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ABSTRACT 

Urban planning and green space resource management rely heavily on accurate tree information to combat 

air pollution, preserve biodiversity, and support wildlife. Conventional tree inventory techniques involve 

time-consuming, on-site data collection, limiting spatial coverage despite their accuracy. Recent 

advancements in remote sensing offer promising solutions for precise and scalable tree mapping. This study 

introduces a novel approach using a 3D convolutional autoencoder (3D-CAE) directly on LiDAR point 

clouds for tree extraction. Ground point filtering effectively removes extraneous data, and the 3D-CAE 

model automatically encodes deep features. The Support Vector Machine (SVM) classification then 

identifies tree-related point clouds. The method was evaluated on diverse datasets, including mobile and 

airborne laser scanner data (MLS and ALS), demonstrating exceptional efficiency. Results indicate a 95% 

Precision, showcasing the high performance of the proposed method in individual tree detection and 

identification. Furthermore, the algorithm computes essential geometrical information for classified trees, 

including 2D coordinate space, height, stem diameter, and 3D boundary tree locations. In summary, the 

utilization of 3D-CAE directly on LiDAR point clouds presents a significant advancement in tree inventory, 

offering accurate and cost-effective urban tree mapping with wide-ranging applications in urban planning 

and green space management. 
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1. Introduction 

     As an essential part of urban green infrastructures, trees 

provide beneficial economic services, including 

ameliorating air and water pollution, thermal regulation, 

and reducing soil contamination (Jombo et al., 2021). 

Specifically, urban trees can improve the quality of living 

and local climate through shading, mitigating the 

temperature of the land surface that, leads to energy saving, 

maintaining biodiversity, and reducing air pollution and 

natural stresses (Schmohl et al., 2022). However, increasing 

urbanization and deforestation can be an important concern 

over urban ecology (Yan et al., 2018). Consequently, 

automatic vegetation recognition in urban and forest 

environments has attracted particular attention in urban 

planning and forestry management. 

Recent advances in remote sensing technology such as Light 

Detection and Ranging (LiDAR) point cloud, hyperspectral 

images, and Synthetic Aperture Radar (SAR) data present the 

detailed mapping of trees in vast areas, particularly in boreal 

and temperate ecosystems (Fassnacht et al., 2016; Mäyrä et 

al., 2021). LiDAR data, including Mobile Laser Scanner 

(MLS) and Airborne Laser Scanner (ALS) by providing high-

point density, is considered a good platform for single tree 

extraction and related parameter estimation (Fassnacht et 

al., 2016; Gupta et al., 2010; Schmohl et al., 2022). An MLS 

system can collect 3D surface information accurately along 

the driving paths (up to millimeter-level with a few thousand 

points/m2 density) (Wang et al., 2019). This data has been 

widely used in urban applications, including autonomous 

vehicle driving (Jombo et al., 2021), 3D city modeling 
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(Zaboli et al., 2019a; Zaboli et al., 2023), and environment 

monitoring (Shokri et al., 2023; Wang et al., 2019) . 

In recent decades, aerial, stationary, and mobile laser 

scanners have provided georeferenced information for 

various applications, including mobile mapping, cultural 

heritage documentation, reverse engineering, building 

reconstruction, digital elevation model production, and 

urban digital and smart modeling. Aerial and terrestrial 

laser scanners differ in acquisition modes, typical project 

sizes, acquisition mechanisms, and achievable accuracy and 

resolution. An airborne laser scanner is a measurement 

system in which light pulses (usually generated by a laser) 

are emitted from an instrument mounted on an aircraft and 

directed to the ground in a scanning pattern. These systems 

are equipped with a positioning and orientation system based 

on the global navigation satellite system and inertial 

measurements to ensure the calculation of the coordinates of 

the points. This makes acquiring point clouds of reflection 

points with high density and spatial coordinates possible . 

Besides these main advantages of ALS data, recording 

LiDAR point clouds from a nadir view results in a lack of 

other essential observations, such as the stem of trees. To 

overcome this limitation, mobile laser scanner systems can 

provide complementary observations from a terrestrial point 

of view. To this end, ground laser scanners on various 

platforms and vehicles have been widely used to record 

LiDAR point clouds . 

Although the rapid developments in the development of 

mobile laser scanner systems, automatic information 

extraction from LiDAR point clouds has relatively slowly 

progressed. This is because the processing of hundreds of 

millions of points is time-consuming. Therefore, new 

algorithms should be developed to accelerate the 

computation time without negatively affecting accuracy 

results. Recently various methods have been proposed for 

tree extraction from MLS LiDAR point clouds (Dai et al., 

2018; Shokri et al., 2021). They can be categorized into three 

groups 1) mathematical-based methods, 2) rule-based 

descriptors, and 3) deep learning algorithms . 

Regarding the mathematical methods, Canopy Height Model 

(CHM) and Hough Transform (HT) are popular in tree 

detection, which converts the 3-dimensional point clouds into 

2-dimensional raster images. For example, Safaie et al. 

(2021) initially filter ground points in a preprocessing step 

to accelerate the computation time. Next, the tree trunks were 

extracted by applying the HT algorithm to the raster images. 

In a novelty way, Dai et al. (2018) suggested a multispectral 

ALS analysis to measure tree characteristics. A mean shift 

segmentation procedure on various feature spaces was 

initially used, and spatial-multispectral domains refined the 

segmentation process. This study gained accuracy between 

82% and 88% in tree segmentation. Burt et al. (2019) 

suggested a Tree-Seg procedure for forest tree segmentation. 

This procedure used a combination of Euclidean distance, 

principal component analysis (PCA), and surface normal 

parameters in tree segmentation, gaining around 96% 

accuracy. Fan et al. (2020) considered trees as cylinder 

shapes to classify them. In this case, the method used was the 

Ad-Tree algorithm that estimates the geometry of tree stem 

and branches . 

Parameters of every individual tree, like height, stem volume, 

and diameter at breast height (DBH), can be obtained. Since 

trees are located on the ground surface and have at least four 

meters from the ground surface, Zhang et al. (2015) used the 

height elevation to find tree points inside low-density ALS 

LiDAR point clouds. In summary, mathematical-based 

methodologies can approximate tree structures with high 

acceptable accuracy. Moreover, these algorithms can 

measure tree parameters like height in a fast computation 

time. On the other hand, converting coordinate space from 

3D into 2D, which eliminates contextual information, and 

needs numerous sensitive parameters, are the main 

drawback of these algorithms. 

Concerning the rule-based methods, the handicraft 

descriptors, like Linearity, which can assign a meaningful 

value to irregular point clouds, can be implied and fed to the 

classifiers of machine learning procedures such as Support 

Vector Machine (SVM). These descriptors apply values to 

each point, meaning that a cable point with a linear structure 

would get higher than other non-linear objects, such as 

building facades. Zaboli et al. (2019b) classified the MLS 

point clouds like roads by feeding ten descriptors to 

classifiers of SVM, Random Forest (RF), K Nearest Neighbor 

(KNN), and Multi-Layer Perceptron (MLP). They finally 

concluded that the RF performed better in object extraction, 

like trees. Yu et al. (2011) initially made a CHM model on 

the ALS point clouds, then smoothed it with a Gaussian 

method. Tree attributes of height and DBH were measured 

with a trainable RF model, which gained about 10% 

accuracy in Root Square Mean Error (RMSE).  Instead of 

using laser scanner platforms for obtaining LiDAR point 

clouds, Chen et al. (2020) suggested using high-quality 3D 

meshes for tree and building extraction. The 3D meshed was 

generated from the contextual photogrammetry images 

inputted in machine learning classifiers. In summary, the 

primary positive side of these methods is the high 

computation time and describing objects’ geometrical 

structure. But these methodologies’ main disadvantages are 

needing the huge training data and hand-crafted descriptors. 

Regarding the deep learning methodologies, PointNet and 

PointNet++ have commonly used procedures in point cloud 

classification and segmentation. A PointNet++ algorithm 

was proposed by Ma et al. (2022) for urban area object 

extraction, including a tree which gained an accuracy of 

around 84.7%.  The most beneficial of these algorithms are 

directly consuming 3D LiDAR point clouds without needing 

any coordinate space transportation. But, Zou et al. (2017) 

initially generated regular 3D voxels for making 2D images. 

Then, a deep learning layer was evaluated on the images, 

which acquired an accuracy of about 93% in tree extraction. 

Hui et al. (2021) suggested a transfer learning procedure 

that uses weights of other developed deep learning 

algorithms in tree detection. They first detected the canopy 

of trees by PCA transformation, kernel density estimation, 
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Gaussian mixture model, and transfer learning weights. 

Afterward, the tree stems were estimated with an up-to-down 

manner on the extracted canopies. Shokri et al. (2023) 

extracted urban trees that collected by a MLS LiDAR point 

clouds They developed a PointNet++ structure which gained 

the F1-accuracy more than 95%. In summary, unlike the 

mathematical and rule-based methods, deep learning 

algorithms would not need any conversion from 3-

dimensional space to a lower one. Also, they automatically 

measure thousands of descriptors regardless of any human 

supervision. The considerable disadvantage of these methods 

is needing big training data and, more importantly, the high 

computational time. Using the transfer learning procedures 

means no longer massive training data is required. 

In this research, we present an efficient and rapid deep-

learning algorithm designed for tree extraction. The 

algorithm's evaluation encompasses challenging urban and 

non-urban environments, encompassing scenarios with 

Figure. 1. The flowchart of the proposed method 
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numerous large trees, tall buildings, and abundant vehicles. 

Importantly, our algorithm is rigorously assessed on two 

distinct systems, namely Mobile Laser Scanner (MLS) and 

Airborne Laser Scanner (ALS), to ensure its efficiency 

performance across various setups. To handle datasets with 

millions of points, we employ a digital surface model (DSM) 

generated from LiDAR point clouds, significantly reducing 

computation time. Notably, our proposed algorithm 

accurately measures essential tree features such as elevation 

and stem diameter. The primary objectives and contributions 

of our work are outlined as follows: 

• Proposing a fast and robust autoencoder deep learning 

structure specifically tailored for tree extraction. This 

architecture is thoroughly tested on five challenging urban 

and suburban areas, demonstrating its effectiveness in tree 

analysis. 

• Calculating crucial characteristic features of trees, 

including 2-dimensional coordinate space, elevation, stem 

diameter, and maximum foliage diameter, thereby providing 

comprehensive tree information for further analysis. 

• Identifying the most suitable rule-based descriptors to 

efficiently reduce the volume of LiDAR point clouds, 

optimizing data processing while preserving essential 

information. 

Our research aims to advance the field of tree extraction 

using deep learning techniques, providing practical 

solutions for accurate and comprehensive tree analysis in 

complex environments. 

2. Data and methodology 

     The proposed algorithm consists of four steps (1) 

preprocessing to overcome the immense volume of MLS 

LiDAR point clouds, (2) candidate point selection to limit the 

search area to find tree points, (3) tree extraction by an 

efficient and fast autoencoder and lastly (4) tree inventory 

measurement to measure characteristic features and 

encroachment analyzing. Fig. 1 shows the flowchart of our 

proposed algorithm. 

Our model performs a preprocessing step, including noise 

removal and ground point filtering on the raw point cloud. 

After preprocessing, we can cluster important objects using 

beneficial descriptors in the candidate point selection step. 

For extraction of efficient and useful features in the input 

data, encoding part of autoencoders aids in learning 

important hidden features in the reconstruction error 

reduction process. In the encoding step, a new set of 

combinations of original features is generated. These 

features are input components to enter a Support Vector 

Machine (SVM) to classify tree points. 

2.1 Preprocessing 

 

     The preprocessing step enhances the proposed algorithm 

in terms of computation time and robustness on noisy points. 

It includes two parts of Noise Removal (NR) and Ground 

Points Filtering (GPF). NR and GPF enhance the 

computation time process, while NR reduces the negative 

impact of noisy points on the final outputs, each of which is 

discussed as follows: 

Thanks to the capability of Robot Operating System (ROS) 

technology, saving the MLS LiDAR point clouds as separate 

LAS files would be simultaneously implemented. In other 

words, the real data is recorded with various small-size files, 

not heavy files. The LAS file is a popular format designed for 

archiving LiDAR point clouds. This step needs a conditional 

parameter to save LAS files where the trajectory data here 

would play a positive role. The conditional parameter is 

when the vehicle passes a specific pass way length (L). The 

recorded point clouds are saved as a separate LAS file 

archive. The parameter of L is calculated with the help of 

trajectory data and Euclidean distance measuring like the 

equation below (Eq. 1).  

𝑆𝑘 = 𝑠𝑢𝑚 (𝑠𝑞𝑟𝑡((𝑋𝑖,𝑘 − 𝑋𝑖+1,𝑘)
2 

+ (𝑌𝑖,𝑘 − 𝑌𝑖+1,𝑘)
2
)) = 𝐿,

1 ≤ 𝑖 ≤  𝑗 , 1 ≤  𝑘 ≤ 𝑛 

(1) 

where  X, Y = trajectory data positions, 

  L = the sum of calculated distances 

  n = the final number of created sections 

 

 

 
Figure. 2. Displaying samples of LiDAR point clouds 

with multicolour. 

Five steps are considered to detect noisy points inside each 

crested section. Initially, every point (seed) finds its adjacent 

points using the K Nearest Neighbour (KNN) algorithm. 

Then, the Euclidean distance between the seed point and 

their k neighbourhood points would be computed, called 

local measuring.  For each seed point, k distances are 

calculated. Afterward, two parameters of local mean and 

local standard deviation are measured for calculated 

distances in the local measuring, meaning that the mean and 

standard deviation of the computed distances is just 

estimated.  Assuming that the MLS point clouds distribution 

is Gaussian, global mean and global standard deviation 

parameters are calculated from the total local means and 

local standard deviations. Each created section from the 

sectioning only has a unique global mean and global 

standard deviation. Since the number of noisy points would 

not be more than one percent of each section volume, the 

measured global mean and standard deviations are far away 

from the noisy points. Consequently, those neighbourhood 

points with a distance from the points more than the sum of 

the global mean and global standard deviation are 

considered noisy and eliminated. 

The difference between trees and other natural vegetation 

like bushes is the elevation parameter, meaning vegetation 

above 4m from the ground surface is considered a tree 
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(www.frontiersin.org).  This vegetation classification is vital 

in removing unneeded points such as ground surface ones. 

The popular ground extraction method like pseudo nDSM 

generation or Cloth Simulation Filter (CSF) needs an 

elevation parameter as an inputted value (Yang et al., 2020). 

The CSF was considered for ground point extraction because 

it robustly simulates the ground surface structure ranging 

from flat to steep. Moreover, if a place of collected LiDAR 

point clouds did not have points, it would also simulate the 

ground surface properly. CSF needs two parameters of grid 

size and elevation where selected, 0.5m and 0.3, respectively. 

As seen in Fig. 3, CSF models the ground surface points 

correctly. With removing the ground points (red ones in Fig. 

3), about 90% volume reduction happens, meaning that 4 

million points in each section with around 5 million points 

are correctly removed. 

 

 
Figure 3. Generation of nDSM for reducing the massive 

volume of MLS data. The red points indicate the ground 

points that are eliminated. 

 
2.2. Candidate Points Selection 

     After eliminating the ground points, various 

challengeable objects are still available, like buildings, pole-

shaped objects, and traffic signs beside the trees. Therefore, 

this step aims to identify candidate points for limiting the 

search area to tree recognition. Thanks to the descriptors of 

rule-based descriptors, which the Principal Component 

Analysis calculates (PCA) algorithm, they can assign values 

between [0,1] to the remained points. For instance, by 

applying the descriptor of Linearity, those objects like power 

line cables following a linear structure would get a value 

near one, and other non-linear objects much lower than one. 

Likewise, the descriptor of planarity also detects the building 

facades and flat structures like traffic signs. This trend also 

goes through the pole-shaped objects, meaning that the 

Verticality descriptor detects them. The Linearity, Planarity, 

and Verticality are measured based on the eigenvalues of 

PCA parameters as follows: 

 

𝐴 = [𝐸1   𝐸2  𝐸3] [

𝑒1  0  0
0  𝑒20

0  0  𝑒3

] [𝐸1  𝐸2  𝐸3] 

 

(2) 

𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 =
𝑒1 − 𝑒2

𝑒1

 

 

(3) 

𝑃𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 =  
𝑒2 − 𝑒3

𝑒1

 

 

(4) 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 1 − 𝑁𝑧 (5) 

    

where  (𝐸1   𝐸2  𝐸3) = the PCA eigenvectors (𝑒1  𝑒2  𝑒3)  = 

the PCA eigenvalues. 

Since trees are natural and do not follow a specific pattern, 

unlike manufactured objects, points that obtain a descriptor 

close to one are considered non-tree and eliminated. Figure 

4 shows the linearity feature on a sample of points where the 

cable points received a value close to one while the tree 

points are around 0.5. 

 

 
Figure 4. Displaying linearity descriptor on a point 

cloud sample with the linearity colour bar. 

 
2.3 Tree Extraction 

     Autoencoders are unsupervised learning algorithms that 

extract descriptors from a compressed version of the original 

data. Extraction of such descriptors might be helpful in 

scientific discovering and characterizing essential factors of 

variation in data, compressing data for efficient storage and 

calculation, and using in a preprocessing step before 

entering the supervised learning algorithm (Bank et al., 

2020). Autoencoders can be used for dimensionality 

reduction, denoising data, generative modelling, and even 

pretraining deep learning neural networks (Pinaya et al., 

2020). An autoencoder is a specific type of neural network 

trained to reconstruct input data and consists of three 

components: encoder, code, and decoder. The encoder and 

decoder are neural networks, and code is a single layer of an 

ANN with desired dimensionality 

(www.towardsdatascience.com). Four hyperparameters 

must be set before training the autoencoder, including code 

size, number of layers, number of nodes per layer, and loss 

function (Pinaya et al., 2020). In addition, the stochastic 

gradient descent of a multi-layer neural network can be used 

similarly to supervised learning to minimize a loss function. 

The structure of a simple autoencoder is shown in Fig. 5. 
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Figure 5. The structure of an autoencoder algorithm 

(www.gabormelli.com) for learning the weights in an 

autoencoder. 

For example, for x with continuous-valued, the parameters 

of h and g must be optimized to minimize the reconstruction 

error, measured according to this loss function (squared 

loss): 

ℒ𝑆𝐸( 𝑥̃, 𝑥) = ∑ (𝑥𝑗 − 𝑥̃𝑗)2𝑑
𝑗=1   (6) 

𝑚𝑖𝑛
𝑤1 , 𝑤0

1 , 𝑤2, 𝑤0
2 ∑ ℒ𝑆𝐸(ℎ(𝑔(𝑥(𝑖); 𝑊1, 𝑊0

1); 𝑊2, 𝑊0
2), 𝑥(𝑖))

𝑛

𝑖=1

  (7) 

where 𝑥(𝑖) ∈ 𝑅𝑑, encoder g: 𝑅𝑑 → 𝑅𝑘, and decoder h: 𝑅𝑘 →
𝑅𝑑. Linear autoencoder can be powerful in minimizing the 

objective function using principal components analysis 

(PCA) to obtain a closed-form solution. To optimize the 

problem, a singular value decomposition (SVD) can be 

applied in a multi-layer neural network with non-linear 

activations for regression (Kunin et al., 2019).  

There are five popular autoencoder structures for feature 

learning, anomaly detection, and dimension reduction: 

under-complete autoencoders, sparse autoencoders, 

contractive autoencoders, and denoising autoencoders, and 

variational autoencoders for generative modelling (Bank et 

al., 2020). The proposed 3D-Convolutional autoencoder 

(3D-CAE) is a supervised feature learning method that 

recently attracted much scientific attention. 3D-CAE is a 

multi-level feature extraction model to discover the 

structural information of input data (Rahimzad et al., 2021). 

As shown in Fig. 5, the designed 3D-CAE contains two main 

blocks: encoder and decoder. This network has been 

designed to transform the input point clouds into a 

compressed and meaningful representation (encoding). The 

extracted feature maps from input data can be used in 

classification and segmentation. Finally, the constructive 

features are transformed into the initial data, and the 

reconstructed output is as similar as possible to the original 

input (decoding) (Pinaya et al., 2020).  

In the presented 3D-CAE, input point cloud data is 

represented by a 3D cube which contains a 3-dimensions 

context spatial. To explore the inner information of data, 

only 3D or element-wise operations are adopted in the 

proposed 3D-CAE for 3D point cloud, including 3D 

convolution, 3D pooling, 3D batch normalization, ReLU 

function, and 3D deconvolution (Mei et al., 2019).  

1) 3D convolution 

 

For input I ∈ 𝑅3 of size 𝐷𝑥
(𝐼)

∗ 𝐷𝑦
(𝐼)

∗ 𝐷𝑧
(𝐼)

, with a kernel W ∈ 

𝑅3 of size 𝐷𝑥
(𝒘)

∗ 𝐷𝑦
(𝒘)

∗ 𝐷𝑧
(𝒘)

 ( 𝐷𝑥
(𝒘)

≤ 𝐷𝑥
(𝑰)

, 𝐷𝑦
(𝒘)

≤ 𝐷𝑦
(𝑰)

 , 

and 𝐷𝑧
(𝒘)

≤ 𝐷𝑧
(𝑰)

), the output is defined as 

 

𝑂𝑥,𝑦,𝑧 = 𝑏 +  ∑ ∑ ∑ 𝑊𝑝,𝑞,𝑟

𝐷𝑧
(𝑤)

−1

𝑟=0

𝐷𝑦
(𝑤)

−1

𝑞=0

𝐷𝑥
(𝑤)

−1

𝑝=0

𝐼𝑥.𝑠𝑥+𝑝,𝑦.𝑠𝑦+𝑞,𝑧.𝑠𝑧+𝑟   (8) 

x = 1, 2, … 𝐷𝑥
𝑶,  y = 1, 2, … 𝐷𝑦

𝑶  and  z = 1, 2, … 𝐷𝑧
𝑶 

where 𝑜𝑥,𝑦,𝑧 illustrates the (x,y,z) elements of output O ∈ 𝑅3, 

(𝑠𝑥 , 𝑠𝑦  , 𝑠𝑧) are related to the size of the stride in 3-

dimensions, b represents the bias, 𝐷𝑥
𝑶, 𝐷𝑦

𝑶, 𝐷𝑧
𝑶 denote the 

output’s sizes (O) and are defined as  

 

𝐷𝑥
𝑶 =  [

𝐷𝑥
𝑰 − 𝐷𝑥

(𝑾)

𝑠𝑥
] + 1 

(9) 𝐷𝑦
𝑶 =  [

𝐷𝑦
𝑰 − 𝐷𝑦

(𝑾)

𝑠𝑦
] + 1 

𝐷𝑧
𝑶 =  [

𝐷𝑧
𝑰 − 𝐷𝑧

(𝑾)

𝑠𝑧
] + 1 

 

where [. ] represents the round-to-zero process. 

Applying such 3D convolution to a point cloud cube can 

extract useful features because 3D convolution kernels are 

connected to discover various useful features. When many 

3D convolution layers are stacked sequentially, an extra 

dimension will be considered to handle these extracted 

feature cubes. Therefore, in the proposed network, the 3D 

convolution kernel is denoted as W ∈ 𝑅4 of size  𝐷𝑥 × 𝐷𝑦 ×
𝐷𝑧 × 𝐷 , where D as the extra fourth dimension 

demonstrates the number of 3D feature cubes input to the 

convolutional layer. 
The input to the 𝑖th convolution layer is determined as 𝐼𝑖 ∈ 

𝑅4 of size 𝐷𝑥
(𝐼)𝑖 ×  𝐷𝑦

(𝐼)𝑖 × 𝐷𝑧
(𝐼)𝑖 ×  𝐷𝑖 and the 3D convolution 

in the 𝑖th convolution layer is defined as  

𝑂𝑖,𝑗
𝑥,𝑦,𝑧

= 𝑏𝑖,𝑗 + ∑ ∑ ∑ ∑ 𝑊𝑗,𝑘
𝑝,𝑞,𝑟

𝐷𝑧−1

𝑟=0

𝐷𝑦−1

𝑞=0

𝐷𝑥−1

𝑝=0

𝐼𝑖,𝑘

𝑥.𝑠𝑥+𝑝,𝑦.𝑠𝑦+𝑞,𝑧.𝑠𝑧+𝑟

𝐷𝑖−1

𝑘=0

(10)  

Where ‘𝑖’ and ‘𝑗’ indexs are the convolutional layer and the 

convolutional kernels in a layer, respectively. 

2) 3D deconvolution 

The deconvolution or transposed convolution can be 

considered the reverse of the convolutional layer. 

Transferring low-dimensional to high-dimensional space is 

useful in many applications such as image semantic 

segmentation, style transfer, and image inpainting (Gatys et 

al., 2015; Long et al., 2015; Mei et al., 2019). 

3) 3D Batch Normalization 

By supposing 𝑋𝑖( 𝑖 = 1,2, … , 𝑀𝑖) ∈ 𝑅3 as a minibatch of 

inputs, 𝑌𝑖( 𝑖 = 1,2, … , 𝑀𝑖) ∈ 𝑅3 is defined as the output of 3D 

batch normalization with the same size as the input and 𝑀𝑖 

is the number of feature maps in minibatch. 

 The 3D batch normalization is described as  

𝑌𝑖 =
𝑋𝑖 − 𝑚𝑒𝑎𝑛𝑀𝑖[𝑋]

√𝑉𝑎𝑟(𝑀𝑖)  [𝑋] +  𝜖
∗ 𝛾 + 𝛽,    𝑖 = 1,2, … , 𝑀𝑖                (11)    

where 𝑚𝑒𝑎𝑛𝑀𝑖[𝑋] and 𝑉𝑎𝑟(𝑀𝑖)  [𝑋] denote the mean and 

standard deviation of 𝑋𝑖 respectively,  

𝛾 and 𝛽 are the learnable parameters, and 𝜖 was set to 1𝑒−5 

as default (Mei et al., 2019). 

4) 3D pooling 

This layer is applied to convolved layers to reduce the 

number of calculated parameters in the training step in a 

CNN. 3D max pooling can be applied to summarize the 

explored features using 𝑇 3D convolutional kernels 𝑊𝑡, t =1, 

2, …, 𝑇. The 3D max pooling is defined as 

𝑂𝑥,𝑦,𝑧 = max 𝐹𝑡
𝑥,𝑦,𝑧

                  (12) 

Where 𝐹𝑡
𝑥,𝑦,𝑧

 illustrates the calculated features through 3D 

convolution kernels 𝑊𝑡 and 𝑂𝑥,𝑦,𝑧 is a feature at the position 

(𝑥, 𝑦, 𝑧) after applying 3D max pooling without flattening 

(Mei et al., 2019).   

After deep feature extraction, the calculated features are fed 

to Support Vector Machine (SVM) algorithm to classify tree 

points. SVM is a classification method that generates input-

http://www.gabormelli.com/
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output descriptor functions from a group of labelled training 

data. This algorithm finds a plane in an N-dimensional space 

(descriptor space) that specifically classifies the data. 

Descriptor functions often transform the input data into a 

multi-dimensional descriptive space using non-linear kernel 

functions so that the data in the new space can be separated 

more easily than the input space. The kernel function of SVM 

accepts the data as input and converts it into the required 

form. 

 Tree characteristics measurement 

 After detecting tree points, individual trees from the 

extracted trees are segmented based on the methodology 

proposed by Safaie et al. (2021). Next, this step aims to 

measure the characteristic feature of each tree as follow: 

 Characteristic measuring 

Characteristic measuring means a set of tree parameters is 

going to be estimated. Elevation, stem diameter, stem 

elevation, and, more importantly, the 3D boundary of leaves 

is measured from this stage. 

Tree elevation parameter. assume 𝑇𝑖 = {𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖}, 0 ≤ 𝑖 ≤
𝑛 (𝑛 is the number of individual tree points) is the points of 

an individual tree. Initially, the two points which have the 

maximum (𝑚𝑎𝑥𝑍) and minimum elevation (𝑚𝑖𝑛𝑍) in T are 

found. The elevation of an individual tree is equal to the 

subtraction of 𝑚𝑎𝑥𝑍 and  𝑚𝑖𝑛𝑍.  

Stem Diameter (SD) parameter. Thanks to the methods of 

circle fitting procedures with the help of Random Sample 

Consensus (RANSAC), the diameter of the tree stem will be 

estimated. As stems are located bottom part of trees, firstly, 

those points placed in the lowest part of 𝑇 with elevation 

ranging from 𝑚𝑖𝑛𝑍 and 𝑚𝑖𝑛𝑍 + 1 are detected. Afterward, a 

circle equation (Eq. 12) is fitted to the extracted points. 

(𝑋𝑖 − 𝑥0)2 + (𝑌𝑖 − 𝑦0)2 = 𝑅2 (13) 

where  𝑅 = the estimated stem radius 

  (𝑥0, 𝑦0) =2-dimensional location of the tree,  

 (𝑋𝑖, 𝑌𝑖) = the extracted points as the tree stem. 

3D Boundary extraction parameter. Recently, the procedure 

of convex hull has shown positive performance in object 

analysis from radiometric imageries or LiDAR point clouds 

(Yan et al., 2019). Regarding tree points, the convex hull 

remains the 3D boundary points and eliminates interior ones 

that are useless in parameter measuring. Indeed, the convex 

hull is the smallest shape that contains the tree, reducing 

each tree’s volume.  

Foliage height (FH), maximum foliage diameter (MFD), and 

trunk height (TH) are three other parameters that will be 

measured from each tree (Fig. 3).  

 

 

Figure 5. The characteristic feature of an individual tree 

(Safaie et al., 2021). 

 

Nevertheless, the trajectory data is considered instead of 

road surface points. Road boundary extraction would not run 

rapidly due to millions of points processing located on the 

road structure. Also, the trajectory points are placed on the 

road surface and have a much lower volume of 

implementation. The distance condition here is 3.6m. 

2.3 Tree Extraction 

     Generally, object extraction methods, including the 

proposed algorithm, are evaluated by Precision and recall 

accuracies. Three variables of True Positive (TP), False 

Positive (FP), and False Negative (FN) would be needed to 

calculate the accuracies.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(14) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

=  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(15) 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(16) 

where,  TP = the extracted tree points 

 FP = not extracted tree points 

 FN = extracted non-tree points as the tree 

3. Experiments and Results   

3.1 Study Area and Results 

     In all tested datasets, 20% was used for training, while 

80% was used for evaluation. The training and test data were 

selected randomly at the beginning of the classification 

process. The efficiency and performance of the proposed 

algorithm are going to be assessed in four urban and sub-

urban environments as follows: 

 USA urban environment 

Our algorithm underwent thorough evaluation in a complex 

urban environment, encompassing a diverse range of 

challenging objects, including dense trees and tall buildings. 

For the research assessment, we selected an urban roadway 

test section located in Anderson, South Carolina, USA. 

The chosen MLS dataset covers a 600-meter stretch of US 

Highway Route 76, also known as Clemson Blvd. This road 

is a 4-lane urban arterial, starting from Forest Hill Drive 

and extending all the way to the intersection with East-West 

Parkway. 

This carefully selected urban area provided a suitable and 

demanding setting to test the robustness and effectiveness of 

our algorithm in accurately identifying and extracting 

various objects, including dense vegetation and towering 
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buildings, essential for urban planning and management 

purposes. 

a.  

b.  

Figure 6. USA urban environment; (a) Collected LiDAR 

point clouds and (b) Extracted trees by our method 

(green ones). 

 

Table 1 presents the characteristics of the point clouds 

collected using an MLS system, as illustrated in Fig. 6. The 

MLS system showcased an impressive capability of 

recording 1100 points per second. In total, approximately 18 

million points were collected from five sections spanning a 

250-meter road surface. 

Upon removing the ground and noisy points within each 

section, the volume of each section significantly decreased, 

with processing times averaging around 14 seconds. This 

substantial reduction in volume proved to be a noteworthy 

advantage in efficiently handling the vast amount of MLS 

LiDAR point clouds. 

Notably, our algorithm, as depicted in Fig. 6-b, accurately 

identified approximately 983 thousand points as trees. This 

outcome highlights the efficacy of our approach in 

successfully detecting trees amidst the collected MLS point 

clouds, further showcasing the potential of our algorithm in 

urban tree assessment and inventory. 

 

Table 1. Specification of MLS LiDAR pint clouds. 

LiDAR 

Scanner 

Parameter 

USA 

dataset 

China 

dataset 

Brand Optech RIEGL 

Model SG1 VQ-450 

Single / Dual 

laser 
Dual 

Dual 

Measurement 

rate 

600 

kHz/sensor 

1100 

kHz/sensor 

DMI 
Brand Applanix Riegl 

Model HS35F N/A 

IMU 
Brand Applanix Riegl 

Model FMU P301 N/A 

Roll/pitch 

accuracy 
0.005° 0.005° 

Heading 

Accuracy 
0.015° 0.015° 

Camera 

Type 
Point Grey 

360° 

VMX-450-

CS6 

No. of 

Cameras 
6 6 

Focal Points of 

Cameras 
N/A N/A 

Resolution 5 MP 5 MP 

Vehicle 

Mounted 

GPS/GNSS 

Brand Trimble RIEGL 

Model 
AT1675-

540TS 

VMX-450-

MH 

Accuracy 
0.02’ 

H;0.04’ V 

20mm abs, 

10mm 

relative 

 

USA suburban environment:  
The data collection for this study took place in South 

Carolina, USA, as shown in Fig. 5, resembling a typical 

urban environment in the United States. The MLS system 

employed for data acquisition adheres to the specifications 

outlined in Table 1. In total, approximately 25 million points 

were recorded by the MLS system, out of which 4.85 million 

points (comprising both true positives (TP) and false 

positives (FP)) were identified as tree points. 

The specific region in South Carolina was selected for 

evaluation due to its dense and compacted tree presence, 

particularly along road infrastructures, as depicted in Fig. 

7-a. Leveraging our autoencoder algorithm, we achieved 

remarkable results, as illustrated in Fig. 7-b, attaining an 

accuracy of more than 99%. This remarkable accuracy 

signifies the effectiveness of our approach in accurately 

identifying and extracting tree points in this challenging 

urban environment, underscoring the potential of our 

algorithm for urban tree assessment and analysis. 

a.   

b.  

Figure 7. USA suburban environment; (a) collected 

LiDAR point clouds, (b) the output of the proposed 

algorithm. 
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 Lidarusa Urban dataset 

Lidarusa, an organization specializing in civil engineering 

and heritage mapping projects (www.lidarusa.com), has 

played a significant role in providing diverse LiDAR point 

cloud datasets to the public. Notably, one of their datasets, 

Fig. 8, was chosen to evaluate the efficiency performance of 

our proposed algorithm. This dataset comprises 

approximately 14.5 million points along a 330-meter 

roadside, featuring various challenging tree structures. 

Our algorithm demonstrated remarkable accuracy in the 

evaluation, achieving Precision and Recall accuracies of 

96.5% and 99.9%, respectively. These impressive results 

affirm the effectiveness and reliability of our approach in 

accurately extracting trees from the challenging Lidarusa 

dataset. 

 Lidarusa railway environment 

Lidarusa, known for its open-access datasets, provides 

another valuable dataset featuring a railway environment 

densely covered with massive trees (Fig. 9-a). This dataset 

comprises approximately 22.5 million points spanning a 

500-meter railway stretch. Due to the high density of trees 

compared to other non-tree points, this area serves as a 

suitable test environment for evaluating precision accuracy. 

In this challenging context, traditional accuracies like recall 

and F1-score might not hold significant meaning. However, 

in terms of acquiring accuracy, our algorithm demonstrated 

exceptional performance, achieving a precision accuracy of 

approximately 98.8%, as depicted in Fig. 8-b. These results 

further validate the effectiveness of our approach in 

accurately identifying trees amidst the dense foliage in the 

Lidarusa railway dataset. 

 

a.  

b.  

Figure 8. Lidarusa urban dataset; (a) Recorded LiDAR 

point clouds, (b) Output of the proposed algorithm in tree 

extraction. 

 

a.  

b.  

Figure 9. Lidarusa railway dataset; (a) collected LiDAR 

point clouds; (b) Output of the proposed algorithm. 

 

 ALS Urban Area 

As mentioned in the Introduction section, the ALS system is 

another popular format of LiDAR point clouds; therefore, 

our algorithm will be assessed on free-access datasets of 

“DublinCity: Annotated LiDAR Point Cloud and its 

Applications.” (Zolanvari et al., 2019). This dataset (Fig. 10) 

has been collected from an urban region with ALS 

equipment. It contains numerous dense trees, tall buildings 

(walls and roofs), and vehicles that, overall, 250 million 

points recorded. Fig. 10-b shows the output of our algorithm. 

The precision accuracy of these results is around 98.6%, 

while the recall measures about 56.38%. 

 

a.  
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b.  

Figure 10. Assessment of our algorithm on ALS point 

clouds; (a) Dublin dataset; (b) acquired results 

 

Table 2 presents the accuracies obtained by our autoencoder 

algorithm on 5 MLS and ALS LiDAR point clouds. The 

algorithm has exhibited commendable performance in tree 

extraction. Across the MLS point clouds, the algorithm 

achieved an impressive F1 score accuracy ranging from 

95.8% to 99.4%, highlighting its efficiency and feasibility. 

However, the ALS dataset posed a notable challenge as it 

incorrectly identified numerous non-tree points as tree 

points, although it correctly detected over 98%. 

 

The architecture of our deep learning algorithm is illustrated 

in Table 3, and Table 4 showcases the acquired 

characteristic parameters for three tree points. These 

parameters include the precise georeferenced location (x, y) 

represented by boundary points (indicated by red points). As 

each extracted tree point comprises thousands of points, 

identifying their boundary locations proves highly valuable 

in determining occupied space volume. Additionally, we have 

measured seven other parameters for each tree, such as tree 

height, further enhancing the comprehensiveness of our tree 

analysis. 

 

In summary, Table 2 reflects the favorable performance of 

our autoencoder algorithm in tree extraction from MLS and 

ALS LiDAR point clouds. Table 3 and Table 4 provide 

insights into the network architecture and crucial 

characteristic parameters, showcasing the advancements 

and potential applications of our deep learning-based 

approach in tree assessment and inventory. 

Table 2. Summarizing the acquired accuracies. 

 

 

 

 

 

 

 

 

 

Table 3. Parametric settings of the proposed 3D-CAE when 

applied to the datasets. 

 Input size Kernel 

size 

strides Output size 

Evaluation 

Dataset 

Volume 

(million) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

USA Urban 18 93.7 98.1 95.8 

USA 

Suburban 
25 98.8 100.0 99.4 

Lidarusa 

Urban 
14.5 96.5 99.9 98.2 

Lidarusa 

Railway 
22.5 99.5 98.2 98.8 

ALS Urban 

Area 
250 98.6 56.4 71.8 

Table 4. Characteristics measurement of three sample trees. The measurement features are at the unit of the meter. 

Tree 3B Boundary 𝒙𝟎 𝒚𝟎 Height TH FH MFD SD ERC EPL 

 
 

1496710.58 991489.53 5.18 1.32 3.8

6 

4.86 0.13 4.9 1.7 

  

1496546.53 991667.44 6.36 0.60 5.7

6 

5.80 0.47 7.1 5.6 

  

1496686.28 191841.72 10.49 1.67 8.8

2 

8.11 0.24 10.23 25.5 
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Conv1 200×5×5×

1 

24×3×3×

24 

1×1×1×

1 

180×3×3×

24 

BN1 180×3×3×

24 

- - 180×3×3×

24 

Conv2 180×3×3×

24 

24×3×3×

48 

1×1×1×

1 

160×1×1×

48 

BN2 160×1×1×

48 

- - 160×1×1×

48 

Pool2 160×1×1×

48 

18×1×1 18×1×1 9×1×1×48 

DCon

v3 

9×1×1×48 9×3×3×2

4 

22×1×1

×1 

175×3×3×

24 

BN3 175×3×3×

24 

- - 175×3×3×

24 

DCon

v4 

175×3×3×

24 

27×3×3×

24 

1×1×1×

1 

200×5×5×

1 

BN4 200×5×5×

1 

- - 200×5×5×

1 

 
 

3.2 Discussion 

     The proposed algorithm was implemented on an ordinary 

computer system with the specification of Intel (R) Core (TM) 

i5-3210M CPU @2.50GHz, 12GB RAM, DDR 3, NVidia 

GeForce 2.630 GB, unlike Yadav, Lohani et al. (2016),Yadav 

et al. (2016) study which used a cloud computer system. 

Python was selected as the programming environment to test 

and run our algorithm. 

It is worth mentioning that criteria of selected datasets, space 

transformation, acquired accuracies, sensitivity analysis, 

and tree characteristic parameter measuring should be 

considered to make a clear and comprehensive comparison 

between our methodology and previous ones. For example, 

we have proposed a method that gained more than 95% 

Precision accuracy on five MLS and ALS LiDAR point 

clouds. While previous ones such as (Fan et al., 2020; Pérez-

Martín et al., 2021; Zolanvari et al., 2019) rarely considered 

diverse study areas. This means the previous studies may not 

work properly on other environments for tree extraction. In 

addition, our algorithm has acquired such high accuracy in 

both urban and suburban regions, while the previous ones 

have been only tested on one of them like (Dai et al., 2018; 

Yu et al., 2011). As can be seen in these survey works (Che 

et al., 2019; Dong et al., 2020; Wang et al., 2020), another 

positive side of our work is proposing a methodology tested 

on simultaneously MLS and ALS LiDAR point clouds. 

Regarding the space transformation, there is no need to 

coordinate space transformation for our algorithm 

compared to (Safaie et al., 2021; Zou et al., 2017) studies 

where a 3D-to-2D transformation was wanted. Our deep 

algorithm extracted the tree points and measured the 

characteristic parameters of the trees. Mainly parameter 

extraction was ignored, particularly in urban areas (Dai et 

al., 2018; Wang et al., 2008; Yu et al., 2011; Zhang et al., 

2015) 

 A similar paper for tree extraction has been proposed by 

(Shokri et al., 2023) study based on a transfer learning 

procedure. They used a popular deep-learning structure  

called PointNet++ for tree extraction in MLS LiDAR point 

clouds. Our algorithm has gained better F1-score accuracy 

at 4 MLS datasets than in this study. For example, our 

algorithm acquired F1-score accuracy at 95.8% while they 

gained 93.8% in the US Urban dataset. 

 

4. Conclusion 

Over the past decade, the Mobile Laser Scanner (MLS) 

system has garnered significant attention from scientists for 

tree assessment due to its ability to capture hundreds of 

millions of points from a side-view perspective. This platform 

offers sub-centimeter accuracy in recording leaves and tree 

trunks, enabling precise measurement of tree parameters. 

Our algorithm comprises several key steps, including 

preprocessing, candidate selection, tree extraction, and tree 

inventory measurement. To handle the massive volume of 

MLS data, we have implemented a Cloth Simulation Filter 

(CSF) that efficiently eliminates 80% of unnecessary points. 

Additionally, challenging objects like buildings, traffic signs, 

and pole-shaped structures have been successfully removed 

using three descriptors: Linearity, Planarity, and Verticality. 

Subsequently, a 3D convolutional autoencoder was trained 

on five MLS and ALS LiDAR point clouds for accurate tree 

extraction, achieving an impressive F1-Score exceeding 

95%, affirming its feasibility and high performance. 

Furthermore, our algorithm accurately measures essential 

tree parameters, including georeferenced location, tree 

height, and foliage height. These results underscore the 

positive contributions of our work, which encompass. i) 

Proposing a rapid and accurate deep neural learning 

network structure tailored specifically for tree recognition. 

ii) Measuring tree inventory parameters, such as planarity 

and coordinate space, providing comprehensive data for tree 

analysis. iii) Identifying the most effective descriptors for 

volume reduction, optimizing data processing without 

compromising crucial information. 

In future endeavours, we highly recommend specifying tree 

types. As MLS LiDAR point clouds are georeferenced, 

researchers can leverage satellite datasets like Landsat to 

determine tree types, further enhancing the depth and 

applicability of tree assessment. 
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