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A B S T R A C T 

 

Identification of geochemical anomalies is a critical task in mineral exploration targeting. Decades of research and technology have resulted 
in new algorithms and techniques for recognizing anomaly detection methods at various scales and sample media. However, algorithms cannot 
always reveal the true nature of geological processes. The mineral system concept may contribute to a better understanding of the geological 
processes required to form and preserve ore deposits at all spatial and temporal scales. The mineral systems concept investigates the 
geochemical processes occurring within mineral subsystems in soil samples from the porphyry prospect area. The Cu/(Al + Ca) index was 
used to compare Cu, Mo, and (Pb* Zn)/(Cu*Mo) to highlight the region of interest for mineral potential mapping and pioneer borehole 
drilling based on fluid-rock interaction and secondary processes (e.g., alteration, weathering, and leaching). Exploratory boreholes validate a 
better performing Cu/(Al + Ca) index for detecting and refining soil geochemical anomalies.  
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1. Introduction 

Due to the increasing use of mineral exploration methods over the 
last few decades, the mineral systems concept [1-2] has generated 
increased awareness and understanding of the range of geological 
processes required to form and preserve ore deposits at all scales, both 
spatially and temporally [3-7]. 

Five critical processes can be considered in the context of the mineral 
system [1-2]: 

• 1- Source: Geological processes are required to extract ore-
forming fluids from their source. 

• 2- Transport: Geological processes necessary for the ore-forming 
fluids to travel from the source to the trap. 
• 3- Trap: Geological processes necessary for concentrating ore-

forming fluids into physically or chemically responsive localities 
capable of storing significant quantities of ore and gangue. 

• 4- Deposition: Refers to the geological processes required for 
extracting metals effectively from fluids that flow through traps. 

• 5- Preservation: Involves the geological processes necessary for 
maintaining and safeguarding accumulated metals. 

Yousefi et al [8] introduced the concept of exploration information 
systems (EIS) as a novel information system that combines the 
conceptual mineral deposit model with existing data to aid in 
exploration targeting using the mineral system. Within an EIS, mineral 
systems are categorized as scale-dependent subsystems that play a role 
in the creation of mineral deposits. These subsystems encompass various 
components, such as: 
• (i) Pre-mineralization subsystems: Those associated with mantle or  

 
 
 
 

crustal fertility or ground preparation that may have functioned or 
existed for an extended period before mineralization. 
 

• (ii) Syn-mineralization subsystems: These subsystems were 
connected to the ore-forming processes that controlled 
mineralization. 

• (iii) Post-mineralization subsystems: Those involved in 
exhumation, preservation, upgrading, or secondary dispersion. 
 

Although pre- and syn-mineralization subsystems are usually taken 
into account when studying mineral systems, it is important not to 
disregard the impact of post-mineralization subsystems. In addition to 
understanding mineral systems, another challenge lies in converting 
mineral subsystems into criteria that can be mapped (such as proxies, 
exploration criteria, and mappable features) [7]. This problem could be 
resolved if each subsystem leaves identifiable "footprints" in geological, 
geophysical, and geochemical datasets at both regional and craton scales 
[9]. 

Geochemical data are an important and efficient exploration tool that 
can be scaled up to gain a comprehensive understanding of the processes 
involved in ore formation within a mineralized district [10-13]. 
Geochemical datasets are critical for defining lithological units and 
interpreting stratigraphy more precisely by better distinguishing rock 
fertility, ore-forming fluid pathways, fluid-rock interaction, and possible 
trap sites, Moreover, identifying the dispersion patterns of certain 
elements or geochemical anomalies can help identify potential 
exploration targets. [10-11, 14-15]. A geochemical anomaly can be 
defined as: 
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(i) A significant difference in the concentration of geochemical 
pathfinder elements associated with specific deposits from the 
background value. 

Recent studies have typically focused on developing novel algorithms 
or techniques for detecting anomalies across a range of scales and 
sample media [16-26]. 

In contrast, geochemical zonality (Vz) indicators such as 
Pb*Zn/Cu*Ag, Pb*Zn/Cu*Mo, and Pb*Zn*Bi/Cu*Mo*Ag were used to 
identify geochemical halos associated with blind porphyry copper 
deposits [27-30]. 

Nevertheless, focusing exclusively on metal concentration when 
investigating porphyry copper deposits may lead to erroneous results, 
particularly for weathered samples. For example, copper mineralization 
is possible in propylitic alterations. Mineralized veins and veinlets (such 
as sub-epithermal Zn-Cu-Pb-Ag-Au veins, and polymetallic veins) may 
also form at the porphyry copper deposit's margin. 

Exotic copper mineralization may also occur due to the lateral 
migration of supergene solutions from porphyry copper deposits. Minor 
insignificant mineralization may create artificial anomalies in soil and 
stream sediment samples as a result of weathering. The algorithms could 
not identify these anomalies compared to anomalies found in the 
footprints of blind porphyry copper deposits. 

(ii) Significant variation in the geochemical characteristics of rocks 
across a geological domain. 

Several methods are existed for examining the geochemical changes 
while considering protolith composition include the following: 

 

• Determining the abundance of elements of interest in comparison 
to the crustal average [31-32].  

• Rationing single elements to immobile elements such as Ti, Y, or Zr 
[33-36].  

• Calculating 'enrichment factors' using a relationship between two 
ratios, one representing a sample and the other representing average 
crustal abundance, in which the element concentration of interest is 
divided by the concentration of an immobile element [32, 37-45].  

• Computing the mass balance establishes a baseline for determining 
element addition or loss based on the ratio of immobile to mobile 
elements in an altered and unaltered (or least-altered) sample [46-48]. 

 

The first two methods express relative values and do not quantify 
chemical changes, while the third method does not account for 
lithological variation. The fourth method, mass balance, considers the 
geology of the host rock and provides a quantified measure of chemical 
change.  

The intensity and distribution of fluid-rock interactions can be 
mapped by observing the changes in mass caused by hydrothermal 
alteration in rocks [49]. By analyzing geochemical data, it is possible to 
determine the extent and spatial pattern of fluid-rock interactions, as 
alterations in mineralogy usually correspond to the amount of mass 
transferred during these interactions [50-54]. 

However, it is preferable to use unaltered or minimally altered 
samples for mass balance calculations as identifying samples of 
unaltered protolith rocks can be challenging, particularly at the prospect 
and deposit scales [55]. When there are numerous rock types, this 
process becomes more complicated. Additionally, certain porphyry 
copper districts are covered by soil due to the magmatic and meteoric 
water circulation, limiting the application of these methods. 

This paper initially examines traditional soil geochemical signatures 
for exploring copper porphyry deposits. It discusses how they can lead 
to erroneous anomalies before extracting parameters to map anomalies 
related to blind copper porphyry mineralization based on the porphyry 
copper deposit (PCD) mineral system and fluid-rock interactions. A 
combination of pathfinder, immobile, and mobile elements is employed 
to find exploratory criteria to accomplish this goal. A statistical method 
based on fractal analysis was implemented to constrain the spatial extent 
of the soil geochemical haloes associated with the deposit. 

2. Geological setting of the study area 

The Kahang deposit was the first PCD discovered in the Urumieh-
Dokhtar magmatic arc (UDMA) (Fig.1 a). This deposit is located in the 
center of Iran, northeast of the city of Isfahan. Tabatabaei and Asadi 
Haroni [56] divided the Kahang stock into three parts based on early 
lithogeochemical exploration (i.e., West, Central, and East). Later, the 
National Iranian Copper Industries (NICICO) expanded exploration in 
all three parts of the country, with more drilling conducted in the 
eastern region (Fig.1 b). 

The Kahang deposit comprises quartz diorite, granodiorite, and 
dacite intruded into Eocene volcanic and volcaniclastic rocks, 
respectively [57-59]. In later stages, post-mineralization dikes crosscut 
the porphyry stocks. The measured deposits and indicated resources 
total 100 million metric tons (Mt) of sulfide ore with an average grade 
of 0.6% Cu and 70 ppm Mo. The new exploration program indicates the 
potential for an increase in the deposit resources base in the future. 

Fig 2 depicts the swath plot of Cu, Mo, Pb, and Zn values from 
boreholes located within the pink square of Fig 1.b, indicating the 
presence of a large zone of copper-bearing anhydrite-quartz veinlet 
breccia 300–450m below the existing surface. By expanding drilling in 
the Kahang prospect, conventional methods direct exploration 
programs towards some minor anomalies. 

 

 
 

Figure 1. a) Location of Kahang porphyry copper deposit on the structural map of 
Iran. The location of the Kahang deposit is shown with a yellow circle. b) 
Simplified geological map of Kahang deposit, c) view of Kahang deposit area 
which covered by soil. 
 

3. Geochemical data 

A total of 2564 in situ soil samples were collected over a 3.1 km2 area. 
The samples were taken at equal intervals of 25m in the NW-SE  
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Figure 2. Swath plot of boreholes located in the pink square of Figure 1.b for a) Cu, 
b) Mo, c) Pb, d) Zn, e)Ag and f)Au. g) Rounded quartz diorite clasts cemented by 
chalcopyrite, molybdenite, and pyrite matrix. h) Anhydrite breccia with highly 
sericitized Quartz diorite clasts, cemented by anhydrite, chalcopyrite, and 
molybdenite matrix. Abbreviations: QDI= quartz diorite, Ccp= chalcopyrite, Py= 
pyrite, Mol= molybdenite, Anh= Anhydrite. 

 
direction and 50m in the NE-SW direction along evenly spaced lines 
(Fig. 3). Each sample weighs about 300g, and their size distribution 
ranges between 250 and 400 micrometers. The locations of the samples 
are depicted in Figure 3. 

The concentrations of 43 trace elements were determined using ICP-
MS (for Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, 
Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Sb, Sc, Sn, Sr, Te, Th, Ti, Tl, U, 
V, W, Y, Yb, Zn, and Zr) and a fire assay (for Au). Several studies have 
used these data to develop methods for detecting anomalies or as a 
geochemistry layer in potential mineral mapping [60-62]. 

As previously stated, Ag, Au, Cu, Mo, Pb, and Zn are used as 
pathfinder elements to investigate PCDs. Fig. 4 and table.3 depict the 
histograms and statistical summary for Ag, Au, Cu, Mo, Pb, and Zn. The 
figure demonstrates that the concentration distributions of all elements 

are positively skewed and exhibit a range of magnitudes. 
Table 1 displays the detection limits for the elements. Additionally, a 

total of 28 samples were chosen and subjected to Thompson-Howarth 
error analysis [63-64] for quality assurance and quality control of the 
assay. The analytical error for Au, Ag, Al, Ca, Cu, Mo, Pb, and Zn can be 
found in Table 2. The outcomes indicate that the analytical method has 
yielded satisfactory error levels. 

 

 
Figure 3. In situ soil samples and boreholes locations map of Kahang deposit. 

 

4. Mineral reactions as proxies for addition and depletion 
patterns 

To consider the mineral system, mineral reactions that may serve as 
proxies for the addition and depletion of elements in the host rock 
should be examined. The secondary process should then be evaluated in 
light of the sampling environment. Finally, the mappable spatial proxies 
for mineral potential mapping could be extracted by integrating these 
processes. 

The effect of anhydrite formation on mass change could be explained 
by the large volume of anhydrite and sulfide veinlets found in the 
Kahang porphyry copper deposit [59]. The formation of anhydrite in 
PCDs is explained by the following gas-solid reactions [65]: 

 

CaAl2Si3O8+ 2SO2(g) + 2H2(g) → CaSO4+ Al2SiO5(g) + SiO2(g) + H2O(g) + H2S(g)      (1) 
 

The form's sulfide deposition reactions are driven by the rapid 
conversion of SO2 (g) to H2S (g). 

 

CuCl2 (g) + FeCl2 (g) + 2H2S (g) → CuFeS2 + 4HCl (g)                              (2) 
 

These reactions transform the host rock's Ca and Al into metastable 
minerals, such as anhydrite and andalusite [65]. The reactions are 
consistent with our petrographic observations and Afshooni's EMPA 
analysis of plagioclase [66], which indicates that the anhydrite 
immediately adjacent to the plagioclase undergoes sericite alteration 
along with Ca and Al reduction. The reaction (1) could occur in the 
upper portion of the mineralization core due to the volcanic eruption's 
flux of SO2 as a reactive gas [67]. 

Anhydrite is highly soluble in cold water [68], whereas andalusite 
degrades during retrograde cooling [67]. Consequently, Ca and Al may 
deplete in soil samples from the upper part of the mineralization core. 
In contrast, Ca and Al in propylitic alteration are transformed into stable 
minerals such as chlorite, epidote, and calcite, which are all common 
constituents of the propylitic alteration assemblage. 

Finally, based on fluid-rock interactions (i.e., syn-mineralization 
subsystem) and secondary process (i.e., post-mineralization subsystem), 
the Cu/(Al + Ca) index can be considered as mappable spatial proxies 
for delineating hydrothermal fluid interaction. Mineralization, 
alteration, and weathering in soil samples could all be considered using 
this ratio. 
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Table 1. Detection limits for analyzed elements. 

Element Ag Al As Au Ba Be Bi Ca Cd Ce Co 
Unit ppm ppm ppm ppb ppm ppm ppm ppm ppm ppm ppm 
Detection limit 0.1 100.0 0.5 1.0 2.0 0.2 0.2 100.0 0.1 1.0 1.0 
Element Cr Cs Cu Fe K La Li Mg Mn Mo Na 
Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 
Detection limit 1.0 0.5 1.0 100.0 100.0 1.0 1.0 100.0 5.0 0.5 100.0 
Element Nb Ni P Pb Rb S Sb Sc Sn Sr Te 
Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm 
Detection limit 1.0 1.0 10.0 1.0 1.0 50.0 0.5 0.5 0.5 2.0 0.1 
Element Th Ti Tl U V W Y Yb Zn Zr  

Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm  

Detection limit 0.5 10.0 0.2 0.5 2.0 0.5 0.5 0.2 1.0 5.0  

 

 
Figure 4. Histograms of raw Ag, Au, Cu, Mo, Pb, and Zn in soil samples of Kahang deposit. 

 

Table 2. Analytical error for pathfinder elements (Au, Ag, Cu, Mo, Pb and Zn), Al and Ca. 

Analytical 
error standard deviation Average difference Average of duplicate samples Average of original samples Element 

15.2% 0.083 0.022 0.328 0.350 Ag 
5.9% 11465 -14604.250 90906.107 76301.857 Al 
21.7% 20.8 -2.677 36.750 24.906 Au 
8.3% 9253 -1313.964 35835.857 34521.893 Ca 
4.7% 140.7 -44.500 373.107 328.607 Cu 
11.6% 4.46 -1.689 5.217 3.528 Mo 
14.9% 18.9 4.393 38.893 43.286 Pb 
7.4% 48.8 -21.893 183.214 161.321 Zn 

 
Table 3. Statistical summary of Cu, Mo, Pb, Zn, Ag and Au. 

Element min 1st quartile median mean 3rd quartile max range Standard deviation 

Cu (ppm) 2.3 68 90 124 134 988 985.7 106.3 

Mo (ppm) 0.6 0.8 0.9 4.7 1 856 855.4 46.4 

Pb (ppm) 10 37 47 69 68 4721 4711 128 

Zn (ppm) 2 113 136 159 174 2042 2040 101 

Ag (ppb) 0.18 0.3 0.32 0.33 0.34 2.67 2.49 0.1 

Au (ppb) 0.75 2 4 7 8 179 178.25 10.5 
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5. Results 

The Cu/(Al+Ca) index and standard method results in exploring 
porphyry copper deposits are presented in this section. The 
concentration-number fractal model was adopted, because it has a wide 
application and it is simple to implement in earth sciences [69-73]. Cu 
concentrations were divided into three populations using a C-N fractal 
model, with grades ranging from below 170 ppm to between 170 and 
420ppm and more than 420ppm, respectively. Mo has three 
populations, according to the C-N fractal model. 

The first population of Mo was discovered at grades below 10ppm, 
followed by the second population at grades between 10 and 25ppm, and 
the third population at concentrations greater than 25ppm. The Cu and 
Mo's C-N fractal model results appear to be the same as Afzal et al.'s 
spectrum–area fractal model [61]. 

Simple dot symbol maps were used to depict the distribution of Cu 
and Mo (Fig. 5). As can be seen, the district's central and northeast areas 
have the highest concentrations of Cu anomalies. A few of these 
anomalies were also discovered in the western and eastern regions of the 
study area. Anomalies have been discovered in the district's northeast 
and southwest quadrants. 

On the other hand, (Pb*Zn)/(Cu*Mo) as the best general indicator of 
blind porphyry–Cu deposits [28, 74] was applied to examine levels of 
mineralization and their principal (supra-ore, upper-ore, ore, lower-ore, 
and sub-ore) halos [27, 75-76]. The range of 0.1 to 1 and 1 to 10 
corresponds to the ore body level [29]. 

 

 
Figure 5. Cu and Mo distribution maps based on the C-N method in the Kahang 
deposit. 

With this assumption, the study area can be subdivided into at least 
four zones, each of which contains possible porphyry–Cu deposits at 
varying depths (Fig. 6.a). Nonetheless, this zone may be an artifact for 
the reasons stated previously. Additionally, they continue to delineate 
extensive areas in the region of interest for exploratory borehole drilling. 

As previously stated, when examining anomalies, fluid-rock 
interactions should be considered. The Cu/(Al+Ca) index was calculated 
based on an interpretation of the probable behavior of ore minerals. C-
N fractal models reveal three distinct populations: those with values less 
than 0.001461, those with values between 0.001461 and 0.008, and those 
with values greater than 0.008. The third population with a Cu/(Al+Ca) 
ratio greater than 0.008 addressed two of the five potential zones (i.e., 
potentail zones 1 and 3) identified by the Cu and (Pb*Zn)/(Cu*Mo) 
maps (Fig 6.b). 

 

 
Figure 6.. (Pb*Zn)/(Cu*Mo) and Cu/(Al+Ca) distribution maps in the Kahang 
deposit. 

6. Discussion 

In the Kahang district, soil anomalies were used to determine the 
magnitude and spatial distribution of probable outcropping or blind 
porphyry copper mineralization. Fig. 5 illustrates the distribution of Cu 
and Mo using a series of geochemical maps. Additionally, the 
geochemical zonality method concept enables the differentiation of 
upper to lower-ore anomalies (Fig 6.a). In Fig 7, the high-potential zone 
using the Cu, Mo, (Pb*Zn)/(Cu*Mo), and Cu/(Al+Ca) indexes was 
highlighted to facilitate a more effective comparison of anomalies. 
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This section compares the selection of high-potential zones for 
exploratory drilling using traditional geochemical data and fluid-rock 
interactions. The selection of pioneer exploratory boreholes in the initial 
attempt at ore exploration may affect the program's continuation. 

This section also evaluates high-potential zones extracted using 
various methods from exploratory boreholes located on them. The term 
''productivity'' was applied to provide a more precise definition of good 
and poor boreholes. 

The following formula is used to define the productivity of each 
borehole [77]: 

Productivity = Mean (%) * Thickness (m). 
The threshold value (cut-off = 0.2%) corresponds to the economic 

cut-off value for Cu grade in ore reservoir modelling. Thus, increased 
productivity indicates a high-quality standard for exploratory boreholes 
(Table.4 and Fig. 8). Several boreholes (e.g., KAG01, KAG22, KAG25, 
KAG30, KAG68, and KAG77) are indicated by extremely low 
productivity and are located on superficial anomalies. In comparison, 
others have a high level of average productivity (e.g., KAG15 and 
KAG16). 

 
Table 4. Borehole productivity. 

BH name mean (cut off= 
0.2%) 

Thickness (cut 
off= 0.2%) 

mean * thickness 
(cut off= 0.2%) 

KAG01 0.23 1 0.23 

KAG15 0.57 242 137.94 

KAG16 1.2 25 30 

KAG22 0.24 1 0.24 

KAG25 0 0 0 

KAG30 0.26 99 25.74 

KAG68 0.35 13 4.55 

KAG77 0.28 48 13.44 

 
The mineral system enables the evaluation of elemental changes 

associated with hydrothermal alteration via copper mineralization and 
the effect of secondary processes. This data was used to determine which 
parameters are most likely to provide the most reliable vectors toward 
copper mineralization. 

The data were utilized to create meaningful haloes around ore formation 

and to propose pioneer boreholes. However, because Cu is used as the 

numerator, the Cu/(Al+Ca) index map is still affected by copper 

concentration, but true anomalies are highlighted compared to erroneous 

anomalies. Additionally, a few areas highlight the importance of drilling 

pioneer boreholes, which can assist exploration programs in locating blind 

mineralization more quickly. 

7. Conclusion 

In this paper, a ratio that is highly beneficial compared to simple 
pathfinder elements or known ratio maps is presented, based on the 
mineral system of the Kahang PCD and the possible behavior of 
elements in soil samples and weathered environments. This study 
applied a hybrid of pathfinder, immobile, and mobile elements in soil 
samples to determine an exploration ratio using the mineral system-
based approach. In contrast, popular pathfinders could direct 
exploration programs towards high-potential areas within a porphyry 
copper prospect. 

The productivity of exploratory boreholes was compared to validate 
the performance of the Cu/(Al+Ca) index. Furthermore, the study 
indicates that the Cu/(Al+Ca) index aids in detecting and further 
refining soil geochemical anomalies. Moreover, the Cu/(Al+Ca) index 
results are consistent with the porphyry mineral system and the effect 
of secondary processes in a weathered environment. The results suggest 
that the Cu/(Al+Ca) index can be used to identify credible geochemical 
anomalies in other similar mineralization systems. 

 
Figure 1: Cu, Mo, (Pb*Zn)/(Cu*Mo) and Cu/(Al+Ca) geochemical anomalies map 
and location of boreholes located on anomalies. 

 

 
Figure 8. Copper grade variation in boreholes drilled in potential zones. 
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