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A B S T R A C T 

 

Electrical resistance tomography (ERT) provides images of the electrical properties of subsurface materials leading to the distinction of 
different Earth’s interior structures. The accuracy of electrical resistance imaging is strongly affected by the topographical variations so the 
lack of incorporation of topography information into the inversion process may produce erroneous anomalies in the resistivity section. Owing 
to the significance of the topography effects on the resistivity measurements, we use the Schwarz-Christoffel transformation approach to 
incorporate the irregular surface into the 2.5-dimensional forward solution in the framework of the finite difference method. This approach 
is implemented on synthetic cases to illustrate how the resistivity measurements are dependent on the topographic irregularities. Numerical 
experiments demonstrate that in the presence of topographic features between current and potential electrodes, the resistivity response does 
not reflect the realistic resistivity values of the subsurface even in the case of a homogeneous resistivity distribution. 
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1. Introduction 

Electrical resistance tomography (ERT) as a near-surface geophysical 
method is based on the direct current theory of electrical conduction 
which is widely utilized in a variety of subsurface detection problems, 
e.g., mineral deposit exploration, engineering and environmental 
surveys, and groundwater investigations [1, 2, 3, 4]. ERT method in the 
context of 2D and 3D measurements is carried out aimed at imaging 
subsurface lithology based on the electrical properties of natural Earth 
materials. In such multidimensional cases, a precise model of the earth’s 
subsurface is highly dependent upon the forward calculation which is 
implemented inside of the inverse algorithm [5]. Even though an 
accurate forward and inverse solution is necessary to provide a reliable 
interpretation of resistivity data, the presence of topography may 
produce misleading subsurface anomalies. Hence, to distinguish the 
terrain-induced anomalies from subsurface anomalies, it is required to 
incorporate topography in the forward solver. According to the 
significance of the topographic variations in ERT data, in recent years, 
several studies have been done in the framework of different numerical 
methods. These attempts are categorized into two schemes known as 
topographic corrections and topographic modelling. The topographic 
corrections method attempts to eliminate topographic effects using the 
calculation of the apparent resistivity values due to a homogeneous 
earth model with incorporation of the observed topography and then 
multiplication of the ratio of the true resistivity to the calculated 
apparent resistivity values for the homogeneous earth with the field 
resistivity measurements. This approach is successful if the subsurface 
earth model is also homogeneous. The topography modeling method is 
directly included in the forward modeling process. Referring to the 
above calcification and with emphasis on the importance of accounting 
for surface irregularities to ensure valid interpretive models of resistivity 
and induced polarization measurement results, [6] proposed a linear 
correction method to reduce the topographic effect from ERT data  

 
 
collected along a line. [7] suggested a 3D ground correction algorithm 
based on the linear correction method. It was later shown by [8] that in 
complex subsurface media, the resistivity response may not be separated 
completely from the topography effect when using linear correction 
techniques such as those presented by [6]. [8] developed an algorithm 
for 2D resistivity inversion in which topography is incorporated into the 
modeling process. Further developments were reported by many other 
authors using the second method in the framework of finite difference 
and finite element numerical algorithms. The finite element method due 
to more flexibility to model both topography and possibly complex 
geometries has attracted further attention. For instance, [9] and [10] 
proposed finite element modeling including topography on distorted 
grids. [11], [12], and [13] developed an unstructured mesh generation 
with the corporation of topography using the finite element algorithm. 
[14] proposed a modification of the singularity removal approach to 
handle the surface topography. Their idea is based on utilizing the 
analytic solution defined for flat surface topography and uniform 
resistivity distribution models as the primary potential and modifying 
the free surface conditions for the computation of the secondary 
potential. In contrast to the finite element method which is widely used 
to simulate complex terrain tomography and substructures, there are 
very limited applications of the finite difference, despite being fast and 
memory efficient, in the forward solution in the presence of irregular 
terrain. For example, [15] provided a performance comparison between 
the finite difference and finite element methods to simulate topographic 
effects in the 2D resistivity forward modeling. They concluded that the 
results of the finite difference algorithm are comparable to the finite 
element method with computationally more efficient functionality. In 
addition [16] proposed the use of a finite difference forward solution 
with a triangular grid to include surface topography into the inverse 
solution. Following the conclusions drawn by [15], we take advantage of 
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the finite difference method for 2.5D resistivity forward computation. In 
this contribution, we numerically deal with the topographic effects on 
resistivity forward response derived from different electrode 
configurations. To incorporate undulating surface topography, we apply 
an efficient mapping function known as the Schwarz-Christoffel 
transformation method for transferring the problem in the 𝑊-plane (the 
plane with undulating surface topography) to the 𝑍-plane (the plane 
with flat surface topography) such that the problem is solved in the 𝑊-
plane and at the end it is possible to return bo the 𝑊-plane again using 
inversion of the Schwarz–Christoffel conformal transformation. The 
Schwarz-Christoffel transformation is widely used in the field of fluid 
dynamics such as grid generation for computational fluid dynamics and 
nonlinear free-surface flow over uneven bottom topographies. 

Despite recent improvements in various algorithms of 2D/3D forward 
and inverse modeling of electrical resistance imaging in the presence of 
topographical variation, it could be still an interesting research area for 
scholars interested in this issue. The advantage of this study compared 
to previous studies is to formulate the proposed transformation in detail 
with an emphasis on electrical resistance imaging which can be 
interesting to the geoscience community.  

The rest of the paper is organized as follows. The 2.5-dimensional 
resistivity forward algorithm and a detailed formulation and solution of 
the proposed transformation function based on a numerical integration 
procedure are presented in section 2. In section 3, the topographic 
variations from simple to complex cases are taken into account for 
apparent resistivity values calculation. The conclusions are drawn in 
section 4. 

2. Methodology 

In this section, we first provide a very brief explanation of the 2.5D 
resistance forward computation. For further details about the finite 
difference solution of the Poisson’s equation, readers are referred to [17] 
in which the forward solver is validated to some non-topography earth 
models by comparing them with the analytic solutions. Then, we extend 
a mapping function based on the Schwarz-Christoffel transformation. 
Applications of this approach are made to the solution of problems in 
fluid flow and electrostatic potential theory. In this contribution, the 
forward calculation and the Schwarz-Christoffel transformation codes 
are developed with MATLAB scripts. 

2.1. 2.5D Direct current resistance forward solution 

An initial and important step is to formulate and solve a 2.5D 
electrical resistivity forward modeling problem. The advantage of the 
2.5D approach is that a physically realistic representation, involving full 
3D electrical potential distribution is derived by solving several 
problems with a restricted 2D geometry in terms of several 
wavenumbers. In this way, the computational time is reduced compared 
to full 3D forward modeling. Computation of electrical resistivity 
forward responses is implemented using simulation of the current flow 
into the Earth’s surface through solving the Poisson’s equation using the 
finite difference approximation with the mixed boundary conditions 
proposed by [18]. One of the advantages of the finite-difference method 
over the other numerical methods is its well-known ability to quickly 
approximate the solutions for any arbitrary and complex substructures. 
The 3D distribution of electrical potential due to a point source 
𝑟𝑠(𝑥𝑠. 𝑦𝑠 . 𝑧𝑠) is expressed by the following governing equation: 

 

∇ ∙ [
1

𝜌(𝑥,𝑦,𝑧)
∇φ(𝑥. 𝑦. 𝑧)] = −𝐼𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)                  (1) 

 

where 𝜌(𝑥, 𝑦, 𝑧) is the resistivity distribution, φ(𝑥. 𝑦. 𝑧) is the 
electrical potential in 3D space, 𝐼 is the point current source on the 
surface of the earth, and 𝛿 indicates the impulse function and the source 
location. To account for the 3D source characteristic, we need to Fourier 
transform the partial differential equation (1) with respect to 𝑦, the 
strike direction, using the cosine transform: 

 
φ̃(𝑥. 𝑘𝑦 . 𝑧) = ∫ φ(𝑥. 𝑦. 𝑧) cos(𝑘𝑦𝑦) 𝑑𝑦                   

∞

0
                                  (2) 

where φ̃ stands for the transformed potential in the wavenumber 
domain and 𝑘𝑦 is the wavenumber with respect to 𝑦. 

Applying the Fourier-cosine transformation to the 3D Poisson’s 
equation (1), we get the equation: 

 

∂

𝜕𝑥
𝜎(𝑥. 𝑧) +

∂φ̃

𝜕𝑥
+ 𝑘𝑦

2𝜎(𝑥. 𝑧)φ̃ −
∂

𝜕𝑧
𝜎(𝑥. 𝑧)

∂φ̃

𝜕𝑧
= −

𝐼

2
𝛿(𝑥 − 𝑥𝑠)𝛿(𝑧 − 𝑧𝑠)  (3) 

 

Equation (3) is numerically solved using rectangular or triangular 
mesh discretization produce. Having obtained discrete representations 
for the principle governing equations and boundary conditions at all 
cells, the transformed forward problem can be represented as a linear 
system of equations: 

 

𝚪φ̃ = 𝝃                       (4) 
 

𝚪 indicates a real sparse five-band symmetric matrix and 𝝃 displays 
the source vector. This equation has to be solved for the vector φ̃ 
containing the potentials for all existing nodes. By taking advantage of 
the sparsity of the matrix 𝚪, it is possible to use direct methods that can 
be computationally efficient. The solution φ̃ is then transformed from 
the wavenumber domain to the spatial domain (i.e., x-z plane) following 
the procedure of [18] and based on the inverse cosine-Fourier 
transform, 

 

φ(𝑥. 𝑧) =
2

𝜋
∫ φ̃(𝑥. 𝑘𝑦 . 𝑧) cos(𝑘𝑦𝑦)𝑑𝐾𝑦                  

∞

0
                 (5) 

 

2.2. Formulation of Schwarz-Christoffel transformation 

To incorporate uneven surface topography, we utilize an efficient 
mapping function known as the Schwarz-Christoffel transformation 
method for transferring the problem in the plane with non-flat surface 
topography (say, 𝑊-plane) to the plane with flat surface topography 
(say, 𝑍-plane) such that the solution process is implemented in the 𝑍-
plane and at the end it is possible to return back to the 𝑊-plane again 
using inversion of the Schwarz–Christoffel conformal transformation. 
We take advantage of the finite difference method for 2.5D resistivity 
forward computation due to its flexibility and less computational time 
and memory storage. In the finite difference method, each derivative is 
solved by approximating derivatives; therefore, it is simple to code, and 
advantageous to compute as well. In some cases, this method offers a 
more direct and easy approach to the numerical solution of partial 
differential equations compared to other techniques. 

To have the Green’s function valid in surface electrical resistivity 
surveying, it is essential to record the data on the flat earth’s surface. 
Hence, this is a bottleneck for the numerical simulation by the finite 
difference on the non-flat earth’s surface. This paper suggests a 
drastically efficient method for computing the distribution of electrical 
potential on the non-flat earth’s surface. The solution is obtained by 
transforming the irregular surface to a flat surface using the SC 
transformation. 

The SC transformation provides a formula for mapping of the half-
plane onto a plane polygon. The solution of this problem is obtained by 
setting up a nonlinear system of equations. This subsection presents a 
detailed explanation of the SC transformation formulation and a 
flowchart of the algorithm implementation which may not be found in 
the geophysical literature. 

The definition of the SC transformation which maps the 𝑋-axis and 
the upper half of the 𝑍-plane (see Figure 1(a)) onto a given closed 
polygon and its interior in the 𝑊-plane (see Figure 1(b)) is given as [19, 
20]. 

 

𝑊 = 𝐴∫ (𝑍 − 𝑥1)
−𝛼1

𝑧

0
…(𝑍 − 𝑥𝑛)−𝛼𝑛𝑑𝑍 + 𝐵                                              (6) 

 

where 𝐴 and 𝐵 are complex constants, 𝑥1 to 𝑥𝑛 are the vertex image 
points in the 𝑍-plane on the real axis , and the inequality relations 𝑥1 <
𝑥2 < ⋯ < 𝑥𝑛 are taken as the constraints of the system. The parameters 
𝛼1 to 𝛼𝑛 denote the corresponding vertex exterior angles measured in 
fractions of a half-circle (Figure 1). 

The vertex points 𝑊1 to 𝑊𝑛  and the angles 𝛼1 to 𝛼𝑛 are definite, but 
their image points 𝑥1 to 𝑥𝑛 are variable. Now the problem can be written 
based on numerous pairs that satisfy the following relationship to 
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change contour integral of Equation (6) to a real integral as:  

𝑊1 = (−1)−𝛼1−𝛼2…−𝛼𝑛𝐴 ∫ |𝑥1 − 𝑥|−𝛼1|𝑥2 − 𝑥|−𝛼2

𝑥1

0

… |𝑥𝑛 − 𝑥|−𝛼𝑛𝑑𝑥 

                      +𝐵                     (7) 
 

𝑊2 = 𝑊1 + (−1)−𝛼2…−𝛼𝑛𝐴∫ |𝑥 − 𝑥1|
−𝛼1|𝑥2 − 𝑥|−𝛼2

𝑥2

𝑥1

… |𝑥𝑛 − 𝑥|−𝛼𝑛𝑑𝑥 

                         +𝐵                           
 

Equation (7) is appropriately solved by the difference of the pair of 
vertices |𝑊𝑗 − 𝑊𝑗−1| and |𝑊𝑗−1 − 𝑊𝑗−2| as: 

 

|𝑊𝑗 − 𝑊𝑗−1| = |𝐴| ∫ ∏ |𝑥 − 𝑥𝑖|
−𝛼𝑖𝑛

𝑖=1 𝑑𝑥
𝑥𝑗

𝑥𝑗−1
                  (8) 

 

|𝑊𝑗−1 − 𝑊𝑗−2| = |𝐴| ∫ ∏ |𝑥 − 𝑥𝑖|
−𝛼𝑖𝑛

𝑖=1 𝑑𝑥
𝑥𝑗−1

𝑥𝑗−2
                  (9) 

 

Then it may be possible to eliminate the constant A by the ratio of 
Equation (8) to Equation (9) to give: 

 

 
(a) 

 
(b) 

Figure 1. representation of mapping the 𝑋-axis and the upper half of the 𝑍-plane 
onto a given closed polygon and its interior in the 𝑊-plane. 

 
|𝑊𝑗−1−𝑊𝑗−2|

|𝑊𝑗−𝑊𝑗−1|
∫ ∏ |𝑥 − 𝑥𝑖|

−𝛼𝑖𝑑𝑥 − ∫ ∏ |𝑥 − 𝑥𝑖|
−𝛼𝑖𝑛

𝑖=1
𝑥𝑗−1

𝑥𝑗−2

𝑛
𝑖=1

𝑥𝑗

𝑥𝑗−1
𝑑𝑥 = 0                  (10) 

 

Indicating the length ration of |𝑊𝑛 − 𝑊𝑛−1| to |𝑊2 − 𝑊1| as 
𝜆2, 𝜆3, … , 𝜆𝑛; then we have: 

 

|𝑊3−𝑊2|

|𝑊2−𝑊1|
= 𝜆2,  

|𝑊4−𝑊3|

|𝑊2−𝑊1|
= 𝜆3, … ,

|𝑊𝑛−𝑊𝑛−1|

|𝑊2−𝑊1|
= 𝜆𝑛−1,               (11) 

 
We take the following values to fix the relations between the 𝑍-plane 

and the 𝑊-plane; 𝑥1 = 0 is maped to 𝑊1 so that 𝐵 = 𝑊1 and 𝑥2 = 1 is 
correspondent to 𝑊2. 

Substituting Equation 8 into Equation 11 gives the following system 
with:  

 

𝐼2(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝜆2𝐼1(𝑥3, 𝑥4, … , 𝑥𝑛), 

          

(12) 

𝐼3(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝜆3𝐼1(𝑥3, 𝑥4, … , 𝑥𝑛), 

⋮ 

𝐼𝑛−1(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝜆𝑛−1𝐼1(𝑥3, 𝑥4, … , 𝑥𝑛), 
 
Where: 
c 

𝐼𝑘 = (−1)−𝛼1−𝛼2…−𝛼𝑛 ∫ |𝑥1 − 𝑥|−𝛼1|𝑥2 − 𝑥|−𝛼2
𝑥𝑘+1

𝑥𝑘
… |𝑥𝑛 − 𝑥|−𝛼𝑛𝑑𝑥,            (13) (13) 

The above system is nonlinear and it must be solved using iterative 
methods. We need to find ways to match coefficients by rewriting 
Equation 12 as [21] 

𝐹2(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝐼2 − 𝜆2𝐼1 = 0, 

(14) 
𝐹3(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝐼3 − 𝜆3𝐼1 = 0, 

      ⋮ 
𝐹𝑛−1(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝐼𝑛−1 − 𝜆𝑛−1𝐼1 = 0, 
 

Then it can be easily calculated the jacobian matrix. 
 

 

[𝐽] =

[
 
 
 
 
 

𝜕𝐼2

𝜕𝑥3

𝜕𝐼3

𝜕𝑥3

𝜕𝐼2

𝜕𝑥4

𝜕𝐼3

𝜕𝑥4

⋯
𝜕𝐼2

𝜕𝑥𝑛

⋯
𝜕𝐼3

𝜕𝑥𝑛

⋮ ⋮ ⋮
𝜕𝐼𝑛−1

𝜕𝑥3

𝜕𝐼𝑛−1

𝜕𝑥4

⋯
𝜕𝐼𝑛−1

𝜕𝑥𝑛 ]
 
 
 
 
 

− [

𝜆2

𝜆3

⋮
𝜆𝑛−1

]

[
 
 
 
 
 
𝜕𝐼1

𝜕𝑥3

𝜕𝐼1

𝜕𝑥4

⋮
𝜕𝐼1

𝜕𝑥𝑛]
 
 
 
 
 
𝑇

                             (15) 

 

 

Estimated values of 𝑥𝑖 are determined from the inversion process. 
However, each evaluation of 𝑥𝑖 requires calculation of  𝜕𝐼𝑘

𝜕𝑥𝑖
.  Therefore, a 

five-point Lagrange differential formula can be used to evaluate the 
derivatives 𝜕𝐼𝑘 𝜕𝑥𝑖⁄ . We declare five points at the vicinity of 𝑥𝑖 such that: 

 

𝑥𝑖 − 2ℎ < 𝑥𝑖 − ℎ < 𝑥𝑖 < 𝑥𝑖 + ℎ < 𝑥𝑖 + 2ℎ,  
 

where ℎ is the length of a segment, and from our experiment, we set 
ℎ = 0.01  

 

𝜕𝐼𝑘

𝜕𝑥𝑖
≈ [𝐼𝑘(𝑥𝑖 − 2ℎ) − 8𝐼𝑘(𝑥𝑖 − ℎ) + 8𝐼𝑘(𝑥𝑖 + ℎ) − 𝐼𝑘(𝑥𝑖 + 2ℎ)] 12ℎ⁄              (16) 

 

Where: 
 

𝐼𝑘(𝑥𝑖 ± 𝑛ℎ) = 𝐼𝑘(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛)|
𝑥𝑖=𝑥𝑖±𝑛ℎ,    𝑛 = 1,2.               (17) 

 

Finally, 𝐴 can be calculated by derivative of Equation (6) in terms of 
𝑍. In other words, all the available variables are obtained in the SC 
transformation. Algorithm 1 summarizes the SC transformation. 

Algorithm 1. Schwarz-Cristoffel transformation 

1. Inputs: vertex coordinate:                𝑊𝑖  ,          𝑖 = 1, 2, … , 𝑛 

2. Outputs:                                           𝐴, 𝐵, 𝑥𝑖 

3. Compute vertex exterior angles     𝛼𝑖   𝑖 = 1, 2, … , 𝑛 

4. Calculate 𝜆 using 𝜆𝑖 =
|𝑊𝑖+1−𝑊𝑖|

|𝑊2−𝑊1|
 , 𝑖 = 2,3, … , 𝑛 − 1 

5. Put an initial value for 𝑥𝑖 

6. Compute 𝐼(𝑥𝑖):  𝐼𝑛 = (−1)−𝛼1−𝛼2…−𝛼𝑛 ∫ |𝑥1 − 𝑥|−𝛼1|𝑥2 −
𝑥𝑛+1

𝑥𝑛

𝑥|−𝛼2 … |𝑥𝑛 − 𝑥|−𝛼𝑛𝑑𝑥, 𝑖 = 1,2,… , 𝑛 − 1 

7. Compute 𝐹(𝑥𝑖): 𝐹𝑖(𝑥3, 𝑥4, … , 𝑥𝑛) = 𝐼𝑖 − 𝜆𝑖𝐼1 = 0, 𝑖 = 2,3,… , 𝑛 − 1 

8. Construct Jacobian matrix using Equation 15 

9. Calculate 𝑥𝑖 by iterative constrained inversion technique 

10. Set 𝐵 = 𝑊1 

11. Compute  𝐴 =
𝑊

∫ (𝑍−𝑥1)−𝛼1
𝑍
0

…(𝑍−𝑥𝑛)−𝛼𝑛𝑑𝑍+𝐵
 

In addition, we can return back to the Z-plane again using inversion 
of the SC conformal transformation. 

3. Numerical examples 

In this section, the results from three synthetic tests of forward 
modeling aimed at dealing with the effect of topography on forward 
solutions are presented. The synthetic models are simulated using the 
most common configurations (e.g. collinear Dipole-Dipole, Pole-Dipole, 
and Wenner arrays) with different surface topographies and subsurface 
resistivity distribution. All synthetic models share the same 
discretization parameters. Figure 2 shows different parts of the 
incorporation of surface topography into ERT forward modeling. 
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Figure 2. Flowchart of incorporation of surface topography into ERT forward 
modelling. 

Model 1 

The first example includes a homogeneous earth model with the 
resistivity value of 100 Ω.𝑚. The apparent resistivity responses of the 
simulated model are computed assuming a multi-electrode system with 
40 electrodes and fixed electrode spacing of 2 𝑚 up to 8 levels (𝑛 = 1 −
8, where 𝑛 displays the number of receiver-transmitter dipole 
separation) leading to a total of 132 measurements. The forward 
responses are computed in the presence of the topographical effects 
including a symmetric hill along the survey line.  

Figure 3 shows the results of the forward solution in terms of different 
electrode arrays. It is observed that the apparent resistivity section 
beneath the area of the valley and hill exhibits conductive and resistive 
anomalies, despite the homogeneous earth model, depending on the 
type of electrode configuration. In the case of Dipole-Dipole and Pole-
Dipole arrays, this behavior is because of concentrating the current flow 
in the valley and diverging the current flow in the hill leading to, 
respectively, diverging (i.e., high resistivity values) and converging (i.e., 
low resistivity values) the equipotential surfaces. 

 

 
Figure 3. Apparent resistivity pseudo-sections computed by the proposed SC 
transformation method for Model 1 presented in panel (a) using different 
electrode arrays (panels b to d). The model is homogeneous at 100 𝛺.𝑚. 

 
Figure 4. Apparent resistivity pseudo-sections with the surface nodes shifted up or 
down using the inverse SC transformation method for Model 1 presented in panel 
(a) using different electrode arrays. The model is homogeneous at 100 Ω.m. 

 

 
Figure 5. Apparent resistivity pseudo-sections computed by the commercial 
software RES2DMOD for Model 1 presented in panel (a) using different electrode 
arrays (panels b to d). The model is homogeneous at 100 Ω.m. 

 

It is evident that the Wenner array produces an effect opposite to 
those of the Dipole-Dipole and Pole-Dipole resistivity data. Besides, the 
apparent resistivity sections, due to the irregular surface, are 
accompanied by low and high resistivity zones on the flanks, 
respectively, in Dipole-Dipole (or Pole-Dipole) and Wenner arrays. To 
better illustrate the topographical variations on the apparent resistivity 
distribution, we also show the pseudo-sections with the surface nodes 
shifted up or down using the inverse SC transformation method in 
Figure 4. From Figure 4, one can see that the geometry of resistivity 
pseudo-sections is modified while the magnitude of physical properties 
is preserved. Whereas there is no analytic solution, a comparison of the 
values of the apparent resistivity computed by commercial software 
(RES2DMOD ver. 3.03.06; [22]) is provided in Figure 5. Visually 
comparing the resulting pseudo-sections, it is evident that there is a 
trivial difference between the apparent resistivity contours obtained 
from our algorithm and the commercial software. 
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Figure 6. Apparent resistivity pseudo-sections computed by the proposed SC 
transformation method for Model 2 presented in panel (a) using different 
electrode arrays (panels b to d). The model consists of two blocks with resistivity 
values of 200 and 20 Ω.m buried in a 100 Ω.m background. 

Model 2 

The second synthetic model consists of three different mediums in 
terms of resistivity distribution. The two blocks with the resistivity of 
200 𝛺.𝑚 (left block) and 20 𝛺.𝑚 (right block) are embedded in a 100 
𝛺.𝑚 background. In addition, the surface topographical effects consist 
of a valley and a hill with a conductive anomaly along the survey line. 
The resistivity measurements are conducted from position 0 up to 115 
𝑚 using 48 electrodes at the surface with a fixed electrode spacing of 3 
𝑚. Apparent resistivity values from three electrode arrays are computed 
up to 8 levels. Figure 6 displays the resulting forward solution in the 
presence of topography. It is seen from the pseudo-sections that the 
effect of the conductive and resistive anomalies on the resistivity values 
is masked by the presence of undulating terrain tomography so that no 
discernible features of the subsurface anomalies are resolved. Due to the 
fact that current flow diverges below the area of the valley and converge 
below the hill, the pseudo-sections are accompanied by conductive and 
resistive anomalies beneath the valley and hill area, respectively. The 
results of inverse SC transformation aimed at modifying the geometry 
of resistivity pseudo-sections in the presence of topography impacts are 
represented in Figure 7. 

Model 3 

To better evaluate the proposed mapping function in the presence of 
more complex surface topography, the last example includes a longer 
survey line with different topographical variations. The apparent 
electrical resistivity responses of the synthetic model are simulated 
using three configurations from position 0 up to 130 𝑚 with fixed 
electrode spacings of 3 𝑚 up to 8 levels. Figures 8 indicate the resistivity 
pseudo-sections derived from the third synthetic model. 

The same as the previous examples, the undulated surface leads to 
artificial conductive and resistive substructures whereas on a flat surface 
without topography such anomalies are highly unlikely to be significant. 
It is evident that, according to the electrode array, the inline Dipole-
Dipole and Pole-Dipole arrays create high and low apparent resistivity 
anomalies, respectively, below the area of the hill and valley while the 
Wenner measurements lead to the results opposite to those of the 
Dipole-Dipole and Pole-Dipole surveys. Comparing the resulting 
forward responses of three synthetic earth models, one can see that by 
increasing the complexity of surface topography further terrain-induced 

anomalies may appear in electrical resistance tomography 
measurements. We also represent the apparent resistivity distribution 
with the surface nodes shifted up or down using the inversion of the SC 
transformation method in terms of different electrode arrays in Figure 
9. 

 
Figure 7. Apparent resistivity pseudo-sections computed by the commercial 
software RES2DMOD for Model 2 presented in panel (a) using different electrode 
arrays (panels b to d). The model consists of two blocks with resistivity values of 
200 and 20 Ω.m buried in a 100 Ω.m background. 

 

 
Figure 8. Apparent resistivity pseudo-sections computed by the proposed SC 
transformation method for Model 3 presented in panel (a) using different 
electrode arrays (panels b to d). The model is homogeneous at 100 Ω.m. 

4. Conclusions 

Whereas the effects of undulated surfaces in electrical resistance 
tomography measurements are inevitable, this paper has focused on 
developing and applying the direct Schwarz-Christoffel transformation 
method to incorporate topographical variations into the forward solver 
in the framework of the finite difference algorithm. The proposed 
mapping function is solved based on a numerical integration procedure. 
To numerically show the flexibility, reliability, and ease of use of the 
mapping function, we applied the proposed mapping function to a set 
of synthetic data examples derived from the most commonly used 
electrode configurations. The numerical results demonstrated that in 
the presence of topography; the simulated resistivity values do not 
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Figure 9. Apparent resistivity pseudo-sections computed by the commercial 
software RES2DMOD for Model 3 presented in panel (a) using different electrode 
arrays (panels b to d). The model is homogeneous at 100 𝛺.𝑚. 

 
reflect the true resistivity of the substructures even if the earth model 
has homogeneous resistivity distribution. The induced-terrain 
distortions in the measured resistivity values bring about unwanted 
conductive and resistive anomalies depending upon the type of 
configuration. It means that for the homogeneous model with a hill 
surface topography, the collinear Dipole-Dipole and Pole-Dipole arrays 
produce a high resistivity anomaly while the Wenner array leads to a 
conductive medium beneath the surface topography. In contrast, the 
data measured by the Dipole-Dipole and Pole-Dipole configurations in 
the presence of a valley surface topography show low resistivity values 
beneath the topography and the Wenner array produces an effect 
opposite to that of the Dipole-Dipole and Pole-Dipole resistivity data. In 
addition, we demonstrated that the effects of the conductive and 
resistive anomalies on the resistivity values are masked by the presence 
of undulating terrain tomography so that no discernible features of the 
subsurface anomalies were observed in the resistivity pseudo-sections. 
From the results presented in this study, one can conclude that the 
inverse solution of electrical resistance tomography with the 
incorporation of the topographical variations may cause a misleading 
image of the subsurface features. Due to the importance of the issue, in 
future work, we would deal with the effects of surface irregularities on 
the inversion of electrical resistance tomography data. 
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