تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,840 |
تعداد دریافت فایل اصل مقاله | 97,232,022 |
Evaluating the Accuracy of Precipitation Products Over Utah, United States, Using the Google Earth Engine Platform | ||
Desert | ||
مقاله 9، دوره 28، شماره 1، شهریور 2023، صفحه 145-162 اصل مقاله (1.3 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2023.93548 | ||
نویسندگان | ||
H. Shokati* 1؛ M. Mashal1؛ A.A Noroozi2؛ S. Mirzaei3 | ||
1Department of Water Engineering, University of Tehran, Tehran, Iran. | ||
2Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran. | ||
3Institute of Methodologies for Environmental Analysis (CNR-IMAA), Rome, Italy. | ||
چکیده | ||
Satellite-based precipitation missions can be used to estimate precipitation distribution, especially in areas where there are no rain gauging stations. Nevertheless, these products are still less used because of the lack of accuracy evaluation. This study evaluates the monthly rainfall values of five satellite precipitation products, including ERA5, GPM, CHIRPS, TRMM 3B43, and PERSIANN-CDR, at eight rain gauge networks over the Utah, United States using Google Earth Engine platform (GEE). For this purpose, different validating indices such as R2, RMSE, and MAE were used to evaluate the accuracy of mentioned products from 2009 to 2019. The results showed that CHIRPS outperformed other rainfall products in this region with an R2 value of 0.63. ERA5 ranked second with an R2 of 0.6, and GPM, TRMM, and PERSIANN-CDR were in the subsequent ranks with R2 values of 0.53, 0.52, and 0.32, respectively. The results also indicated that spatial resolution is directly related to the accuracy of the results. CHIRPS rainfall product had the highest spatial resolution (0.05°) among all studied products, which led to the most reliable results. On the other hand, the lowest spatial resolutions belonged to TRMM and PERSIANN-CDR (0.25°), which resulted in the weakest results. The results also revealed that the ERA5 precipitation product was more influenced by elevation, longitude, and rainfall factors than other products. | ||
کلیدواژهها | ||
CHIRPS؛ ERA5؛ Google Earth Engine؛ GPM؛ PERSIANN-CDR؛ TRMM | ||
مراجع | ||
References
Almazroui, M, 2011. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmospheric Research, 99(3-4): 400-414.
Arnaud, P., C. Bouvier., L. Cisneros, R. Dominguez, 2002. Influence of rainfall spatial variability on flood prediction. Journal of Hydrology, 260(1-4): 216-230.
Bohnenstengel, S.I., K.H. Schlünzen, F. Beyrich, 2011. Representativity of in situ precipitation measurements–A case study for the LITFASS area in North-Eastern Germany. Journal of Hydrology, 400(3-4): 387-395.
Bolvin, D.T., G.J. Huffman, 2015. Transition of 3B42/3B43 research product from monthly to climatological calibration/adjustment. NASA TRMM Doc, 11.
Campos-Taberner, M., Á. Moreno-Martínez., F.J. García-Haro., G. Camps-Valls., N.P. Robinson., J. Kattge, S.W. Running, 2018. Global estimation of biophysical variables from Google Earth Engine platform. Remote Sensing, 10(8): 1167.
Cao, Y., W. Zhang, W. Wang, 2018. Evaluation of TRMM 3B43 data over the Yangtze River Delta of China. Scientific Reports, 8(1): 1-12.
Chen, S., L. Zhang., D. She, J. Chen, 2019. Spatial downscaling of tropical rainfall measuring mission (TRMM) annual and monthly precipitation data over the middle and lower reaches of the Yangtze River Basin, China. Water, 11(3): 568.
Collischonn, B., W. Collischonn, C.E.M. Tucci, 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 360(1-4): 207-216.
Copernicus Climate Change Service Climate Data Store (CDS), 2017. Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate.
Duan, Z., J. Liu., Y. Tuo., G. Chiogna, M. Disse, 2016. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment, 573: 1536-1553.
Ebert, E.E., J.E. Janowiak., C. Kidd, 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88(1): 47-64.
Funk, C., P. Peterson., M. Landsfeld., D. Pedreros., J. Verdin., S. Shukla., G. Husak., J. Rowland., L. Harrison., A. Hoell, J. Michaelsen, 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1): 1-21.
Gilbert, J.T., W.W. Macfarlane, J.M. Wheaton, 2016. The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers & Geosciences, 97: 1-14.
Goodrich, D.C., J.M. Faurès., D.A. Woolhiser., L.J. Lane, S. Sorooshian, 1995. Measurement and analysis of small-scale convective storm rainfall variability. Journal of hydrology, 173(1-4): 283-308.
He, K., W. Zhao., L. Brocca, P. Quintana-Seguí, 2022. SMPD: A soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation. Hydrology and Earth System Sciences Discussions: 1-29.
Hsu, K.L., X.G. Gao., S. Sorooshian, H.V. Gupta, 1997. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 36: 1176–1190.
Huffman, G.J., D.T. Bolvin., E.J. Nelkin., D.B. Wolff., R.F. Adler., G. Gu., Y. Hong., K.P. Bowman, E.F. Stocker, 2007. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8: 38–55.
Khan, S.I., Y. Hong., J.J. Gourley., M.U.K. Khattak., B. Yong, H.J. Vergara, 2014. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Advances in Space Research, 54(4): 670-684.
Khatri, K.B., C. Strong, 2020. Climate Change, Water Resources, and Potential Adaptation Strategies in Utah.
Kidd, C., V. Levizzani, 2011. Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15(4): 1109-1116.
Kolios, S., A. Kalimeris, 2020. Evaluation of the TRMM rainfall product accuracy over the central Mediterranean during a 20-year period (1998–2017). Theoretical and Applied Climatology, 139(1): 785-799.
Li, M., Q. Shao, L. Renzullo, 2010. Estimation and spatial interpolation of rainfall intensity distribution from the effective rate of precipitation. Stochastic Environmental Research and Risk Assessment, 24(1): 117-130.
Mansourmoghaddam, M., N. Naghipur., I. Rousta, H.R. Ghaffarian, 2022. Temporal and spatial monitoring and forecasting of suspended dust using google earth engine and remote sensing data (Case Study: Qazvin Province). Desert Management, 10(1): 77-98.
Mei, Y., E.N. Anagnostou., E.I. Nikolopoulos, M. Borga, 2014. Error analysis of satellite precipitation products in mountainous basins. Journal of Hydrometeorology, 15(5): 1778-1793.
Michaelides, S., V. Levizzani., E. Anagnostou., P. Bauer., T. Kasparis, J.E. Lane, 2009. Precipitation: Measurement, remote sensing, climatology and modeling. Atmospheric Research, 94(4): 512-533.
Moller AL., RR. Gillies, 2008. Utah Climate, 2nd edn, Publication Design and Production: Utah State University: Logan-UT/USA.
Ning, S., J. Wang., J. Jin, H. Ishidaira, 2016. Assessment of the latest GPM-Era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese mainland. Water, 8(11): 481.
Noël, T., H. Loukos., D. Defrance., M. Vrac, G. Levavasseur, 2021. A high-resolution downscaled CMIP5 projections dataset of essential surface climate variables over the globe coherent with the ERA5 reanalysis for climate change impact assessments. Data in Brief, 35: 106900.
Saeidizand, R., S. Sabetghadam., E. Tarnavsky, A. Pierleoni, 2018. Evaluation of CHIRPS rainfall estimates over Iran. Quarterly Journal of the Royal Meteorological Society, 144: 282-291.
Sahlu, D., E.I. Nikolopoulos., S.A. Moges., E.N. Anagnostou, D. Hailu, 2016. First evaluation of the Day-1 IMERG over the upper Blue Nile basin. Journal of Hydrometeorology, 17(11): 2875-2882.
Semire, F.A., R. Mohd-Mokhtar, 2016. Evaluation of satellite retrieval algorithm to ground rainfall estimates over Malaysia. MAPAN, 31(3): 177-187.
Sharifi, E., R. Steinacker, B. Saghafian, 2016. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sensing, 8(2): 135.
Shen, Y., A. Xiong., Y. Wang, P. Xie, 2010. Performance of high‐resolution satellite precipitation products over China. Journal of Geophysical Research: Atmospheres, 115(D2).
Shi, Y., L. Song., Z. Xia., Y. Lin., R.B. Myneni., S. Choi., L. Wang., X. Ni., C. Lao, F. Yang, 2015. Mapping annual precipitation across mainland China in the period 2001–2010 from TRMM3B43 product using spatial downscaling approach. Remote Sensing, 7(5): 5849-5878.
Takara, K., Y. Yamashiki., K. Sassa., A.B. Ibrahim, H. Fukuoka, 2010. A distributed hydrological–geotechnical model using satellite-derived rainfall estimates for shallow landslide prediction system at a catchment scale. Landslides, 7(3): 237-258.
Tan, M.L., H. Santo, 2018. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202: 63-76.
Tan, M.L., A.L. Ibrahim., Z. Duan., A.P. Cracknell, V. Chaplot, 2015. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing, 7(2): 1504-1528.
Tan, M.L., K.C. Tan., V.P. Chua, N.W. Chan, 2017. Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia. Water, 9(1): 57.
Tang, G., Z. Zeng., D. Long., X. Guo., B. Yong., W. Zhang, Y. Hong, 2016. Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7?. Journal of Hydrometeorology, 17(1): 121-137.
Tian, Y., Y. Liu., K.R. Arsenault., A. Behrangi, 2014. A new approach to satellite-based estimation of precipitation over snow cover. International Journal of Remote Sensing, 35(13): 4940-4951.
Tramblay, Y., C. Bouvier., P.A. Ayral, A. Marchandise, 2011. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation. Natural Hazards and Earth System Sciences, 11(1): 157-170.
Vega-Durán, J., B. Escalante-Castro., F.A. Canales., G.J. Acuña, B. Kaźmierczak, 2021. Evaluation of areal monthly average precipitation estimates from MERRA2 and ERA5 reanalysis in a colombian caribbean basin. Atmosphere, 12(11): 1430.
Vischel, T., T. Lebel, 2007. Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff. Part 2: Idealized modeling of runoff sensitivity. Journal of hydrology, 333(2-4): 340-355.
Hou, A.Y., R.K. Kakar., S. Neeck., A.A. Azarbarzin., C.D. Kummerow., M. Kojima., R. Oki., K. Nakamura, T. Iguchi, 2014. The global precipitation measurement mission. Bulletin of the American meteorological Society, 95(5): 701-722.
Zhang, T., B. Li., Y. Yuan., X. Gao., Q. Sun., L. Xu, Y. Jiang, 2018. Spatial downscaling of TRMM precipitation data considering the impacts of macro-geographical factors and local elevation in the Three-River Headwaters Region. Remote Sensing of Environment, 215: 109-127.
Zhang, Z., Q. Jin., X. Chen., C.Y. Xu., S. Chen., E.M. Moss, Y. Huang, 2016. Evaluation of TRMM multisatellite precipitation analysis in the Yangtze river basin with a typical monsoon climate. Advances in Meteorology, 2016. | ||
آمار تعداد مشاهده مقاله: 217 تعداد دریافت فایل اصل مقاله: 227 |