gradient and energy gain of electrons 

The acceleration gradient and energy gain of 

electrons in the system under study are obtained by using 

the following momentum and energy equations: 
d

dt
(meγev⃗ e) = −e[E⃗⃗ + v⃗ e × (B⃗⃗ + B⃗⃗ ext) c⁄ ]              (20) 

dU

dt
= −eve⃗⃗  ⃗ ∙ E⃗⃗                                                                    (21) 

Where (meγev⃗ e) is the relativistic electron 

momentum, B⃗⃗ ext = B0ẑ is the external static magnetic 

field along the waveguide axis, U = (γe − 1)mec
2 is  the 

energy,  v⃗ e is the velocity of the test electron in the 

system and, E⃗⃗  and B⃗⃗  are the electric and magnetic fields 

of the TM twisted mode interacting with the test particle. 

From equation (20), the electron acceleration inside the 

plasma-filled waveguide could be found as follows:  

dvr

dt
=

vθ
2

r
−

vr

γe

dγe

dt
−

eEr

γeme

−
e

cγeme

[ vθ(Bz + B0) − vzBθ]  (22) 

dvθ

dt
= −

vθvr

r
−

vθ

γe

dγe

dt
−

eEθ

γeme

+
e

cγeme

[ vr(Bz + B0) − vzBr]  (23)  

dvz

dt
= −

vz

γe

dγe

dt
−

eEz

γeme

−
e

cγeme

[ vrBθ − vθBr]    (24) 

Where vr = dr dt⁄ = ṙ, vθ = rθ̇, vz = ż. In the next 

section, using the obtained equations (5- 12), and (17) as 

well as the appropriate boundary condition (19), the 

numerical calculation will be employed to find the energy 

gain and acceleration of the test electron in the interaction 

with the twisted electromagnetic waves in the plasma 

filled waveguide, based on the fourth-order Runge-Kutta 

method. 
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Results 

In the interaction of the twisted TM mode with the 

magnetized plasma-filled waveguide, let us consider the 

numerical calculations in investigating the electron total 

energy gain under various initial conditions based on the 

physical model presented in Sec. III. For this purpose, a 

code is programmed in Fortran language using the 

Runge-Kutta method of order four.  

In the following simulations, the plasma density is 

n0 = 1.08 × 1011cm−3, the plasma frequency is  ωp =

18.53 GHz, the wave power is  p = 14 × 1013(erg/
sec), the cylindrical waveguide radius is R =
2.1(cm), and the initial electron energy is 100 (keV). An 

electron is injected into the waveguide at r0 = R 2⁄ =
1.05 cm, θ0 = π 6⁄ , z0 = 0, v0r = 0, v0θ = 0, and 

v0z = 0.55 c  interacts with the twisted TM mode with 

the initial phase  φ0 = 0 (22). To show the effect of 

twisted electromagnetic waves on electron acceleration, 

we have considered the initial conditions of electron 

entry into the waveguide similar to reference (22) (in this 

reference, waves do not have twisted properties). 

For simplicity, numerical calculations have been done 

by defining the dimensionless parameters as r =
c r′/ωp,  θ = θ′,  z = c z′/ωp, ω = ωpω ′,  t = t ′/ωp, 

 v = c v ′,  E = mecωpE
′/e,   B = mecωpB

′/e  ,  A =

 c3meA
′/eωp,   kz = ωpkz

′ /c,   kr = μ = ωpkr
′/c, 

 ωc = ωpωc
′  and p̅ =  c5me

2p̅′/e2. 

Figure 2 illustrates the variation of electron total 

energy gain vs. waveguide length in the interaction with 

various twisted electromagnetic waves modes n = 3, 

n = 4, and n = 5, where the electromagnetic waves 

frequency corresponds to the case where  ω =
41.44 GHz. Each curve corresponds to a fixed mode 

value. This figure shows that increasing the mode number 

increases the gradient electron’s total energy gain. In this 

regard, for the case of  n = 5, an electron with initial an 

energy of 100 keV gets 1.6 GeV energy in 2.1 (cm) of 

traveling along the waveguide. 

In Figure 3, the effect of the external magnetic field 

on the electron total energy gain in the system understudy 

has been shown for the mode number n = 1. The other 

parameters are the same as in Figure 2. Results indicate 

that while increasing the magnetic field magnitude from 

the zero value decreases the electron’s total energy for 

weak magnetized systems, in the case of a magnetic field 

around B0 = 2834 (G) the electron's total energy 

suddenly increases. This behavior could be attributed to 

the resonance at this magnetic field value, which will be 

considered in detail in Figure 5.  

The electron total energy versus waveguide length in 

interaction with non-twisted (n = 0) and twisted (n = 1) 

electromagnetic waves has been depicted in Figures. 4(a) 

and 4(b) for three values of the electromagnetic wave 

frequencies. The other parameters are the same as in 

Figure 2. As seen in these figures, increasing the wave 

frequency decreases the electron energy gain in both 

cases.  Comparing Figures 4(a) and 4(b) shows that for 

the case of a non-twisted pulse, one can see the optimum 

value for the energy gain at the traveling of electrons in 

the waveguide. In contrast, the electron can get higher 

energy from the twisted electromagnetic waves by 

traveling in the waveguide at a more significant distance. 

Moreover, the electron gets more energy in the 

interaction with twisted electromagnetic waves than non-

twisted ones for the same traveling length in the 

waveguide, particularly at large distances.  

The maximum total electron energy gain versus the 

external magnetic field magnitude has been illustrated in 

 
 

Figure 2. Variation in the electron energy gain vs. 

waveguide length. The choices for system parameters are 

ω = 41.44 GHz,  n0 = 1.08 × 1011cm−3,  φ0 = 0 ,  p =
14 × 1013(erg/sec) , and  R = 2.1 cm. 

 

 
Figure 3. Variation of electron energy gain vs. waveguide 

length for the case where twisted electromagnetic waves 

frequency corresponds to ω = 40.82 GHz, the mode 

number n = 1, and different external magnetic field values, 

e.g.,  B0 = 500(G), B0 = 1300 (G) and B0 = 2000 (G). 
The system parameters are otherwise identical to Fig. 2. 
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Figure 5 for three twisted electromagnetic wave 

frequencies. As a significant result, the resonance 

absorption of twisted waves could occur in the system 

with the specific value of the external magnetic field, 

B0 = 2834 (G), for the parameters used in the figure. 

In electron acceleration by linear waves, the 

amplitude of the electric field 107 (V/m ) is required for 

the acceleration of electrons to 1.6 GeV in a 2.1 (cm) 

distance, but in our study, due to the presence of 

nonlinear effects, such as higher mode resonance 

phenomena, this acceleration rate could be achieved even 

with an electric amplitude lower than 107V/m. This 

claim could be confirmed by investigating the Figures (3-

5). These figures show that in the absence of nonlinear 

phenomena (for the primary mode n = 1), the maximum 

electron acceleration by the employed electric field 

amplitude will be ~20 MeV. In contrast, in the presence 

of nonlinear effects, n = 3,4, and 5 electron 

accelerations can be obtained up to about ~2 GeV 

(Figure 2). 

In Figure 6, a three-dimensional trajectory of the 

electron inside the plasma-filled conducting waveguide 

has been shown for ω = 40.82 (GHz), n = 1, and B0 =
1850 G. The electron is assumed to be initially at r0 =
R 2⁄ = 1.05 cm, θ0 = π 6⁄ , and z0 = 0, with an initial 

velocity of v0r = 0, v0θ = 0, and v0z = 0.55 c. The 

electron accelerates along the waveguide length due to 

the twisted TM mode’s longitudinal and transverse field 

components. The axial magnetic field component 

confines the electron's motion near the Z axis for 

maximum energy gain, as expected. 

Figure 7 demonstrates the variations of perpendicular 

velocity vp, total velocity vtotal, and parallel velocity vz 

with waveguide length Z for twisted electromagnetic 

waves (n = 1). The electron experiences a transverse 

electric force and acquires a transverse velocity 

component. The interaction between the transverse 

magnetic field of the twisted wave induces a force  

v ⃗⃗ p × B⃗⃗   in the axial direction. The resonance between 

the electrons and the electric field of the electromagnetic 

wave gives rise to the acceleration of the electrons to high 

energies. 

Figure 8 shows the effect of the axial magnetic field 

and frequency of the twisted electromagnetic wave on the 

electron velocity components. This figure illustrates that 

the axial velocity decreases while the perpendicular 

velocity vp increases with increasing twisted wave 

 
Figure 4(a). Variation of electron energy gain vs. 

waveguide length for the non-twisted electromagnetic 

waves (n = 0) with different frequencies, e.g., ω =
40.82(GHz), ω = 43.96 (GHz) and ω = 47.10 (GHz). 

Here, B0 = 1500 (G) and the system parameters are 

otherwise identical to Fig.2. 

 

 
Figure 4(b). Variation of electron energy gain vs. 

waveguide length for twisted electromagnetic waves (n = 1) 

with different frequencies, e.g., ω = 40.82 (GHz), ω =
43.96 (GHz) and ω = 47.10 (GHz). Here, B0 = 1500 (G) 

and the system parameters are otherwise identical to Fig. 2. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.50 1.00 1.50 2.00

To
ta

l e
le

ct
ro

n
 e

n
er

gy
 g

ai
n

U
(M

eV
)

Waveguide length z (cm)

ω=40.82(GHz)
ω=43.96(GHz)
ω=47.10(GHz)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 0.50 1.00 1.50 2.00

To
ta

l e
le

ct
ro

n
 e

n
er

gy
 g

ai
n

U
(M

eV
)

Waveguide length z (cm)

ω=40.82(GHz)
ω=43.96(GHz)
ω=47.10(GHz)

 
Figure 5. Variation in the maximum electron energy gain 

vs. magnetic field B0 for twisted electromagnetic waves (n 

=1) with different frequencies, e.g., ω =
40.82 (GHz), ω = 43.96 (GHz) and ω = 45.84 (GHz). 

The system parameters are otherwise identical to Fig. 2. 
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frequency and axial magnetic field. Physically, this is a 

result of the fact that wave-particle resonance occurs. 

 

Conclusions 

In this paper, the acceleration of electrons up to 

1.6 GeV  by a twisted electromagnetic wave in a 

magnetized plasma-filled waveguide is studied. The 

amplitude profile and phase of the wave depend on the 

longitudinal Z component (without Fourier Transform). 

Therefore, in this study, nonlinear terms such as 

ponderomotive force and others play significant role in 

the output. The effects of twisted electromagnetic waves 

and the external magnetic field have been investigated 

using numerical simulation. It is found that the electron 

energy grows significantly during the passage of an 

electron through the waveguide. This is due to its 

interaction with the twisted electromagnetic waves. This 

effect is significant when the twisted electromagnetic 

wave modes increases and the frequency decreases. 

Further numerical results showed that there is an 

optimum value for an external magnetic field that 

changes the resonance conditions, and the electron 

energy gain increases noticeably. The proposed structure 

improves the efficiency of the accelerator devices 

opening up a whole new area of investigation. 

 

 

 

 
Figure 6. Electron trajectory in the three-dimensional plane 

for ω = 40.82 (GHz), n = 1, B0 = 1850 G. 

 
Figure 7. Variation in perpendicular velocity vp, total 

velocity vtotal, and parallel velocity vz vs. waveguide 

length Z. The choices for system parameters are  n = 1,
ω = 40.82 (GHz),  and B0 = 1500 G. 
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Figure 8(a). Plots of the electron velocity components as a 

function of the waveguide length for different values of the 

external magnetic field and twisted wave frequencies. Here 

n = 1, and ω = 40.82 (GHz). 

 

 
Figure 8(b). Plots of the electron velocity components as a 

function of the waveguide length for different values of the 

external magnetic field and twisted wave frequencies. Here, 

n = 1, and B0 = 1500 G. 

 
Figure 8(c). Plots of the electron velocity components as a 

function of the  waveguide length for different values of the 

external magnetic field and twisted wave frequencies. Here, 

n = 1 and ω = 40.82 (GHz). 
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