تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,685 |
تعداد دریافت فایل اصل مقاله | 97,206,330 |
Calculation of Land Surface Temperature Using a Generalized Split-Window Algorithm and the Reconstruction of its Lost Data by Cloud Cover Through a Singular Spectral Analysis (SAA)-algorithm | ||
Desert | ||
مقاله 3، دوره 28، شماره 1، شهریور 2023، صفحه 27-48 اصل مقاله (1.97 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2023.93537 | ||
نویسندگان | ||
H. Zare Khormizi* 1؛ H.R. Ghafarian Malamiri2؛ S. Alian3 | ||
1Faculty of Natural Resources, University of Tehran, Karaj, Iran. | ||
2Department of Geography, Yazd University, Yazd, Iran. | ||
3Department of Civil Engineering, Rahman Institute of Higher Education, Ramsar, Iran. | ||
چکیده | ||
Land Surface Temperature (LST) is one of the most important parameters in land-atmosphere energy exchange that is applicable to many sciences such as climatology, hydrology, agriculture, ecology, etc. One of the most significant limitations of using remote sensing for estimation of LST is the presence of clouds, which remarkably affects the energy reflected from the surface and disrupts the reading ability of the optical and thermal sensors. In the present study, 23 Landsat 8 images in 2015 were used as an annual time series to estimate LST in a part of the pistachio farms of Yazd, Iran. LST in the 23 images was estimated by generalized split-window algorithm. The results showed in the estimated (23 images) LST time series, the minimum, maximum, and mean missing data due to cloud cover were 17%, 28%, and 19%, respectively. SSA algorithm was used to solve the problem of missing data. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) between the original and reconstructed data at the data points in the studied LST time series were 3.4 and 2.5 K, respectively. Moreover, the gap-filling error was estimated by extracting five random images with four iterations of time series and comparing the reconstructed images with the extracted spatio-temporal images. RMSE and MAE were estimated to be 4.4 and 3.6 K in reconstruction of temporal artificial gaps and 3.7 and 2.8 K in the spatial artificial gaps, respectively. Based on the findings, SSA algorithm can be effectively used to fill the problem of missing data due to cloud cover in Landsat 8 LST time series. | ||
کلیدواژهها | ||
Time series؛ split-window algorithm؛ singular spectrum analysis؛ spatio-temporal interpolation؛ Landsat 8 | ||
مراجع | ||
References
Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, & L. E. Gumley, 2006. Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research, 103; 32141-32157.
Broomhead, D. S., & G. P. King, 1986. Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20; 217-236.
Cai, Z,, P. Jönsson, H, Jin, & L. Eklundh, 2017. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sensing, 9 (12); 1271.
Chen, D., Q. Zhuang, L. Zhu, & W. Zhang, 2022. Comparison of Methods for Reconstructing MODIS Land Surface Temperature under Cloudy Conditions. Applied Sciences, 12(12); 6068.
Costa, J, D, O., R. D. Coelho, W. Wolff, J. V. José, M. V. Folegatti, & S. F. Ferraz, 2019. Spatial variability of coffee plant water consumption based on the SEBAL algorithm. Scientia Agricola, 76(2); 93-101.
Du, C., H. Ren, Q. Qin, J. Meng, & S. Zhao, 2015. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sensing, 7(1); 647-665.
Elsner, J. B., & A. A. Tsonis, 1996. Singular Spectrum Analysis: A New Tool in Time Series Analysis. New York. USA: Plenum Press.
Estes, M. G., M. Z. Al-Hamdan., W. Crosson, S. M. Estes, D. Quattrochi, S. Kent, & L. A. McClure, 2009. Use of remotely sensed data to evaluate the relationship between living environment and blood pressure. Environ Health Perspect, 117 (12); 1832-1838.
Feizizadeh, B., K. Didehban, & K. Gholamnia, 2016. Extraction of Land Surface Temperature (LST) based on Landsat Satellite Images and Split Window Algorithm Study area: Mahabad Catchment. Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(98); 171-181.
Geng, L., M. Ma, X. Wang, W. Yu, S. Jia, & H. Wang, 2014. Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor Time-Series NDVI Data Sets in the Heihe River Basin, China. Remote Sensing, 6(3); 2024–2049.
Ghafarian, H. R., M. Menenti, L. H. Jia, & R. den Ouden, 2012. Reconstruction of cloud-free time series satellite observations of land surface temperature. In, EARSeL eProceedings (pp. 121-131)
Ghafarian Malamiri, H. R., 2015. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance (Doctoral dissertation), Technische Universiteit Delft, The Netherlands.
Ghafarian Malamiri, H. R., H. Zare, I. Rousta, H. Olafsson, E. Izquierdo Verdiguier, H. Zhang, & T. D. Mushore, 2020. Comparison of harmonic analysis of time series (HANTS) and multi-singular spectrum analysis (M-SSA) in reconstruction of long-gap missing data in NDVI time series. Remote Sensing, 12(17); 2747.
Ghafarian Malamiri, H. R., & H. Zare Khormizi, 2017. Reconstruction of cloud-free time series satellite observations of land surface temperature (LST) using harmonic analysis of time series algorithm (HANTS). Journal of RS and GIS for Natural Resources, 8(3); 37-55.
Ghafarian Malamiri, H. R., & H. Zare Khormizi, 2020. Investigating vegetation changes in Iran using NDVI time series of NOAA-AVHRR sensor and Harmonic ANalysis of Time Series (HANTS). Scientific- Research Quarterly of Geographical Data (SEPEHR), 29(113); 141-158.
Ghafarian Malamiri, H., I. Rousta, H. Olafsson, H. Zare, & H. Zhang, 2018. Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA). Atmosphere, 9(9); 334.
Ghil, M., M. R. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, ... , & P. Yiou, 2002. Advanced spectral methods for climatic time series. Reviews of geophysics, 40(1); 3-1.
Ghil, M., & R. Vautard, 1991. Interdecadal oscillations and the warming trend in global temperature time series. NATURE, 350; 324-327.
Golyandina, N., V. Nekrutkin, & A. Zhigljavsky, 2001. Analysis of Time Series Structure: SSA and Related Techniques. Washington DC, USA: CHAPMAN &HALL/CRC
Golyandina, N., & A. Zhigljavsky, 2013. Singular Spectrum Analysis for Time Series: SpringerBriefs in Statistics.
Irons, J. R., J. L. Dwyer, & J. A. Barsi, 2012. The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122; 11-21.
Izquierdo Verdiguier, E., 2014. Kernel Feature Extraction Methods for Remote Sensing Data Analysis. University of Valencia, Spain.
Jiang, Y., & W. Lin, 2021. A comparative analysis of retrieval algorithms of land surface temperature from Landsat-8 data: a case study of Shanghai, China. International Journal of Environmental Research and Public Health, 18(11); 5659.
Jiménez-Muñoz, J. C., J. A. Sobrino, D. Skoković, C. Mattar, & J. Cristóbal, 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10); 1840-1843.
Johnson. B., R. Tateishi, & T. Kobayashi, 2012. Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. Remote Sensing, 4(9); 2619-2634.
Julien, Y., & J. A. Sobrino, 2010. Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sensing of Environment, 114; 618-625.
Julien, Y., J. A. Sobrino, & W. Verhoef, 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1); 43-55.
Kondrashov, D., & M. Ghil, 2006. Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Processes in Geophysics, 13;151-159.
Kondrashov, D., Y. Shprits, & M. Ghil, 2010. Gap filling of solar wind data by singular spectrum analysis. Geophysical research letters, 37(15).
Latif, M. S., 2014. Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm-A Case Study of Ranchi District. International Journal of Engineering Development and Research, 2(4); 2840-3849.
Li, J., B. E. Carlson, & A. A. Lacis, 2013. Application of spectral analysis techniques in the intercomparison of aerosol data: 1. An EOF approach to analyze the spatial‐temporal variability of aerosol optical depth using multiple remote sensing data sets. Journal of Geophysical Research: Atmospheres, 118; 8640-8648.
Li, Z. L., L. Jia, Z. Su, Z. Wan, & R. Zhang, 2003. A new approach for retrieving precipitable water from ATSR2 split-window channel data over land area. International Journal of Remote Sensing, 24(24); 5095-5117.
Menenti, M., S. Azzali, W. Verhoef, & R. Van Swol, 1993. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Advances in Space Research, 13; 233-237.
Mukherjee, S., P. K. Joshi, & R. D. Garg, 2014. A comparison of different regression models for downscaling Landsat and MODIS land surface temperature images over heterogeneous landscape. Advances in Space Research, 54; 655-669.
Musial, J. P., M. M. Verstraete, & N. Gobron, 2011. Comparing the effectiveness of recent algorithms to fill and smooth incomplete and noisy time series. Atmospheric chemistry and physics, 11(15); 7905-7923.
Rahimian, M. H., M. shayannejad, S. Eslamian, R. Jafari, M. Gheysari, & S. Taghvaeian, 2017. Evaluation of different LST approaches for determination of pistachio tree canopy temperature through Landsat 8 satellite data. Journal of Geospatial Information Technology, 5 (2); 79-98.
Rouse, J. W., R. H. Haas, J. A. Schell, & D. W. Deering, 1973. Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS Symposium, NASA SP-351 I; 309-317.
Sajib, M. Q. U., & T. Wang, 2020. Estimation of Land Surface Temperature in an agricultural region of Bangladesh from Landsat 8: Intercomparison of four algorithms. Sensors, 20(6); 1778.
Schoellhamer, D. H., 2001. Singular spectrum analysis for time series with missing data. Geophysical research letters, 28(16); 3187-3190.
Sekertekin, A., & S. Bonafoni, 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote sensing, 12(2); 294.
Skoković, D., J. A. Sobrino, J. C. Jimenez-Munoz, G. Soria, Y. Julien, C. Mattar, & J. Cristobal, 2014. Calibration and validation of land surface temperature for Landsat 8-TIRS sensor. Land product Validation and Evolution, ESA/ESRIN Frascati (Italy); 9-6.
Sobrino, J. A., J. C. Jiménez-Muñoz, G. Sòria, M. Romaguera, L. Guanter, J. Moreno, ... , & P. Martínez, 2008. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2); 316-327.
Sobrino, J. A., J. E. Kharraz, & Z. L. Li, 2003. Surface temperature and water vapour etrieval from MODIS data. International Journal of Remote Sensing 24(24); 5161-5182.
Sobrino, J. A., Z. L. Li, M. P. Stoll, & F. Becker, 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17(11); 2089-2114.
Sun, D. L., R. T. Pinker, & J. B. Basara, 2004. Land surface temperature estimation from the next generation of Geostationary Operational Environmental Satellites: GOES M-Q. Journal of Applied Meteorology, 43 (2); 363-372.
Tatem, A. J., S. J. Goetz, & S. I. Hay, 2004. Terra and Aqua: new data for epidemiology and public health. International Journal of Applied Earth Observation and Geoinformation, 6 (1); 33-46.
Teixeira, A. H. D. C., 2010. Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the São Francisco river basin (Brazil) using remote sensing and Penman-Monteith equation. Remote Sensing, 2(5); 1287-1319.
Vautard, R., & M. Ghil, 1989. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35; 395-424.
Vautard, R., P. Yiou, & M. Ghil, 1992. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4); 95-126.
Verhoef, W., 1996. Application of Harmonic Analysis of NDVI Time Series (HANTS). In S. Azzali & M. Menenti (Eds.), In: Fourier analysis of temporal NDVI in southern Africa and America continent. (pp. 19-24). Wageningen (The Netherlands): Dlo Winand Staring Center.
Verhoef, W., M. Menenti, & S. Azzali, 1996. Cover A colour composite of NOAA AVHRR- NDVI based on time series analysis (1981-1992). International Journal of Remote Sensing, 17; 231-235.
Wang, D., & S, Liang, 2008. Singular Spectrum Analysis for Filling Gaps and Reducing Uncertainties of MODIS Land Products. Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International.
Wang, F., Z. Qin, C. Song, L. Tu, A. Karnieli, & S. Zhao, 2015. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4); 4268-4289.
Wang, L., Y. Lu, & Y. Yao, 2019. Comparison of three algorithms for the retrieval of land surface temperature from Landsat 8 images. Sensors, 19(22); 5049.
Xu, Y., & Y. Shen, 2013. Reconstruction of the land surface temperature time series using harmonic analysis. Computers & Geosciences, 61; 126-132.
Yiou, P., E. Baert, & M. F. Loutre, 1996. Spectral analysis of climate data. Surveys in Geophysics, 17; 619-663.
Yiou, P., D. Sornette, & M. Ghil, 2000. Data-adaptive wavelets and multi-scale singularspectrum analysis. Physica D, 142; 254-290.
Yu, X., X. Guo, & Z. Wu, 2014. Land surface temperature retrieval from Landsat 8 TIRS-Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6 (10); 9829-9852.
Zare khormizi, H., S. Z. Hosseini, M. H. Mokhtari, & H. R. Ghafarian Malamiri, 2017. Reconstruction of MODIS NDVI Time Series using Harmonic AN alysis of Time Series algorithm (HANTS). The Journal of Spatial Planning, 21 (3); 221-255.
Zare khormizi, H., & H. R. Ghafarian Malamiri, 2020. Effect of height and temperature on plant phenological processes using harmonic analysis of MODIS NDVI time series (Case study: Shirkouh, Yazd province). Iranian Journal of Remote Sensing & GIS, 12(3); 1-22.
Zhou, J., L. Jia, & M. Menenti, 2015. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sensing of Environment, 163(15); 217-228.
Zhou, J., L. Jia, M. Menenti, & B. Gorte, 2016. On the performance of remote sensing time series reconstruction methods–A spatial comparison. Remote Sensing of Environment, 187; 367-384. | ||
آمار تعداد مشاهده مقاله: 163 تعداد دریافت فایل اصل مقاله: 273 |