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Abstract 

Today the micro electromechanical systems industry is widely developed. This article aims to study 

static pull-in instability of a clamped micro-switch which is exerted by an electric potential 

difference in presence of a longitudinal magnetic field. The size dependent nonlocal couple stress 

theory in framework of Bernoulli-Euler beam hypothesis is utilized to model a clamped micro-

switch. The equilibrium equation of micro-beam in micro-switch is derived using the principle of 

virtual work. To obtain the dimensionless pull-in voltage of micro-switch, the equilibrium equation 

is solved by Galerkin method. The effect of longitudinal magnetic field and some geometric 

parameter of micro-beam on the pull-in voltage is studied, taking into account the effects of a set of 

size dependent factors with and without considering the fringing field. The results from developed 

model are validated by comparing them with benchmark results. 
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1. Main text 

In recent years, micro electromechanical systems (MEMS) have been widely used in many scientific and 

industrial fields such as  medical, automotive, communication and aviation [1-5]. So that many researches are devoted 

to design and fabricate of MEMS devices. MEMS is a set of techniques and processes for design and fabricate of 

microstructures. The factor that distinguishes these modern techniques from conventional solutions is ability to 

operate more accurately and stability[6]. MEMS has become popular duo to their various advantages such as small 

size, high performance, low cost of the batch fabrication, reduction in power consumption, high accuracy and 

reliability [2, 4, 6-8]. MEMS devices are generally divided into two categories: sensors and actuators.  Sensor devices 

gather information from their surrounding and actuators execute given commands from electrical elements. About 

actuators, some type of actuations can be exerted. Microswitches are the actuators that can operate based on the 

electrostatic, electrothermal, electromagnetic, and piezoelectric actuations. Among those, electrostatic actuation acts 

based on the attraction forces duo to an electrical potential deference induced between two conductive electrodes or 

elements[9], and magnetic actuation operates based on Lorentz forces. Microbeam is one of the most common 

mechanical components in microswitches. Microswitches are usually comprise of a conductive flexible microbeam, 
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a fixed conductive substrate and a dielectric layer in which microbeam is suspended above the substrate by the 

dielectric layer[10]. Microbeam will be at rest as long as no voltage is applied. If a constant voltage is applied across 

the microbeam and substrate, an attractive force forms between them, and movable electrode deforms toward the 

substrate. The electrostatic force associated with voltage is nonlinear[11], so at a critical voltage which is known as 

pull-in voltage, microbeam collapse on the substrate. In recent years many researchers investigate the pull-in 

instability of microbeam structures. Tavakolian et al. [12] considered small scale effects to study pull-in instability of 

the microswitch using Eringen’s nonlocal elasticity theory in the presence of thermal and residual stress effects. 

Chowdhury et al. [13] developed a linearized, uniform approximate model conjunction with the load deflection 

model of a MEMS cantilever beam to calculate the pull-in voltage with high accuracy. A simple methodology is 

presented to determine small deflection of diaphragm in MEMS structures with pressure by Sharma and George 

[14]. Mobki et al. [15] used a modified non-linear mass–spring model to investigate the behavior of a microswitch 

composed of a microbeam suspended between two conductive stationary plates. Fakhrabadi et al. [16] studied the 

vibration, natural frequencies and dynamic pull-in characteristics of the carbon nanotubes in detail using modified 

couple stress theory. Torabi et al. [17] analyzed the dynamic and static pull-in of rectangular nanoplates made of 

functionally graded materials based on the nonlocal strain gradient theory and considering disparate boundary 

conditions. Hosseini et al. [18] study the pull-in voltage and the effects of electrostatic forces, fringing field, and 

initial gap in detail for different boundary conditions in nanobeams based on the nonlocal strain gradient theory. 

Rahaeifard et al. [19] investigates the deflection and static pull-in voltage of microcantilevers based on the modified 

couple stress theory and they show that the couple stress theory can remove the gap between the experimental 

observations and the classical theory. 

The accurate determination of pull-in voltage is critical in microswitches design. When the size of structure is 

close to micro scale, the small-scale effect on the mechanical behaviour becomes impressive. All experimental 

studies and molecular simulations conform the size-effect in micro and nano scale. Experimental methods are very 

expensive and difficult, and molecular simulations is computationally very expensive[20], on the other hand classical 

continuum mechanic is not able to predict size-scale effect on the mechanical behaviour, so to remove this enormous 

barrier, some nonclassical (high-order) continuum theories containing length scale parameters have been presented 

by scientists such as: non-local elasticity, modified couple stress, strain gradient and micropolar. 

In this paper, the static pull-in instability of an electrostatically actuated clamped microswitch under a uniform 

longitudinal magnetic field is investigated using size-dependent nonlocal couple stress theory. 

2. Equilibrium equation 

To illustrate the structure of double-clamed microswitch under electrostatic and magnetic actuation, a conceptual 

schematic view of it, is depicted in Fig. 1. 

 



Journal of Computational Applied Mechanics 2023, 54(4): 577-587 579 

 

Fig 1: Schematic of double-clamped microswitch 

 

The microswitch consists of a conductive microbeam of length L  with rectangular cross section of width b  and 

thickness h , which is suspended above the substrate at the distance of 
0g . According to Euler-Bernoulli beam 

hypothesis, the displacement field of microbeam defined in the form below: 
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where, 
1u , 

2u  and 
3u  denote the infinitesimal displacement components of microbeam in x , y and z direction 

respectively, and w  is the transverse deformation of microbeam. According to the nonlocal couple stress theory, by 

considering the local rotational degree of freedom of a specific particle, the components of the strain and the 

symmetric curvature tensor for microbeam are respectively defined as follow[21]: 
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where 
i  are the components of the rotation vector So, the nonzero components of the strain and the symmetric 

curvature tensor based on the nonlocal couple stress theory respectively achieved as below: 
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According to the nonlocal couple stress theory, the local rotation, at a point of the continuum induces an 

additional couple stress, so the variation of strain energy is defined as below: 
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Where, 
ij  is components of the Cauchy stress and 

ijm  is components of the deviatoric part of the couple stress 

tensor[22].  

 

 2ij kk ij ijG    = +  (7) 

22ij ijm G=  (8) 

 

Where   and G  are the Lame's constants in classical elasticity theory and 
ij  is the Kronecker delta. on the 

other hand, stress at a point in the continuum is a function not only of the strains at that point, but also of the strains 

at all other points of the continuum, so by ignoring the Poisson’s ratio  , the constitutive relations for microbeam 

are given by[23]: 

 

( )2 21 xx xxE  −  =  (9) 

( )2 2 21 2xy xym G −  =  (10) 

 

Where,  denotes the material length scale parameter that measures the effect of couple stress, and   is the 

nonlocality parameter. Moreover,   and E  are Nabla operator and Yang modulus respectively. Using Eq. (6), the 

strain energy relation is simplified as follow: 
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Where, M  and Y  are defined below: 

xx
A

M z dA=   (12) 

xy
A

Y m dA=   (13) 

So, using integral by parts, the strain energy relation and related boundary conditions are obtained: 
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The variation of the external work contains of electrostatic field and magnetic forces including fringing field is 

given by: 
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where 12 2 1 2

0 8.854 10 C N m − − −=   denotes vacuum permittivity, 74 10  −=   is magnetic permeability and 

xH , V  and A  are longitudinal magnetic field, applied voltage and cross section area of microbeam. By multiplying 

Eqs. (9) and (10) by z  and integrating over cross section area of the microbeam then second order derivation 

respect x  yields: 
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Consequently, constitutive equation will be obtained from the summation of Eqs. (16) and (17): 
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To derive equilibrium equation of transverse deformation of microbeam, principle of virtual displacement is 

applied.  
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Substitution of Eqs. (14) and (15) into Eq. (19), we get 
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To derive equilibrium equation of microbeam in nondimensional form, these dimensionless quantities are 

employed: 
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consequently, the dimensionless equilibrium equation of microswitch actuated by electrostatic and magnetic 

field based on the nonlocal couple stress theory is presented as below: 
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And boundary conditions related to clamped microbeam can be expressed as below: 

0,  0,    @ 0,1
dw

w x
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= = =  (23) 

3. Solution method 

To determine the pull-in voltage in microswitch, the equilibrium equation of microbeam should be solved. Duo 

to nonlinearity of the system, the Galerkin weighted residual method is employed to achieve displacement of middle 

of microbeam in clamped microswitch. Applying an electrical voltage between microbeam and substrate causes an 

attractive electrostatic force between them. At a critical voltage called pull-in voltage, the displacement of middle of 

microbeam suddenly increases duo to an infinitesimal increase in applied voltage. According to Galerkin weighted 

residual method an approximate solution is selected as below: 
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where ( )i x  are trial functions which must satisfy the geometry boundary conditions of the equilibrium 

equation, so the first term of the approximate solution is considered, and the nondimensional first mode shape 

function of the classical Bernoulli-Euler beam model is selected because it satisfies the clamped boundary condition 

of microbeam as below. 

 

( ) ( ) ( ) ( ) ( ) ( )( )cosh cos sinh sinx x x x x =  −  −  −    

0.9825022145,    =4.730040745 =   (25) 
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 and 
ia  is the unknown coefficient which must be calculated by setting the integral below over domain of the 

deferential equation to zero. 
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where ( )R x called residual which is obtained by substituting approximate solution into equilibrium equation. 

 

4. Results 

Geometric and material properties of microswitch in Table 1 are presented to determine nondimensional pull in 

voltage. It should be noted that in this study, the effective modulus of elasticity ( )21E −  is utilized. 

 

Table 1: Material and geometric properties utilized to calculate pull-in voltage in this paper. 

 

Quantities  values 

Length ( L ) 100 m  

Width ( b ) 10 m  

thickness ( h ) 1 m  

Young’s modulus ( E ) 169Gpa  

Poisson’s ratio ( ) 0.3  

Initial Gap (
0g )  1 m  

 

In addition to valid the results of this paper, pull-in voltages for cantilever microbeam are compared with results 

of Rahaeifard et al[19]. in table 2. 

 

Table 2: comparison pull-in voltages between results of this paper and results given by Rahaeifard in cantilever 

microbeam model for 50b m= , 2.94h m= , 
0 1.05g m= , 65.8G Gpa= , 169.2E Gpa= , 0 = . 

( ) L cantilever length  ( )pV classic  ( )pV nonclassic  

 
Present 

study 

Rahaeifa

rd 

Present study Rahaeifard 

4h l =  8h l =  4h l =  8h l =  

100   39.43  39.69  44.76  40.83  45.11  41.11  

150   17.53  17.64  19.9  18.15  20.05  18.27  

200   9.86  9.92  11.19  10.21 11.27  10.28  

 

Fig. 2 is presented to investigate the effect of the ratio h l  on the dimensionless pull-in voltage of clamped 
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microswitch for various magnetic field intensity. In all diagrams, in small value of h l  the pull-in voltage is size 

dependent. in the other hand, as the ratio h l  increases, the size effect on the pull-in voltage becomes negligible. It 

is also observed that not considering the fringing field on the electrostatic force relation predicts higher pull-in 

voltage. In addition, in all cases increasing the intensity of magnetic field increases the pull-in voltage of clamped 

microswitch. 

 

Fig. 2 the effect of ratio of h l  on the dimensionless pull-in voltage for various magnetic field intensity with and 

without considering fringing field with 100L m=  and 0l = . 

In the other hand the effect of ratio h   on the dimensionless pull-in voltage is depicted in Fig. 3. As inferred 

from this figure increasing the ratio h   reduces the dimensionless pull-in voltage for various magnetic field 

intensity. In small values of the ratio h   nonlocal size effect is more significant than higher values of them. In this 

case, increasing the magnetic field intensity reduces the dimensionless pull-in voltage in clamped microswitch. 

 

 

Fig. 3 the effect of ratio of h   on the dimensionless pull-in voltage for various magnetic field intensity with 

and without considering fringing field. 
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Fig. 4 shows the effect of dimensionless magnetic field versus dimensionless pull-in voltage for various 
0b g  

taking into account to fringing field. It can be seen increasing the dimensionless magnetic field increases 

dimensionless pull-in voltage. As the ratio 
0b g  increases, the results approach to condition that the fringing field is 

not considered. It is worth noting when the fringing field effect is ignored, the pull-in voltage in the microbeam with 

a rectangular cross section is independent of the microbeam width. 

 

Fig. 4 dimensionless pull-in voltage versus dimensionless magnetic field for various 
0b g  with 100L m= , 

0 = and 5h l = . 

 

As shown in Fig. 5 increasing the dimensionless magnetic field causes an increase in dimensionless pull-in 

voltage. As the ratio L h  increases the dimensionless pull-in voltage approaches to the results obtained from 

classical elasticity theory. It should be noted that influence of longitudinal magnetic field intensity is same in both 

classical and nonclassical theory. 

 

 

Fig. 5 dimensionless pull-in voltage versus dimensionless magnetic field for various L h  with 0 = , 5h l =  

and 
0 10b g = . 
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5. Conclusion 

In this paper a study is performed to investigate the influence of several geometric and material properties on the 

static pull-in voltage of a clamped microswitch considering induced Lorentz force duo to a longitudinal magnetic 

field. Using the Galerkin weighted residual method, the results are computationally solved taking into account tow 

size dependent factors of nonlocal couple stress theory which compared with results obtained from classical 

elasticity theory. The accuracy of the results is validated by comparing those with literatures. As a result, the static 

pull-in instability of microswitch is extremely size-dependent, so ignoring the size dependent effects cause a 

significant difference in prediction of pull-in voltages. By setting the 0 = , increasing of the magnetic field 

intensity increase the dimensionless pull-in voltage while by considering 0l =  increasing of the magnetic field 

intensity decrease the dimensionless pull-in voltage. Consequently, it can be concluded that nonlocal couple stress 

theory could predict both hardening and softening effects on the pull-in instability of microswitch. As the length of 

the microswitch increases, the electromechanical behaviour of the microswitch approaches to the classical state. In 

addition, the fringing field effect decreases with increasing beam width. 
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