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ABSTRACT: For dynamic modal analysis of the gravity dams, it is required to solve the 

non-symmetric eigenvalue problem which is a time-consuming process. This paper aims 

to propose a new procedure for this purpose. In this novel method, there is no need to 

solve the non-symmetric coupled eigenproblem. Instead, two novel eigenvalue problems 

are formulated and solved. They are simultaneously applied for dynamic modal analysis 

of concrete gravity dams. They represent the cubic-symmetric forms of the respective 

non-symmetric Eigenvalue problem, and they are entitled “cubic ideal-coupled 

eigenproblems”. Moreover, it is proved that the decoupled and ideal-coupled schemes 

presented in the previous works can be considered as special cases of the current more 

general procedure. For solving the aforesaid cubic eigenproblems, the classical subspace 

algorithm is generalized. To assess the accuracy of the suggested technique, it is 

employed for the dynamic analysis of two well-known benchmark gravity dams in the 

frequency domain. The dam crest responses are calculated under upstream and vertical 

excitations for two different wave reflection coefficients. Then, the obtained results are 

compared with those of the decoupled and ideal-coupled approaches. Findings 

corroborate the fact that the authors' formulation is more accurate than the other two 

aforesaid tactics under all practical conditions. 

 

Keywords: Concrete Gravity Dam, Coupled Method, Cubic Ideal-Coupled Method, 

Decoupled Method, Fluid-Structure Interaction, Ideal-Coupled Method. 

  
 

1. Introduction 

 

The dynamic behavior analysis of a 

concrete gravity dam-reservoir system can 

be effectively carried out using the Finite 

Element-(Finite Element-Hyper Element) 

technique, commonly abbreviated as FE-

(FE-HE) (Aftabi Sani and Lotfi, 2010). In 
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other words, the dam is modeled with the 

help of solid finite elements, while the 

reservoir is divided into a near-field region 

and a far-field one. The former is near the 

dam and has an irregular shape, while the 

latter one is including rectangular strips 

extending to infinity. These two regions are 

modeled by the fluid finite element and the 
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fluid hyper-elements, respectively (Aftabi 

Sani and Lotfi, 2010). 

Generally, the dynamic analysis process 

can be performed in the time or frequency 

domain (Chandravanshi and 

Mukhopadhyay, 2017). For dam-reservoir 

systems, many nonlinear constitutive 

models have been developed for time 

domain analysis. On another note, the 

analysis can be conducted in the frequency 

domain either by the direct approach (Lotfi, 

2005) or the modal one. In fluid-structure 

interaction problems, such as the dam-

reservoir, various alternatives exist for 

conducting modal analysis (Lotfi, 2005). 

Some of them utilized the true coupled 

mode shapes of the system. Within these 

methodologies, a significant portion of the 

computational time is dedicated to solve the 

asymmetric Eigenvalue problem that 

governs the free vibration behavior of the 

dam-reservoir systems. To remedy this 

difficulty, various methods have been 

proposed for symmetrizing this problem 

(Rezaiee-Pajand et al., 2021). In general, 

the earlier ones used extra unknowns (in 

addition to the pressure) for the fluid 

domain to symmetrize the problem (Olson 

and Vandini, 1989). Moreover, they are not 

efficient, and some of them are not able to 

calculate the hydrostatic pressure 

(Everstine, 1981). In this condition, the 

“decoupled” (Samii and Lotfi, 2007) and 

“ideal-coupled” (Aftabi Sani and Lotfi, 

2010) modal strategies have been proposed 

to defeat the deficiencies of the aforesaid 

methods. In the "decoupled" technique, the 

dam and reservoir Eigen-vectors are 

separately calculated. They are also applied 

in the solution procedure instead of the 

coupled Eigen-vectors. Similarly, the ideal-

coupled method separately uses the Eigen-

vectors of the dam and reservoir with 

modifications in comparison to the 

decoupled tactic. Based on the related 

literature, among various techniques 

symmetrizing the Eigen-problem solved in 

the dynamic analysis of the dam-reservoir 

systems, only these two methods use the 

Eigen-vectors of each domain for 

developing a symmetric version of the 

originally non-symmetric coupled Eigen-

problem. 

They rely on the mode shapes of two 

symmetric Eigenvalue problems, which are 

relatively straightforward from a 

programming perspective.  In a study 

conducted by Hariri-Ardebili and 

Mirzabozorg (2013), a direct time-domain 

approach was proposed for the dynamic 

stability analysis of the coupled dam-

reservoir-foundation system in three-

dimensional space. This approach takes into 

account the impact of the duration of 

ground motion on the system's dynamic 

structural stability. Gu et al. (2014) 

investigated the degradation and safety 

evaluation of a concrete gravity dam by 

employing a deterministic and a 

probabilistic method.      

Chen et al. (2014) investigated the 

process of damage and rupture in concrete 

gravity dams subjected to strong ground 

motions. Afterward, Lokke and Chopra 

(2015) suggested a response spectrum 

analysis strategy estimating the peak 

response directly from the earthquake 

design spectrum. Mandal and Maity (2016) 

proposed a two-dimensional method 

considering both the fluid-structure and 

soil-structure interaction in finding the 

transient response of concrete gravity dams. 

In another research, Ansari and Agarwal 

(2017) proposed a new damage index for 

gravity dams. Furthermore, Guo et al. 

(2019) used the Lagrange multiplier method 

for including the dead loads of the arch dam 

in the dynamic analysis procedure. 

Moreover, Sotoudeh et al. (2019) conducted 

a seismic analysis of a system comprising a 

reservoir, gravity dam, and layered 

foundation, considering the effects of a 

vertically propagating earthquake. The 

methodology developed by Casas and 

Pavanello (2017) obtained optimal dynamic 

structural shape through parameter 

changing, in order to maximize the gap 

between two adjacent Eigenvalues and also 

avoid the resonance phenomena at a 

specific natural frequency interval in 
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coupled fluid-structure systems. Nariman et 

al. (2019) considered dam-reservoir-

foundation interaction and used an extended 

finite element approach for damage 

detection of gravity dams. In a study by 

Liang et al. (2019) a probabilistic analysis 

was carried out to assess the seismic 

stability performance of a high arch dam. 

The analysis method incorporated 

considerations for contraction joints, 

boundaries of potential sliding rock masses, 

and the interaction between the dam and its 

foundation.  Recently, Sotoudehnia et al. 

(2021) developed an iterative method for 

reducing the order of the coupled Eigen-

value problem related to fluid-structure 

interaction systems. 

This paper aims to introduce a novel 

modal procedure for the mentioned issue,  

which is referred to as the cubic-ideal 

coupled approach. It is considered the 

enhancement of the “decoupled” and 

“ideal-coupled” modal techniques. This 

paper text is structured as follows. Section 

2 provides a concise overview of the 

analysis approach. Then, the coupled, 

decoupled, and ideal-coupled 

Eigenproblems are reviewed in Section 3. 

Afterward, a new cubic-ideal coupled 

scheme is thoroughly introduced. 

Furthermore, it is proved that the decoupled 

and ideal-coupled techniques can be 

envisaged as special cases of authors' 

procedures. In Section 4, the cubic eigen 

vectors are employed for dynamic modal 

analysis. Section 5 deals with developing a 

new approach for solving the aforesaid 

Eigenvalue problem by generalizing the 

well-known subspace iteration algorithm. 

In Section 6, the dynamic responses of the 

triangle ideal dam and Pine Flat dam are 

achieved by using the special program 

developed by the authors. Finally, the 

discussion and conclusions are reported in 

Sections 7 and 8, respectively. 
 

2. Analysis Method 
 

The modal analysis technique is employed 

in this study (Chandravanshi and 

Mukhopadhyay, 2017). The FE-(FE-HE) 

approach is employed to discretize both the 

dam and fluid domains. For simplicity, the 

formulation is initially explained without 

considering the far-field region of the 

reservoir. Then, the impacts of this region 

are added to the general case. Therefore, the 

coupled governing equation of the system 

takes on the following form (Rezaiee-

Pajand et al., 2022) : 
 

[
𝐌 𝟎
𝐁 𝐆

] [
�̈�
�̈�

] + [
𝐂 𝟎
𝟎 𝐋

] [
�̇�
�̇�

] + 

[𝐊 −𝐁𝐓

𝟎 𝐇
] [

𝐫
𝐩] = [

−𝐌𝐉𝐚g

−𝐁𝐉𝐚g
] 

(1) 

 

in which 𝐊, 𝐌, and 𝐂:  represent the 

stiffness, mass, and damping matrices of the 

dam body, respectively. Furthermore, 𝐇, 𝐆, 
and 𝐋: correspond to the generalized 

stiffness, mass, and damping of the fluid 

domain. Moreover, 𝐁: is the interaction 

matrix; it emerges in the finite element 

formulation as a result of vibrating the 

structure in contact with the water (Aftabi 

Sani and Lotfi, 2010). The provided matrix 

establishes a correlation between fluid 

pressure and structural acceleration. 

Furthermore, vectors 𝐫 and 𝐩 consist of 

undetermined nodal displacements and 

pressures, respectively. It should be added,

J is a matrix which each of its two rows are 

a 2 × 2  identity matrix. It is worthwhile to 

mention that each column of this matrix is 

related to a unit rigid body motion in the 

stream and vertical direction. Additionally, 

𝐚g is the vector of ground accelerations. By 

performing the Fourier transform, the 

matrix Eq. (1) can be transformed into the 

following form. 
 

[
−ω2𝐌 + 𝐊(1 + 2βdi) −𝐁T

−ω2𝐁 −ω2𝐆 + iω𝐋 + 𝐇
] [

𝐫
𝐩]

= [
−𝐌𝐉𝐚g

−𝐁𝐉𝐚g
] 

 (2) 
 

where i: represents the imaginary unit and 

𝜔: denotes the natural frequency of the 

system. It is important to note that the 

provided relation utilizes the hysteretic 

damping matrix, which takes on the 

following form (Aftabi Sani and Lotfi, 

2010). 
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𝐶 =
2𝛽𝑑

𝜔
𝐊 (3) 

 

where 𝛽𝑑: denotes the constant hysteretic 

factor associated with the dam body. It is 

important to highlight that Eq. (2) 

represents the coupled equation of a dam 

within a finite reservoir system in the 

frequency domain. 

 

3. Free Vibration Analysis 

 

It is evident that the Eigenvalue problem 

corresponding to Eq. (2) can be formulated 

as follows (Casas and Pavanello, 2017; 

Rezaiee-Pajand et al., 2023; Sotoudehnia et 

al., 2021). 
 

(ω2 [
𝐌 𝟎
𝐁 𝐆

] + [−𝐊 𝐁T

𝟎 −𝐇
]) [

𝐫
𝐩] = [

𝟎
𝟎

] (4) 

 

Obviously, this linear Eigenvalue 

problem is similar to the equation governing 

the free vibration of undamped systems. In 

contrast, it is not symmetric. To calculate 

the eigen pairs of the dam-reservoir system, 

solving this unsymmetrical linear 

Eigenvalue problem is necessary. Although 

it is preferred to solve the actual coupled 

equation of the dam-reservoir system, there 

are several more efficient alternatives, 

which will be presented in the following 

Sub-sections. 

 

3.1. Coupled Eigenproblem 

Through direct solution of the original 

eigenvalue problem (4), the actual coupled 

eigen pairs can be obtained. Usage of the 

achieved eigen vectors in modal analysis 

leads to more precise responses when 

contrasted with other available options. 

However, standard Eigen-solvers cannot be 

used to solve the mentioned equation due to 

their unsymmetrical nature. Based on the 

studies of other researchers, it has been 

found that methods for solving 

unsymmetrical Eigenvalue problems tend to 

be more time-consuming compared to 

symmetrical ones. From a programming 

perspective, they are also more intricate 

(Aftabi Sani and Lotfi, 2010; Felippa, 1985; 

Lotfi and Samii, 2012). It should be 

reminded that the symmetric shapes of the 

aforesaid Eigenvalue problem can be 

achieved by introducing new variables. 

Nevertheless, these extra variables cause 

complexity in computer programming. 

 

3.2. Decoupled Eigenproblem 

A symmetrical form of the initial 

Eigenvalue problem (4) can be achieved by 

omitting the interaction matrix 𝐁. It is 

referred to as the "decoupled" form and has 

the succeeding appearance (Lotfi, 2005): 
 

(ω2 [
𝐌 𝟎
𝟎 𝐆

] − [
𝐊 𝟎
𝟎 𝐇

]) [
𝐫
𝐩] = [

𝟎
𝟎

] (5) 
 

The symmetry of the decoupled 

Eigenvalue problem is quite apparent. This 

property allows for the utilization of 

standard Eigen-solvers to efficiently solve 

the problem. Note that; the eigen vectors 

obtained from these symmetric equations 

do not correspond to the actual mode shapes 

of the real system. Nonetheless, these 

modes can find application in a modal 

analysis strategy termed the "decoupled 

modal approach". It is worth mentioning 

that the decoupled eigen vectors can be 

regarded as the Ritz vectors. Therefore, it 

can be demonstrated that utilizing all of 

these modes leads to precise solutions. It is 

important to emphasize that the 

Eigenvalues obtained from the decoupled 

Eigenproblem represent the natural 

frequencies of the dam and reservoir 

individually (Aftabi Sani and Lotfi, 2010). 

 

3.3. Ideal-Coupled Eigenproblem 

Herein, the Eigenvalue problems 

associated with two ideal dam-reservoir 

systems are solved, rather than the actual 

coupled system. In the first ideal system, the 

fluid is considered incompressible, and in 

the second one, the dam is assumed to be 

massless. The Eigenvalues obtained from 

these idealized problems exhibit a higher 

degree of proximity to the natural 

frequencies of the real coupled dam-

reservoir system, in contrast to the 

Eigenvalues derived from the decoupled 

approach. Additionally, the eigen vectors 

obtained from these computations are more 
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analogous to the actual mode shapes of the 

system. These vectors can be employed 

within a modal analysis approach referred 

to as the "ideal-coupled modal strategy" 

(Aftabi Sani and Lotfi, 2010).  The first ideal 

Eigenproblem is presented in a simplified 

form as follows. 
 

[ω2(𝐌 + 𝐌a) − 𝐊] 𝐫 = 0 (6) 
 

where Ma: represents the added mass matrix 

and can be obtained as below. 
 

𝐌a = 𝐁T𝐇−1𝐁 (7) 
 

Thus, by utilizing Eq. (8), it becomes 

possible to derive the pressure vector. 
 

𝐩 = ω2𝐇−1𝐁𝐫 (8) 
 

It is obvious that the dimension of this 

Eigenproblem corresponds to the number of 

unknown nodal displacements. The 

formulation of the second ideal Eigenvalue 

problem is as follows. 
 

[ω2(𝐆 + 𝐆a) − 𝐇]𝐩 = 𝟎 (9) 
 

in which 
 

𝐆a = 𝐁𝐊−1𝐁T (10) 
 

The displacement vector can be computed 

with the help of the next relation. 
 

𝐫 = 𝐊−1𝐁T𝐩 (11) 
 

Clearly, the dimensions of the second 

ideal Eigenvalue problem match the count 

of unknown nodal pressures in the fluid 

domain. The previously mentioned ideal 

Eigenproblems can be reformulated as Eq. 

(12). 
 

(ω2 [
𝐌 + 𝐌a 𝟎

𝟎 𝐆 + 𝐆a
] − [

𝐊 𝟎
𝟎 𝐇

]) [
𝐫
𝐏

] 

= [
𝟎
𝟎

] 

 (12) 

 

This Eigenproblem is a linear and 

symmetric one. As a result, the solution to 

this problem can be obtained through the 

application of commonly used standard 

methods. Obviously, eliminating 𝐌𝐚 and 

𝐆𝐚  from Eqs. (6-9) results in the decoupled 

Eigenvalue problem. Hence, the decoupled 

version of the actual Eigenproblem 

represents a specific instance of the ideal-

coupled Eigenproblem. It is worthwhile to 

remark that the ideal-coupled approach is 

more accurate compared to the decoupled 

one (Aftabi Sani and Lotfi, 2010). 
 

3.4. New Cubic Ideal-Coupled 

Eigenproblem 

At this stage, a new symmetric form of 

the Eigenproblem (4) is introduced. It 

includes two different cubic Eigenvalue 

problems, which are separately discussed in 

this section. It is shown that both decoupled 

and ideal-coupled strategy can be envisaged 

as special cases of authors' formulation. 

Moreover, they are less accurate than the 

current method . 

Using the lower partition equation of Eq. 

(4) and solving the pressure vector in terms 

of the displacement vector results in the 

subsequent relation. 
 

𝐩 = ω2(𝐇 − ω2𝐆)−1𝐁𝐫 (13) 
 

Obviously, (𝐇 − 𝜔2𝐆) is the subtraction 

of two matrices, and it is required to be 

inverted for calculating the pressure vector. 

Recall that, Eq. (13) is the exact form of Eq. 

(8) which plays an important role in the 

ideal-coupled approach. It is worth 

mentioning that Eq. (8) can be obtained by 

removing 𝐆 from Eq. (13). By employing 

the second-order approximation of the 

Taylor series, this matrix inversion can be 

computed as follows (Bakhtiari-Nejad et 

al., 2005).  
 

(𝐇 − ω2𝐆)−1 ≅ 𝐇−1 + ω2𝐇−1𝐆𝐇−1 

                              +ω4𝐇−1𝐆𝐇−1𝐆𝐇−1 
(14) 

 

Substituting this relation into Eq. (13) 

leads to the next result. 
 

𝐩 ≅ ω2(𝐇−1 + ω2𝐇−1𝐆𝐇−1 + 

                ω4𝐇−1𝐆𝐇−1𝐆𝐇−1) 𝐁𝐫 
(15) 

 

By inserting this equality into the upper 

partition of Eq. (4), the coming cubic 

Eigenvalue problem is achieved. 
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[ω6𝐐𝐆𝐇−1𝐆𝐐T + ω4𝐐𝐆𝐐T + 

  ω2(𝐌 + 𝐌a) − 𝐊]𝐫 = 𝟎 
(16) 

 

in which 

 

𝐐 = 𝐁T𝐇−1 (17) 

 

Certainly, the dimension of this cubic 

Eigenproblem is equivalent to the count of 

unknown nodal displacements in the 

system. Note that; eliminating the first two 

terms of Eq. (16) leads to Eq. (6). 

Accordingly, the first form of the ideal-

coupled method is a special case of the first 

cubic ideal-coupled approach. 

In what follows, the second cubic ideal 

Eigenproblem is established. To achieve 

this goal, the displacement vector is solved 

in terms of the pressure vector by utilizing 

the upper partition equation of Eq. (4). 

Consequently,  the displacement vector can 

be computed as below. 

 

𝐫 = (𝐊 − ω2𝐌)−1𝐁T𝐩 (18) 

 

In fact, Eq. (11) is the approximate form of 

the last relation, in which 𝐌 is neglected. It 

should be added that Eq. (11) is one of the 

key formulas in the ideal-coupled 

technique. Similarly, (𝐊 − 𝜔2𝐌) can be 

inverted with the help of the second-order 

approximation of the Taylor series. In this 

way, the succeeding relation can be written 

(Bakhtiari-Nejad et al., 2005).  

 
(𝐊 − ω2𝐌)−1 ≅ 𝐊−1 + ω2𝐊−1𝐌𝐊−1 

                            +ω4𝐊−1𝐌𝐊−1𝐌𝐊−1 
(19) 

 

Substitution of the aforementioned 

equation into Eq. (18) yields the next 

equality. 
 

𝐫 ≅ (𝐊−1 + ω2𝐊−1𝐌𝐊−1 + 

           ω4𝐊−1𝐌𝐊−1𝐌𝐊−1)𝐁T𝐩 
(20) 

 

Introducing this relationship into the 

lower partition of Eq. (4) leads to the next 

equation. 

 

[ω6𝐒𝐌𝐊−1𝐌𝐒T + ω4𝐒𝐌𝐒T + 

  ω2(𝐆 + 𝐆a) − 𝐇]𝐩 = 𝟎 
(21) 

where 
 

𝐒 = 𝐁𝐊−1 (22) 
 

It is clear that the dimension of this cubic 

Eigenproblem is equivalent to the count of 

unknown nodal displacements in the 

system. It is worthwhile to highlight that 

neglecting the first two terms of Eq. (21) 

leads to Eq. (9). Hence, the second form of 

the ideal-coupled scheme is a special case 

of the second cubic ideal-coupled approach. 

A 𝑛 × 𝑛 cubic Eigenproblem has 

Eigenvalues. According to the 

characteristics of the coefficient matrices, 

the Eigenvalues may be infinite or finite, 

and the finite values may be real or complex 

(Tisseur and Meerbergen, 2001). 

Obviously, real values are the approximate 

natural frequencies of the dam-reservoir 

system, and the other ones are fictitious .

The aforesaid two cubic ideal-coupled 

Eigenvalue problems, i.e., Eqs. (16-21), can 

be expressed totally as the next shape. 
 

(ω6 [
𝐐𝐆𝐇−1𝐆𝐐T 𝟎

𝟎 𝐒𝐌𝐊−1𝐌𝐒T
]

+ ω4 [
𝐐𝐆𝐐T 𝟎

𝟎 𝐒𝐌𝐒T
]

+ ω2 [
𝐌 + 𝐌a 𝟎

𝟎 𝐆 + 𝐆a
]

− [
𝐊 𝟎
𝟎 𝐇

]) [
𝐫
𝐩] = [

𝟎
𝟎

] 

 (23) 

 

By solving two separate cubic 

Eigenvalue problems, the solution of this 

combined symmetric Eigenproblem can be 

calculated. It is worthwhile to mention the 

current relationship can be changed into Eq. 

(12) by ignoring 𝜔4 𝐐 𝐆 𝐐T, 𝜔4 𝐒 𝐌 𝐒T, 

𝜔6 𝐐 𝐆𝐇−𝟏𝐆 𝐐T and 𝜔6 𝐒 𝐌 𝐊−𝟏𝐌 𝐒Tterms. 

 

4. Cubic Ideal-Coupled Modal Analysis 

 

Herein, it is assumed that Eigenproblem 

(23) is solved, and the mode shapes are 

found. Consequently, the nodal 

displacements and pressures can be written 

as follows. 
 

[
𝒓
𝒑] = [

𝑿𝑆 𝟎
𝟎 𝑿𝐹

] [
𝒀𝑆

𝒀𝐹
] (24) 
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where 𝐗S and 𝐗F: are matrices, which 

include the eigen vectors of Eigenvalue 

problems (16) and (21), respectively. These 

vectors are regarded as the Ritz vectors 

stemming from the original coupled Eq. (2). 

They can be employed in combination to 

provide an approximate solution for the 

exact problem. It is worth noting that the 

cubic-ideal coupled mode shapes do not 

exhibit orthogonality concerning the 

original mass and stiffness matrices. 

Nevertheless, the subsequent matrices can 

be defined as below. 
 

𝑲∗ = 𝑿𝑆
𝑇𝑲𝑿𝑆; 𝑴∗ = 𝑿𝑆

𝑇𝑴𝑿𝑆 (25) 

𝑯∗ = 𝑿𝐹
𝑇𝑯𝑿𝐹; 𝑮∗ = 𝑿𝐹

𝑇𝑮𝑿𝐹; 

𝑳∗ = 𝑿𝐹
𝑇𝑳𝑿𝐹 

(26) 

 

Inserting Eq. (24) into Eq. (2) and 

performing some simple mathematical 

operations lead to the next result (Aftabi 

Sani and Lotfi, 2010).  
 

[
−𝜔2𝑴∗ + 𝑲∗(1 + 2𝛽𝑑𝑖) −𝑿𝑆

𝑇𝑩𝑇𝑿𝐹

−𝑿𝐹
𝑇𝑩𝑿𝑆 𝜔−2(−𝜔2𝑮∗ + 𝑖𝜔𝑳∗ + 𝑯)∗

] [
𝒀𝑆

𝒀𝐹
]

= [
−𝑿𝑆

𝑇𝑴𝑱𝒂𝑔

−𝜔−2𝑿𝐹
𝑇𝑩𝑱𝒂𝑔

] 

 (27) 
 

It is obvious that the vector, which 

includes the modal participation factors, can 

be computed with the help of this relation. 

At each frequency, the response vector can 

be calculated by introducing the modal 

participation factor into Eq. (24) in the case 

of cubic ideal-coupled modal analysis for a 

dam-finite reservoir system.  
 

4.1. Dam-Reservoir System 

Up until this point, the formulation of the 

dam within a finite reservoir was presented. 

However, when considering a reservoir that 

extends infinitely, it becomes necessary to 

incorporate hyper-elements in conjunction 

with the fluid finite elements. By 

assembling the hyper-elements matrices, 

Eq. (2) is converted into the next form. 
 

[
−ω2𝐌∗ + 𝐊∗(1 + 2β

d
i)

−𝐗F
T𝐁𝐗S

−𝐗S
T𝐁T𝐗F

ω−2(−ω2𝐆∗ + iω𝐋∗ + 𝐇∗ + 𝐗F
T�̄�h(ω)𝐗F)

] [
𝐘S

𝐘F
]

= [
−𝐗S

T𝐌𝐉𝐚g

ω−2𝐗F
T(−𝐁𝐉𝐚g + �̄�p(ω)𝐚g)

] 

 (28) 

�̄�h(ω) = [
𝐇h(ω) 𝟎

𝟎 𝟎
] (29) 

�̄�p(ω) = [
𝐑p(ω)

𝟎
] (30) 

 

𝐇h(𝜔) and 𝐑p(𝜔) are obtained by 

expanding 𝐇h(𝜔) and 𝐑p(𝜔), respectively. 

These matrices include all pressure degrees 

of freedom. Note that; Eqs. (27-28) are 

utilized to determine the vector of 

participation factors in cases where the 

reservoir is finite and extends to infinity, 

respectively. 

 

4.2. Linearized Forms for Solving the 

Cubic Eigenproblems 

In the process of the numerical solution 

of the Standard Eigen Problem (SEP) and 

the generalized one (GEP), the matrices 

involved are generally reduced to some 

simpler forms, which reveal the 

Eigenvalues. For nonlinear Eigenproblems, 

these forms cannot be developed. 

Numerical approaches applied for finding 

the solution of the cubic Eigenproblems are 

divided into two categories. The first group 

directly solves the cubic Eigenproblem, and 

the second one works with the linearized 

forms (Afolabi, 1987; Tisseur and 

Meerbergen, 2001). Note that; most of the 

numerical tactics, which belong to the first 

category, are the variants of Newton’s 

methods whose rate of convergence is 

highly related to the closeness of the 

starting guess to the actual solution 

(Higham and Kim, 2001; Long et al., 2008). 

These algorithms are able to calculate one 

Eigen-pair at a time. In practice, it is 

impossible to guarantee that the scheme 

converges to the desired Eigenvalue even 

for an appropriate initial guess.   

In the techniques based on the linearized 

forms, a  𝑛 × 𝑛 cubic Eigenproblem is 

transformed into a 3𝑛 × 3𝑛  linear 

Eigenvalue problem. In this way, common 

linear Eigen-solvers incorporated in 

commercial and non-commercial software 

packages can be employed. It should be 

highlighted that the Eigenvalues of a cubic 

Eigenproblem are similar to their linear 

form. Furthermore, the eigen vectors can be 

obtained from the corresponding linear 
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problem. Based on the characteristics of the 

coefficient matrices of a given Eigenvalue 

problem, various linear forms can be 

presented for a given cubic Eigenvalue 

problem. The most important drawback of 

linearization is that the linearized 

Eigenproblem's dimension is three times the 

original cubic one. Based on the linear 

forms presented in Mackey et al. (2006), 

suitable symmetric linear forms of the 

aforementioned cubic ideal-coupled 

Eigenvalue problems, i.e., Eqs. (16-21), are 

respectively introduced, as follows.  

 

([
𝐐𝐆𝐐T − 𝐐𝐆𝐇−1𝐆𝐐T 𝐌 + 𝐌a − 𝐐𝐆𝐇−1𝐆𝐐T −𝐊

𝐌 + 𝐌a − 𝐐𝐆𝐇−1𝐆𝐐T 𝐌 + 𝐌a − 𝐐𝐆𝐐T − 𝐊 −𝐊
−𝐊 −𝐊 −𝐊

]

− ω2 [

𝐐𝐆𝐇−1𝐆𝐐T

𝐐𝐆𝐇−1𝐆𝐐T

𝐐𝐆𝐇−1𝐆𝐐T

𝐐𝐆𝐇−1𝐆𝐐T

𝐐𝐆𝐐T + 𝐐𝐆𝐇−1𝐆𝐐T − (𝐌 + 𝐌a)

𝐐𝐆𝐐T + 𝐊

𝐐𝐆𝐇−1𝐆𝐐T

𝐐𝐆𝐐T + 𝐊
𝐌 + 𝐌a + 𝐊

]) [
𝐫
�̄�
�̄̄�

]

= [
𝟎
𝟎
𝟎

] 

 (31) 

([
𝐒𝐌𝐒T − 𝐒𝐌𝐊−1𝐌𝐒T 𝐆 + 𝐆a − 𝐒𝐌𝐊−1𝐌𝐒T −𝐇

𝐆 + 𝐆a − 𝐒𝐌𝐊−1𝐌𝐒T 𝐆 + 𝐆a − 𝐒𝐌𝐒T − 𝐇 −𝐇
−𝐇 −𝐇 −𝐇

]

− ω2 [
𝐒𝐌𝐊−1𝐌𝐒T

𝐒𝐌𝐊−1𝐌𝐒T

𝐒𝐌𝐊−1𝐌𝐒T

𝐒𝐌𝐊−1𝐌𝐒T

𝐒𝐌𝐒T + 𝐒𝐌𝐊−1𝐌𝐒T − (𝐆 + 𝐆a)

𝐒𝐌𝐒T + 𝐇

𝐒𝐌𝐊−1𝐌𝐒T

𝐒𝐌𝐒T + 𝐇
𝐆 + 𝐆a + 𝐇

]) [

𝐩
�̄�

�̄̄�
]

= [
𝟎
𝟎
𝟎

] 

 (32) 

 

where 𝐩, 𝐩, 𝐫 and 𝐫: contain fictitious 

entries. It is worthwhile to remark that the 

dimensions of these problems are equal to 

three times the unknown nodal pressures 

and displacements, correspondingly. 

Obviously, the coefficient matrices are 

symmetric. As a consequence, these linear 

Eigenproblems can be easily solved by 

employing common linear symmetric 

Eigenvalue solution routines.  

 

5. Generalized Subspace Method 

 

Various algorithms have been proposed for 

estimating the mode shapes and natural 

frequencies of the linear symmetric 

Eigenproblems. One of the famous schemes 

extensively applied is entitled subspace 

iteration technique developed by Bathe 

(1996). This method is very popular in the 

finite element analysis of huge structures 

(Rezaiee-Pajand et al., 2019). With the help 

of this procedure, any arbitrary number of 

structural Eigenvalues and eigen vectors 

can be approximately calculated. Herein, 

this well-known approach is generalized for 

solving the cubic ideal-coupled problems.  

In each iteration of the generalized 

approach, a set of vectors is achieved. It 

should be added that the number of these 

vectors is less than the size of the initial 

cubic problem, and the original problem is 

projected into the corresponding vector 

space. As a result, a smaller cubic 

Eigenvalue problem is established. 

Afterward, it is linearized in an analog 

manner to the previous subsection. Then, 

the common linear symmetric Eigenvalue 

solution routines are utilized for finding the 

eigen pairs of this smaller problem. Recall 

that; the obtained responses are the 

approximations of the Eigenvalues and 

eigen vectors of the initial cubic 

eigenproblem. Eventually, the Eigenvalues 

and eigen vectors of the projected 

Eigenproblem converge to the eigen pairs of 

the initial cubic one. It is worth emphasizing 

that the decoupled mode shapes are applied 

for establishing the starting set of vectors, 

which forms the basis of the vector space in 

the first iteration.  

In Figures 1 and 2, the steps of this 

algorithm are proposed for Eigenproblems 

(16) and (21), respectively. In these 

flowcharts, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 and  𝜀: are the 

maximum allowable iteration and error, 

correspondingly. 

 

6. Numerical Examples 

 

In this study, the finite element method was 

employed as the initial approach to conduct 

the analysis.  To accomplish this task, a 

computer program was created by 

implementing the theories elucidated in the 

preceding sections. As previously 

mentioned, solid finite elements were 

employed to model the dam. Furthermore, 

the near-field and far-field fluid domains 

were discretized using fluid finite elements 

and hyper-elements, respectively. The 

computer program provides various options 

for dynamic modal analysis of gravity 
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dams, including the true coupled, 

decoupled, ideal-coupled, and new cubic 

ideal-coupled techniques. To solve the 

Eigenvalue problems with these 

approaches, different Eigen-solvers are 

employed. In what follows, the Eigenvalue 

solution routine of each scheme is 

introduced. 

The linear symmetric subspace iteration 

tactic (Bathe, 1996), which is denoted by SS 

in the coming sections, is deployed for 

solving the decoupled and ideal-coupled 

Eigenproblems. Recall that; the true 

coupled problem is not symmetric. Hence, 

its Eigenproblem is solved by the pseudo-

symmetric subspace iteration strategy 

abbreviated by PS (Arjmandi and Lotfi, 

2011). Moreover, two methods are utilized 

for the cubic Eigenvalue problems. The first 

one uses linearization and symmetric 

subspace iteration strategy (LS), and the 

second one takes advantage of the 

suggested Generalized Subspace iteration 

algorithm (GS). 

In the subsequent sections, to prove the 

high accuracy of the proposed new method, 

it is utilized for conducting dynamic 

analysis of the ideal triangle and Pine Flat 

gravity dams in the frequency domain. In 

these examples, the dynamic responses of 

the dam crests are calculated in response to 

both upstream and vertical excitations. This 

analysis takes into account two different 

values of wave reflection coefficients (𝛼), 

specifically 1 and 0.5. It should be reminded 

that  𝛼 = 1 represents the full reflection and 

𝛼 = 0.5 allows for the partial reflection of 

waves, which influences the reservoir-

foundation boundaries (Bougacha and 

Tassoulas, 1991; Jafari and Lotfi, 2018). In 

each case, the amplitude of the complex-

valued accelerations for the dam crest point 

is plotted versus the dimensionless 

frequency 𝜔/𝜔1
𝑠. It should be added that  𝜔 

and 𝜔1
𝑠 denote the excitation frequency and 

the first frequency of the dam on the rigid 

foundation with no water in the reservoir, 

respectively. The results obtained from the 

analysis are then compared with the exact 

solutions, which are derived using a direct 

method that incorporates all the true 

coupled mode shapes. Additionally, the 

same comparison is conducted for the 

decoupled and ideal-coupled approaches.  

Moreover, the accuracy and consumed 

time of the above-cited Eigen-solution 

routines in finding the eigen pairs are 

compared. For this purpose, the next 

efficiency and error indices are introduced. 

 

𝑇𝐼𝑖 = 100 ×
𝑇𝑚𝑖𝑛

𝑇𝑖
 (33) 

𝐸𝐼𝑖 = 100 × (
1

𝑛𝑚
∑

|𝑓𝑒𝑥𝑎𝑐𝑡
𝑗

− 𝑓𝑖
𝑗
|

𝑓𝑒𝑥𝑎𝑐𝑡
𝑗

𝑛𝑚

𝑗=1

) (34) 

 

where the consumed time of the fastest 

Eigen-solution routine and the i-th one are 

demonstrated by 𝑇 𝑚𝑖𝑛 and 𝑇 𝑖, 

correspondingly. Furthermore, 𝑓𝑖
𝑗
 and 

𝑓𝑒𝑥𝑎𝑐𝑡
𝑗

: are the jth natural frequency of the ith 

tactic and the true coupled one, 

respectively. Besides, nm: denotes the 

number of computed natural frequencies. 

 

6.1. Ideal Triangle Gravity Dam 

In this subsection, the mentioned 

methods are utilized for the dynamic 

analysis of a famous gravity dam named the 

ideal triangle gravity dam in the frequency 

domain. In what follows, the finite element 

model and basic parameters of this system 

are introduced, and the obtained results are 

presented.  

 

6.1.1. Model 

At this stage, the focus is on the finite 

element model of the ideal triangle dam 

situated on a rigid foundation. To represent 

this dam, a discretization technique is 

employed, utilizing 20 isoparametric 8-

node plane-solid finite elements.  As it was 

previously mentioned, the water domain 

includes near-field and far-field regions. 

The former one continues up to a specific 

length (𝐿), which is measured at the dam 

crest point in the upstream direction. 

Herein, it is assumed that 𝐿 = 0.2𝐻. It 

should be added that 𝐻 is the dam height or 

maximum water depth in the reservoir.  
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Fig. 1. Flowchart of generalized subspace method for Eigenproblem (16)  

 

Following the near-field region, the far-

field portion commences and stretches to 

infinity in the upstream direction. The near-

field region is simulated using 5 

isoparametric 8-node plane-fluid elements, 

while the far-field segment is modeled with 

a fluid hyper-element consisting of 5 

isoparametric 3-node sub-elements. It is 

worthwhile to mention that the used mesh 

pattern has been previously applied by other 

researchers (Sotoudehnia et al., 2021; 

Ziaolhagh et al., 2016). Figure 3 depicts the 

finite element model of the ideal triangle 

dam and its reservoir. 
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Fig. 2. Flowchart of generalized subspace method for Eigenproblem (21) 

 

  
(a) Dam with the near-field fluid region (b) Dam with the near far-field fluid regions 

Fig. 3. The finite element model of the ideal triangle gravity dam 
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6.1.2. Basic Parameters 

The concrete dam is presumed to be 

homogenous with isotropic linearly 

viscoelastic behavior. Its elastic modulus, 

unit weight, and Poisson's ratio are 

27.5 Gpa, 24.8 kN/m3 and 0.2, respectively. 

Additionally, the hysteretic damping factor 

is 0.05. Furthermore, the impounded water 

is assumed to be irrotational, compressible, 

and inviscid, with a pressure wave velocity 

of 1440 m/s and a unit weight of 9.81 

kN/m³. 
 

6.1.3. Free Vibration Responses 

It should be reminded that each 

aforementioned formulation includes two 

cases whose Eigenproblems are not similar. 

Consequently, each method has two sets of 

modes, except for the true coupled 

technique. It is worth emphasizing that the 

set of mode shapes associated with the 

nodal displacements can be computed by 

solving the first Eigenvalue problems, and 

the corresponding set of mode shapes 

related to the nodal pressures are calculated 

by solving the second Eigenvalue problems. 

Accordingly, the frequencies of the first and 

second cases are listed in Tables 1 and 2, 

respectively. 

The provided tables reveal that the 

natural frequencies of the true coupled 

problem generally appear to be lower than 

the two sets of natural frequencies 

computed in each instance of the decoupled, 

ideal-coupled, and cubic ideal-coupled 

approaches. For comparison, Figure 4 

illustrates the error indices of the 

decoupled, ideal-coupled, cubic ideal-

coupled, and true coupled approaches. 

With the help of this figure, the accuracy 

of the aforesaid tactics can be compared. It 

is obvious that the natural frequencies of the 

cubic ideal-coupled approach are more 

accurate compared to the decoupled and 

ideal-coupled methods. In other words, the 

most accurate tactic is the authors' 

technique, and the error-index of the 

decoupled method is higher than those of 

others. 

 
Table 1. The first five natural frequencies for the ideal triangle dam-reservoir system with 𝐿 = 0.2𝐻 

Mode 

number 

Natural frequencies fi (Hz) 

Decoupled Ideal-coupled 
Cubic ideal- 

coupled 
True 

coupled 
dam                

(Ziaolhagh et al., 

2016) 

First ideal case 

(Incompressible fluid 

assumption) 

First cubic ideal 

case 

1 2.29 1.49 1.28 1.25 
2 5.19 4.08 3.44 2.54 
3 6.04 5.94 5.90 4.96 
4 8.93 7.84 6.68 5.65 
5 13.17 11.29 9.96 6.13 

 
Table 2. The second five natural frequencies for the ideal triangle dam-reservoir system with 𝐿 = 0.2𝐻 

Mode 

Number 

Natural frequencies fi (Hz) 

Decoupled Ideal-coupled 
Cubic ideal-

coupled True 

coupled 

 

Reservoir 

(Ziaolhagh et al., 

2016) 

Second ideal case 

(Incompressible fluid 

assumption) 

Second cubic 

ideal case 

1 1.80 1.35 1.26 1.25 
2 5.40 3.61 2.92 2.54 
3 9.03 7.09 5.89 4.96 
4 12.76 10.45 9.59 5.65 
5 16.66 12.68 10.05 6.13 
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Fig. 4. Error index  

 

In this example, the efficiency indices of 

the decoupled approach with SS, the ideal-

coupled approach with SS, and the cubic 

ideal-coupled approach with GS and LS are 

equal to 100, 100, 100, and 4.49, 

respectively. For the truly coupled 

algorithm with PS, the efficiency index is 

22.70. Clearly, the efficiency indices of the 

first three ones are the same, and the cubic 

ideal coupled with LS is the slowest one. 

Note that; the ratio of the efficiency index 

to the error-index is a key parameter for 

comparing the performance of numerical 

techniques. In other words, the performance 

of a numerical method is dependent on both 

its efficiency and accuracy. Accordingly, 

the cubic ideal-coupled technique with GS 

performs more successfully in comparison 

to the other schemes in this numerical 

example. 
 

6.1.4. Forced Vibration Responses 

At this stage, the magnitudes of the 

complex acceleration values for the dam 

crest point are plotted versus the 

dimensionless frequency 𝜔/𝜔1
𝑠. To achieve 

this goal, the aforementioned strategies are 

used. It is important to note that the number 

of modes to perform the dynamic analysis 

in each case is the same. Recall that; other 

researchers previously presented the 

responses by using the true coupled tactic 

(Hojati and Lotfi, 2011; Samii and Lotfi, 

2011). For 𝛼 = 1, the outcomes are 

illustrated in Figures 5 and 6 for the 

upstream and vertical excitations, 

respectively.  

For all two types of excitations 

considered, it can be observed that the cubic 

ideal-coupled approach performance is 

mainly better than the decoupled and ideal-

coupled strategies. Now, the results for  𝛼 =
0.5 are illustrated in Figures 7 and 8 for the 

upstream and vertical excitations, 

respectively. 

Obviously, for these cases, the cubic 

ideal-coupled scheme's responses are also 

closer to the exact response (i.e., the direct 

method with the true coupled mode shapes) 

in comparison to the decoupled and ideal-

coupled techniques' results.   

 

6.2. Pine Flat Gravity Dam 

Herein, the mentioned strategies are 

applied for conducting a dynamic analysis 

of the Pine Flat gravity dam in the 

frequency domain. Subsequent sections will 

provide information about the finite 

element model, the essential parameters of 

this system, and the obtained results. 

 

6.2.1. Model 

The finite element model of the Pine Flat 

dam on a rigid foundation has been 

examined. The dam is discretized using 40 

isoparametric 8-node plane-solid finite 

elements. It is important to note that the 

water domain includes near-field and far-

field regions. In this example, 𝐿 = 200 𝑚. 

The far-field portion initiates after the near-

field region and extends infinitely in the 

upstream direction. For modeling the near-

field region, 90 isoparametric 8-node plane-
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fluid elements are utilized, while the far-

field section is represented by a fluid hyper-

element consisting of 9 isoparametric 3-

node sub-elements. It is worth mentioning 

that the mesh pattern used here has been 

previously employed by other researchers 

(Ganji and Lotfi, 2021; Omidi and Lotfi, 

2017). Figures 9 and 10 provide a 

visualization of the finite element model of 

the Pine Flat dam and its corresponding 

reservoir. 

 

 
(a) Decoupled method 

 

 
(b) Ideal-coupled method 

 

 
(c) Cubic ideal-coupled method 

Fig. 5. Frequency response function at the dam crest resulting from horizontal excitation with 𝛼 = 1 
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(a) Decoupled method 

 

 
(b) Ideal-coupled method 

 

 
(c) Cubic ideal-coupled method 

Fig. 6. Frequency response function at the dam crest resulting from vertical excitation with 𝛼 = 1 
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(a) Decoupled method 

 

 
(b) Ideal-coupled method 

 

 
(c) Cubic ideal-coupled method 

Fig. 7. Frequency response function at the dam crest due to horizontal excitation with 𝛼 = 0.5 
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(a) Decoupled method 

 

 
(b) Ideal-coupled method 

 

 
(c) Cubic ideal-coupled method 

Fig. 8. Frequency response function at the dam crest resulting from vertical excitation with 𝛼 = 0.5 

0

10

20

0 1 2 3 4 5

Vertical Ground Motion

H
o

ri
zo

n
ta

l 
A

cc
el

er
a

ti
o

n

𝛚/𝛚𝟏
𝐬

𝛼 = 0.5

0

10

20

0 1 2 3 4 5

Vertical Ground Motion

H
o

ri
zo

n
ta

l 
A

cc
el

er
a

ti
o

n

𝛚/𝛚𝟏
𝐬

𝛼 = 0.5

0

10

20

0 1 2 3 4 5

Vertical Ground Motion

H
o

ri
zo

n
ta

l 
A

cc
el

er
a

ti
o

n

𝛚/𝛚𝟏
𝐬

𝛼 = 0.5



50  Rezaiee-Pajand et al. 

 
Fig. 9. Dam body with the near-field fluid region 

 

 
Fig. 10. Dam body with the near-field and far-field 

fluid regions 
 

It is important to note that the Pine Flat 

dam features a sloped upstream face. To 

enhance accuracy, the hyper-elements need 

to be connected to the vertical sides of the 

finite elements. Consequently, within the 

finite element region, this slope should 

gradually decrease before establishing 

connections between the hyper-elements 

and the finite elements. 
 

6.2.2. Basic Parameters 

The dam body is constructed from 

homogeneous concrete with isotropic 

linearly viscoelastic behavior, possessing 

an elasticity modulus of 22.75 Gpa, unit 

weight of 24.8 kN/m3, and a Poisson's ratio 

of 0.2. Moreover, a hysteretic damping 

factor of 0.05 is considered for the material. 

In addition, the impounded water is treated 

as irrotational, compressible, and inviscid, 

having a unit weight of 9.81 kN/m3 and a 

pressure wave velocity of 1440 m/s. 

 

6.2.3. Free Vibration Responses 

At first, the frequencies of the first and 

second Eigenproblems of this dam-

reservoir system are proposed in Tables 3 

and 4, respectively. 

Clearly, the natural frequencies of the 

true coupled problem are generally lower 

than the corresponding sets of natural 

frequencies obtained using the decoupled, 

ideal-coupled, and cubic ideal-coupled 

approaches in each case. Furthermore, the 

natural frequencies of the cubic strategy are 

closer to those of the true coupled one in 

comparison to the other approaches. 

At this stage, the first and second 

pressure mode shapes are demonstrated in 

Figures 11 and 12, respectively. Recall that; 

the true coupled mode shapes were 

previously proposed in other works (Samii 

and Lotfi, 2007).
 

Table 3. The first five natural frequencies for the Pine Flat dam-reservoir system with 𝐿 = 200 𝑚 

Mode 

number 

Natural frequencies fi (Hz) 

Decoupled 

(Samii and Lotfi, 

2007) 

Ideal-coupled 
Cubic ideal-

coupled 
True coupled 

(Samii and 

Lotfi, 2007) 
Dam 

First ideal case (Incompressible 

fluid assumption) 

First cubic 

ideal case 

1 3.15 2.67 2.58 2.53 
2 6.48 5.77 4.95 3.27 
3 8.74 8.66 8.45 4.67 
4 11.25 10.35 9.27 6.22 
5 16.99 15.98 13.51 7.92 

 

Table 4. The second five natural frequencies for the Pine Flat dam-reservoir system with 𝐿 = 200 𝑚 

Mode 

number 

Natural frequencies fi (Hz) 

Decoupled 

(Samii and 

Lotfi, 2007) 

Ideal-coupled 
Cubic ideal-

coupled 
True coupled 

(Samii and 

Lotfi, 2007) 
Reservoir 

Second ideal case (Incompressible 

fluid assumption) 

Second Cubic 

ideal case 

1 3.12 2.94 2.68 2.53 
2 4.75 4.24 3.52 3.27 
3 7.80 6.05 5.01 4.67 
4 9.30 7.92 7.28 6.22 
5 9.96 9.46 8.89 7.92 
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(a) Decoupled (b) Ideal-coupled 

  

  
(c) Cubic ideal-coupled (d) True coupled 

Fig. 11. First pressure mode shapes 

 

  
(a) Decoupled (b) Ideal-coupled 

  

  
(c) Cubic ideal-coupled (d) True coupled 

Fig. 12. Second pressure mode shapes 
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Obviously, the mode shapes of the cubic 

ideal-coupled are more similar to true 

coupled ones. For brevity, the dam mode 

shapes are not presented. However, the  

scheme of this paper is more successful in 

calculating these mode shapes than the 

other tactics.  

For the aforesaid dam-reservoir system, 

Figures 13 and 14 show the error and 

efficiency indices of the decoupled, ideal-

coupled, cubic ideal-coupled and true 

coupled strategies, correspondingly. With 

the help of these figures, the accuracy and 

analysis duration of the aforesaid schemes 

can be compared. 

As it was previously mentioned, the ratio 

of the efficiency index to the error-index is 

a key parameter for comparing the 

performance of numerical techniques. 

Accordingly, the ideal-coupled scheme and 

cubic ideal-coupled technique with GS 

perform more successfully in comparison to 

other algorithms. Obviously, the natural 

frequencies of the cubic ideal-coupled 

method are more closely aligned with the 

true coupled frequencies compared to the 

decoupled and ideal-coupled approaches. 

Consequently, if the same number of modes 

is employed, the cubic ideal-coupled 

approach is expected to offer improved 

accuracy in dynamic response compared to 

the decoupled and ideal-coupled 

techniques. Similarly, the decoupled and 

ideal-coupled tactics are faster than the 

other algorithms. The cubic ideal coupled 

with GS technique is ranked as second. 

Besides, the cubic ideal coupled with GS is 

much faster than the true coupled with PS, 

and the cubic ideal coupled with LS is the 

slowest one. 

 

 
Fig. 13. Error index 

 

 
Fig. 14. Time index 
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6.2.4. Forced Vibration Responses 

In a similar manner to the previous 

example, the chart depicts the changes in 

the magnitudes of complex-valued 

accelerations at the crest of the dam in 

relation to the dimensionless frequency  

𝜔/𝜔1
𝑠. When considering 𝛼 = 1, the 

outcomes are illustrated in Figures 15 and 

16 for the upstream and vertical excitations, 

respectively. Analogously, the aforesaid 

methods utilize the same number of modes 

to perform the dynamic analysis in each 

case. In previous research, true coupled 

responses were proposed (Chopra et al., 

1980).   

 

 
(a) Decoupled method 

 
(b) Ideal-coupled method 

 
(c) Cubic ideal-coupled method 

Fig. 15. Frequency response function at the dam crest resulting from horizontal excitation with 𝛼 = 1 
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(a) Decoupled method 

 

 
(b) Ideal-coupled method 

 

 
(c) Cubic ideal-coupled method 

Fig. 16. Frequency response function at the dam crest resulting from vertical excitation with 𝛼 = 1 

0

10

20

30

0 1 2 3 4 5

Vertical Ground Motion

H
o

ri
zo

n
ta

l 
A

cc
el

er
a

ti
o

n

𝛚/𝛚𝟏
𝐬

𝛼 = 1

0

10

20

30

0 1 2 3 4 5

Vertical Ground Motion

H
o

ri
zo

n
ta

l 
A

cc
el

er
a

ti
o

n

𝛚/𝛚𝟏
𝐬

𝛼 = 1

0

10

20

30

0 1 2 3 4 5

Vertical Ground Motion

H
o

ri
zo

n
ta

l 
A

cc
el

er
a

ti
o

n

𝛚/𝛚𝟏
𝐬

𝛼 = 1



Civil Engineering Infrastructures Journal 2024, 57(1): 33-59 55 

For all two types of excitations 

considered, the cubic ideal-coupled scheme 

performs more successfully than the 

decoupled and ideal-coupled approaches. 

At this stage, the results for 𝛼 = 0.5 are 

depicted in Figures 17 and 18 for the 

upstream and vertical excitations, 

correspondingly.  

 

 
(a) Decoupled method 

 
(b) Ideal-coupled method 

 
(c) Cubic ideal-coupled method 

Fig. 17. Frequency response function at the dam crest resulting from horizontal excitation with 𝛼 = 0.5 
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(a) Decoupled method 

 

 
(b) Ideal-coupled method 

 

 
(c) Cubic ideal-coupled method 

Fig. 18. Frequency response function at the dam crest resulting from vertical excitation with 𝛼 = 0.5 
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Obviously, for these cases, the responses 

obtained using the cubic ideal-coupled 

approach demonstrate a higher level of 

agreement with the exact responses 

obtained through the direct method when 

compared to the results obtained from the 

decoupled and ideal-coupled methods. 

 

7. Discussion 

 

One of the challenges which exists in the 

dynamic analysis of dam-reservoir systems 

is solving the corresponding non-symmetric 

Eigenproblem. Two well-known 

approaches, which are used for 

symmetrizing this problem, are decoupled 

and ideal-coupled methods. This paper has 

presented a novel method that is more 

accurate than both methods.  

However, although it is faster than the 

true coupled approach, it is not as fast as the 

decoupled and ideal-coupled are. Hence, 

further research activities are suggested for 

developing more accurate and faster 

methods, in comparison to the decoupled 

and ideal-coupled tactics.  

 

8. Summary and Conclusions 

 

In this paper, a novel frequency-domain 

approach for performing modal analysis of 

concrete gravity dam-reservoir systems was 

presented. This method was developed 

based on two cubic Eigenvalue problems. 

To solve them, the well-known subspace 

algorithm was generalized. Moreover, their 

solution can be found with the combination 

of the classical subspace scheme with 

linearization. To achieve this goal, the 

linearized forms of the aforesaid 

Eigenproblems were proposed. This tactic 

was utilized for the dynamic analysis of two 

famous gravity dams, namely the ideal 

triangle dam and the Pine Flat Dam. It is 

worth noting that the far-boundary 

condition of the reservoir was considered 

by employing the hyper-elements. 

Furthermore, the dynamic responses of the 

dam crests were calculated in response to 

both upstream and vertical excitations, 

considering two different values of wave 

reflection coefficients. The obtained results 

were compared with those of the decoupled 

and ideal-coupled strategies. By thoroughly 

investigating the findings, it is concluded 

that: 

• The novel approach can find more 

accurately the forced and free vibration 

responses of the gravity dams in 

comparison to the decoupled and ideal-

coupled approaches. This is because its 

eigen pairs are closer to those of the true 

coupled ones. In other words, this paper 

suggested a modal dynamic analysis 

strategy that is more accurate than the 

other aforementioned available ones.  

• Moreover, it is observed that the cubic 

ideal-coupled scheme with the suggested 

Eigen-solver algorithm is faster than the 

true coupled one with the pseudo-

symmetric method while it requires 

more time in comparison to the 

decoupled and ideal-coupled techniques, 

which are less accurate than authors' 

tactic. 
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