تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,923 |
تعداد دریافت فایل اصل مقاله | 97,206,498 |
تاثیر پودر پر آبکافت قلیائی بر عملکرد، برخی صفات مورفولوژی روده و اکسیداسیون گوشت جوجههای گوشتی آرین در دوره رشد و پایانی | ||
علوم دامی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 225-243 اصل مقاله (1.56 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2023.351226.653918 | ||
نویسندگان | ||
رضا افشار؛ محمد امیر کریمی ترشیزی* ؛ فرید شریعتمداری؛ علیرضا ایوک پور | ||
گروه پرورش و مدیریت طیور، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
این پژوهش به منظور بررسی تاثیر سطوح مختلف پودر پر آبکافت قلیائی بر عملکرد، مورفولوژی روده، پراکسیداسیون گوشت جوجههای گوشتی آرین از سن 42 - 15 روزگی انجام گردید. تعداد 480 قطعه جوجه یک روزه مخلوط دو جنس (نسبت برابر) به صورت تصادفی بین 24 پن توزیع شدند. تیمارهای مورد استفاده، چهار عدد و شش تکرار به ازای هر تیمار و 20 قطعه جوجه به ازای هر تکرار بودند. جیرههای آزمایشی حاوی سطوح مختلف 0، 2، 4 و 5 درصد پودر پر بود. به کار بردن چهار و پنج درصد پودر پر در دوره رشد، منجر به کاهش وزنگیری و افزایش ضریب تبدیل غذایی در مقایسه با گروه شاهد گردید. سطح پنج درصد مصرف خوراک را در دوره رشد افزایش داد (05/0P<). در کل دوره سطح چهار درصد پودر پر، افزایش وزن بدن را در مقایسه با شاهد کاهش داد و مصرف خوراک در گروه دو درصد پودر پر کاهش یافت (05/0P<). ضریب تبدیل غذایی در کل دوره تفاوتی نداشت. ارتفاع پرز ژژونوم در همه سطوح و ایلئوم در سطوح چهار و پنج درصد پودر پر کاهش و تراکم سلولهای جامی در سطح پنج درصد افزایش یافت (05/0P<). با افزایش سطح پودر پر غلظت مالون دیآلدئید در گوشت سینه و ران تازه کاهش پیدا کرد به نحوی که گروه دریافتکننده پنج درصد پودر پر کمترین غلظت مالون دیآلدئید را داشت (01/0P<). سطح پنج درصد پودر پر رطوبت بستر را کاهش داد (05/0P<) و سطوح پودر پر بر غلظت آمونیاک بستر اثر نداشت. تاثیر تیمار سطوح پودر پر آبکافت قلیائی بر هیچ کدام از شاخصهای تلفات، شاخص کارایی تولید و هزینه خوراک به ازای هر کیلوگرم وزن زنده معنیدار نشدند. به عنوان نتیجهگیری کلی، در جوجههای گوشتی آرین با استفاده از پودر پر آبکافت قلیائی وزن بدن کاهش و ضریب تبدیل غذایی افزایش یافت در حالیکه میزان تلفات و شاخص کارایی تولید تغییر نداشت، اما موجب بهبود پایداری اکسیداتیو گوشت شد. | ||
کلیدواژهها | ||
پودر پر آبکافت قلیائی؛ جوجهگوشتی؛ کیفیت بستر | ||
مراجع | ||
Alahyaribeik, S., & Nazarpour, M. (2022). Effects of bioactive peptides derived from feather keratin on small intestinal function, meat quality, and performance of broiler chicks. http://dx.doi.org/10.21203/rs.3.rs-1174008/v1 Alahyaribeik, S., Nazarpour, M., Tabandeh, F., Honarbakhsh, S., & Sharifi, S. D. (2022). Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Tropical Animal Health and Production, 54(5), 1–9. https://doi.org/10.1007/s11250-022-03244-1 AOAC International. (1999). Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington. AOAC International. (2012) Official Method of Analysis: Association of Analytical Chemists. 19th Edition, Washington DC, 121-130. Atabak, A. H., Karimi Torshizi, M. A. and Rahimi, Sh. (2021). Effect of supplementation of different levels of alkaline hydrolyzed feather meal with dried corn steep liquor on performance and anti-oxidation indices of broiler chicken. Iranian Journal of Animal Science. 52(3), 202-215. https://doi.org/10.22059/ijas.2021.312300.653807. Awad, W. A., Ghareeb, K., Nitsch, S., Pasteiner, S., Abdel-Raheem, S., & Böhm, J. (2008). Effects of dietary inclusion of prebiotic, probiotic and synbiotic on the intestinal glucose absorption of broiler chickens. International Journal of Poultry Science, 7(7), 686–691. Botsoglou, N. A., Govaris, A., Botsoglou, E. N., Grigoropoulou, S. H., & Papageorgiou, G. (2003). Antioxidant activity of dietary oregano essential oil and α-tocopheryl acetate supplementation in long-term frozen stored turkey meat. Journal of Agricultural and Food Chemistry, 51(10), 2930–2936. https://doi.org/10.1021/jf021034o Coward-Kelly, G., Agbogbo, F. K., & Holtzapple, M. T. (2006). Lime treatment of shrimp head waste for the generation of highly digestible animal feed. Bioresource Technology, 97(13), 1515–1520. https://doi.org/10.1016/j.biortech.2005.06.014 Csallany, A. S., Guan, M. Der, Manwaring, J. D., & Addis, P. B. (1984). Free malonaldehyde determination in tissues by high-performance liquid chromatography. Analytical Biochemistry, 142(2), 277–283. https://doi.org/10.1016/0003-2697(84)90465-2 Csapó, J., & Albert, C. (2018). Methods and procedures for the processing of feather from poultry slaughterhouses and the application of feather meal as antioxidant. Acta Universitatis Sapientiae, Alimentaria, 11(1), 81–96. https://doi.org/10.2478/ausal-2018-0005 Duangnumsawang, Y., Zentek, J., & Goodarzi Boroojeni, F. (2021). Development and functional properties of intestinal mucus layer in poultry. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.745849 Finkelstein, J. D. (1990). Methionine metabolism in mammals. The Journal of Nutritional Biochemistry, 1(5), 228–237. https://doi.org/10.1016/0955-2863(90)90070-2 Fontoura, R., Daroit, D. J., Corrêa, A. P. F., Moresco, K. S., Santi, L., Beys-da-Silva, W. O., Yates, J. R., Moreira, J. C. F., & Brandelli, A. (2019). Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnology, 49, 71–76. https://doi.org/10.1016/j.nbt.2018.09.003 Giannenas, I., Tontis, D., Tsalie, E., Chronis, E. F., Doukas, D., & Kyriazakis, I. (2010). Influence of dietary mushroom agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Research in Veterinary Science, 89(1), 78–84. https://doi.org/10.1016/j.rvsc.2010.02.003 Henry, P. R., & Miles, R. D. (2001). Heavy metals–vanadium in poultry. Ciência Animal Brasileira, 2(1), 11–26. Hocking, P. M., Vinco, L. J., & Veldkamp, T. (2018). Soya bean meal increases litter moisture and foot pad dermatitis in maize and wheat based diets for turkeys but maize and non-soya diets lower body weight. British Poultry Science, 59(2): 227-231. https://doi.org/10.1080/00071668.2018.1423675 Jackson, S., & Diamond, J. (1995). Ontogenetic development of gut function, growth, and metabolism in a wild bird, the red jungle fowl. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 269(5 38-5), R1163–R1173. https://doi.org/10.1152/ajpregu.1995.269.5.r1163 Kanner, J. (2007). Dietary advanced lipid oxidation endproducts are risk factors to human health. Molecular Nutrition and Food Research, 51(9), 1094–1101. https://doi.org/10.1002/mnfr.200600303 Karthikeyan, R., Balaji, S., & Sehgal, P. K. (2007). Industrial applications of keratins–a review. Journal of Scientific and Industrial Research, 66 (9): 710-715. Khodaparast, D., Karimi Torshizi, M. A & Rahimi, S. (2019). Effect of alkaline hydrolyzed feather meal on performance and lipid oxidation of meat and eggs of laying quails. Animal Science Journal (Pajouhesh & Sazandegi), 129, 87-100 (in persian). Krilova, V., & Popov, V. (1983). A method for production of protein hydrolysate from a keratin source. SU Patent, 1, 64–161. Kumar, D. J. M., Priya, P., Balasundari, S. N., Devi, G. S. D. N., Rebecca, A. I. N., & Kalaichelvan, P. T. (2012). Production and optimization of feather protein hydrolysate from bacillus sp . mptkK6 and its antioxidant potential. Middle-East Journal of Scientific Research, 11(7), 900–907. Lasekan, A., Abu Bakar, F., & Hashim, D. (2013). Potential of chicken by-products as sources of useful biological resources. Waste Management, 33(3), 552–565. https://doi.org/10.1016/j.wasman.2012.08.001 Latshaw, J. D. (1990). Quality of feather meal as affected by feather processing conditions. Poultry Science, 69(6), 953–958. https://doi.org/10.3382/ps.0690953 Leeson, S., & Summers, J. D. (2000). Commercial poultry nutrition. Nottingham University Press. Li, C., Lesuisse, J., Schallier, S., Clímaco, W., Wang, Y., Bautil, A., Everaert, N., & Buyse, J. (2018). The effects of a reduced balanced protein diet on litter moisture, pododermatitis and feather condition of female broiler breeders over three generations. Animal, 12(7), 1493–1500. https://doi.org/10.1017/S1751731117002786 Martins, J. M. da S., Carvalho, C. M. C., Litz, F. H., Silveira, M. M., Moraes, C. A., Silva, M. C. A., Fagundes, N. S., & Fernandes, E. A. (2016). Productive and economic performance of broiler chickens subjected to different nutritional plans. Revista Brasileira de Ciencia Avicola, 18(2), 209–216. https://doi.org/10.1590/1806-9061-2015-0037 Nagai, Y., & Nishikawa, T. (1970). Alkali solubilization of chichken feather keratin. Agricultural and Biological Chemistry, 34(1), 16–22. https://doi.org/10.1271/bbb1961.34.16 National Research Council (NRC) (1994) Nutrient requirements of poultry. 9th edition, national academy press, washington DC. Naveed, A., Sharif, M., & Ji, S. (2019). Biological evaluation of NaOH treated and un-treated feather meal in broilerchicks. Austin J Nutr Metab., 6(2), 1069–1073. Nielsen, F., Mikkelsen, B. B., Nielsen, J. B., Andersen, H. R., & Grandjean, P. (1997). Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical Chemistry, 43(7), 1209–1214. https://doi.org/10.1093/clinchem/43.7.1209 Ochetim, S. (1992). Nutrient characteristics of some locally available feed resources in fiji. Asian-Australasian Journal of Animal Sciences, 5(1), 97–100. https://doi.org/10.5713/ajas.1992.97 Odetallah, N. H., Wang, J. J., Garlich, J. D., & Shih, J. C. H. (2003). Effect of keratinase on growth performance of broiler chicks fed starter diets. Poultry Science, 82, 664–670. Okolie, N. P., Akioyamen, M. O., Okpoba, N., & Okonkwo, C. (2009). Malondialdehyde levels of frozen fish, chicken and turkey on sale in benin city markets. African Journal of Biotechnology, 8(23), 6638–6640. Papadopoulos, M. C. (1984). Feather meal: evaluation of the effect of processing conditions by chemical and chick assays. Wageningen University and Research. http://edepot.wur.nl/205978 Poel, A. F. B. van der, & El-Boushy, A. R. (1990). Processing methods for feather meal and aspects of quality. Netherlands Journal of Agricultural Science, 38(4), 681–695. https://doi.org/10.18174/njas.v38i4.16557 Raharjo, S., & Sofos, J. N. (1993). Methodology for measuring malonaldehyde as a product of lipid peroxidation in muscle tissues: a review. Meat Science, 35(2), 145–169. https://doi.org/10.1016/0309-1740(93)90046-K Ravindran, V., Morel, P. C. H., Rutherfurd, S. M., & Thomas, D. V. (2008). Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations. British Journal of Nutrition, 101(6), 822–828. Ruiz, V., Ruiz, D., Gernat, A. G., Grimes, J. L., Murillo, J. G., Wineland, M. J., Anderson, K. E., & Maguire, R. O. (2008). The effect of quicklime (CaO) on litter condition and broiler performance. Poultry Science, 87(5), 823–827. https://doi.org/10.3382/ps.2007-00101 Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020 Sharma, R., & Rajak, R. C. (2003). Keratinophilic fungi: nature’s keratin degrading machines! Resonance, 8(9), 28–40. https://doi.org/10.1007/bf02837919 Skrzydlewska, E., & Farbiszewski, R. (1999). Protective effect of N-acetylcysteine on reduced glutathione, reduced glutathione-related enzymes and lipid peroxidation in methanol intoxication. Drug and Alcohol Dependence, 57(1), 61–67. https://doi.org/10.1016/S0376-8716(99)00040-X Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by bacillus sp. fk46 in submerged cultivation. Bioresource Technology, 86(3), 239–243. https://doi.org/10.1016/S0960-8524(02)00177-3 Teshfam, M., Nodeh, H., & Hassanzadeh, M. (2005). Alterations in the intestinal mucosal structure following oral administration of triiodothyronine (T3) in broiler chickens. Journal of Applied Animal Research, 27(2), 105–108. https://doi.org/10.1080/09712119.2005.9706550 Thornton Philip, K. (2010). Livestock production: recent trends, future prospects. Nairobi Kenya, Trans. R. Soc. B, 365(1554), 2853–2867. doi: 10.1098/rstb. 2010.0134 Phil. Visscher, C., Klingenberg, L., Hankel, J., Brehm, R., Langeheine, M., & Helmbrecht, A. (2018). Feed choice led to higher protein intake in broiler chickens experimentally infected with Campylobacter jejuni. Frontiers in Nutrition, 5, 79. https://doi.org/10.3389/fnut.2018.00079 Wan, M. Y., Dong, G., Yang, B. Q., & Feng, H. (2016). Identification and characterization of a novel antioxidant peptide from feather keratin hydrolysate. Biotechnology Letters, 38(4), 643–649. https://doi.org/10.1007/s10529-015-2016-9 | ||
آمار تعداد مشاهده مقاله: 392 تعداد دریافت فایل اصل مقاله: 278 |