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Digital rock technology has emerged as a powerful tool for analyzing 

reservoir rocks in the petroleum industry. Technically, Digital Rock Physics 

(DRP) is an effective method for determining reservoir rock properties. The 

article reviews the history of digital rock, from its origins in the study of 

porous media to its development into a practical tool for the petroleum 

industry. The features of digital rock are discussed, including the use of X-

ray microcomputed tomography and pore-scale modeling, which allow for 

the analysis of rock samples at the pore-scale. The philosophy and science 

behind digital rock are explored, emphasizing the importance of 

understanding the fundamental physics of fluid flow in porous media. The 

applications of digital rock in the petroleum industry are discussed, 

including its use in reservoir characterization, fluid flow simulation, and 

enhanced oil recovery. The benefits and limitations of digital rock are 

examined, highlighting the need for careful interpretation of results and the 

importance of complementary laboratory techniques. The role of pore 

network modeling in digital rock technology is also discussed, which allows 

for the simulation of fluid flow in porous media at the pore-scale. Finally, 

the article discusses future directions for digital rock, including the 

development of new imaging and modeling techniques and the integration 

of digital rock with other data sources. Overall, digital rock technology, 

including pore network modeling, is a promising tool for the petroleum 

industry that has the potential to improve the understanding of reservoir 

rocks and enhance hydrocarbon recovery. 

 

Introduction 

Energy markets are greatly affected by the development of hydrocarbon resources. 

Petroleum engineering has seen significant growth in the field of digital rock technology. This 
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involves creating 3D digital replicas of rock samples, which can then be analyzed in detail to 

gain insights into their properties and behavior. In the petroleum industry, digital rock 

technology is used for reservoir analysis, production optimization, and enhanced oil recovery. 

Using the spatial distribution of the connected pore space, it is possible to predict a rock 

sample's properties. So far, systematic upscaling of predictions has been impossible due to 

limitations in feature resolution and approximations. In porous media research, structural 

information is obtained from tomographic images. The extraction of pore networks enables 

pore network modeling simulations, which are invaluable for predicting transport properties 

and simulating entire device performance. 

Several technologies and businesses rely heavily on porous materials. In the contexts of oil 

recovery and aquifer management, naturally existing porous media such as rock and soil have 

been intensively studied [1]. Several industries, including electrodes [2], membranes [3], 

biomedical applications [4] and others [5], have benefited from engineered or produced porous 

materials. The design of porous materials poses a traditional optimization challenge: The 

existence of the solid is required to perform a crucial job, such as providing reactive surface 

area, yet also impedes flow and transport. Porous materials are characterized by the fact that 

the pore structure may have a decisive effect on the transport processes. Depending on how the 

pores are spatially dispersed, how they are linked, their forms, size distribution, and so on, two 

materials with the same porosity will have significantly different transport characteristics. As a 

result of this reliance on pore structure, visualization is a crucial aspect of porous media 

investigation. High-resolution x-ray tomography is especially beneficial since it provides 

images of the inside structure [6]. Benchtop x-ray tomography scanners that can create pictures 

with 1-nano meter voxel resolution are now commercially accessible, while the most recent 

generation can acquire images with 100-nm or lower resolution [7]. Extraction of the large 

quantity of data contained in such photos is a current endeavor [8]. The study of digital rock 

characteristics is an area of research that is undergoing significant development. This area of 

study includes the use of sophisticated imaging and modeling methods in order to investigate 

the physical and mechanical properties of rocks on a pore-scale level. The optimization of the 

design and operation of oil and gas reservoirs is one of the most important uses of digital rock 

properties [9], and one of the primary applications of digital rock properties is in the area of 

reservoir engineering. Digital rock characteristics may assist to enhance reservoir performance, 

cut production costs, and prolong the life of mature fields [10], since they provide extensive 

insights into the qualities of the rock. In digital rock properties, one of the primary areas of 

study is on the fracture characteristics of the rock. Fractures are an important factor in defining 

the permeability and porosity of rocks, and they may have a considerable influence on the flow 

of fluids inside reservoirs [11]. Fractures also play an important part in the formation of faults. 

Recent developments in high-resolution imaging methods, such as X-ray computed tomography 

(CT), have given researchers the ability to view and measure fractures and fissures in rocks on 

a scale that is micron and sub-micron in size [12]. Digital rock characteristics may give useful 

insights into the flow behavior of fluids inside reservoirs by studying the shape, distribution, 

and connectivity of fractures within rocks. This can assist to improve recovery procedures [13]. 

In digital rock properties, petrophysical characteristics are another essential field of inquiry that 

should be carried out. These characteristics include metrics that are essential in establishing the 

viability and productivity of hydrocarbon reservoirs, such as porosity, permeability, and 

capillary pressure. It is possible to employ digital rock characteristics to extract these qualities 

from high-resolution photographs of rocks, which enables a more in-depth knowledge of how 

reservoirs behave [9]. This information can be used to optimize the design of well completion 

and stimulation techniques, such as hydraulic fracturing, and to predict the performance of 

enhanced oil recovery (EOR) methods [14]. Another use for this information is in the context 
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of predicting the performance of enhanced oil recovery (EOR) methods. The study of rock 

mechanics may also benefit from an understanding of digital rock characteristics, notably in the 

subfields of deformation and failure. Digital rock characteristics may be used to anticipate the 

initiation and propagation of fractures, as well as to assess the potential for reservoir compaction 

and subsidence [15]. This is accomplished by modeling the behavior of rocks under various 

stress circumstances. These insights have the potential to assist in the optimization of drilling 

and completion operations, the reduction of the risk of production-related concerns, and the 

extension of the useful life of reservoirs [16]. In conclusion, digital rock properties provide an 

effective tool for the characterization and management of reservoirs. Researchers are able to 

gain an in-depth understanding of the physical and mechanical properties of rocks by employing 

sophisticated imaging and simulation techniques. They can then use this knowledge to improve 

the performance of reservoirs and increase the number of hydrocarbons that can be extracted 

from them. The representation of a porous structure by a network of pores and throats has been 

the subject of extensive study for many decades (e.g. [17, 18]), and this work is still being done 

by a large number of researchers in a wide variety of fields today (e.g. [19-21]). Recent 

developments in pore-scale modeling have shown that in order to study the flow and transport 

processes that occur in any disordered porous media, it is necessary to have a detailed 

description of the medium's morphology [22]. This comprises the determination of the porous 

internal structure, shape, and size of pore bodies or big void spaces (geometry), as well as the 

manner in which the thin channels or throat bodies link these vast void spaces together 

(topology), in order to characterize the pore connectivity [23]. The mapping of the porous 

medium onto a network of pores and throats, on the other hand, demands a degree of arbitrary 

decision making over what constitutes a pore or a throat, in addition to how and where these 

pore-throat constrictions intersect [23]. The implementation of different transport laws into a 

representative network of pores and throats might in practice enable the estimation of such 

macroscopic properties of porous media as permeability, effective diffusivity of fluids, and 

resistivity of the pore medium. This is possible given that the macroscopic properties of porous 

media may be sensitive to only some microstructural details (pore size and throat length 

distributions, average connectivity, among other things) [23], but not all. Before we can create 

a network of pores and throats, we need to begin by constructing a realistic sample of a porous 

medium. 

There are clear advantages in utilizing PNM that has attracted oil companies and researchers 

to this technology. First off, it eliminates the requirement for destructive testing. Thus, the same 

sample can be investigated repeatedly and more accurate results can be obtained. Second, 

complicated fluid interactions and behavior in porous media such as flow patterns and surface 

tension effects can be assessed using PNM. Additionally, other DRP methods such as DNS can 

be restrictive in large scale models because of computational cost and complexity of such 

models. Furthermore, DNS does not readily provide information on macroscopic properties, 

such as permeability which is crucial in petroleum engineering [24-27]. 

In this paper, first a comprehensive review on DRP is given. Then regarding the importance 

of PNM, it is investigated in further detail. PNM applications, features and limitations are 

explored. Finally, we concentrate on the future steps in imaging techniques considering the 

rapid growth of AI techniques and integration between this technology and other approaches 

used in petroleum engineering.  

History 

The concept of digital rock technology was first introduced in the early 2000s by researchers 

at Lawrence Berkeley National Laboratory (LBNL) in the United States. They developed a 

technique called "virtual core analysis" (VCA), which involved using X-ray computed 

tomography (CT) to create 3D digital images of rock samples [28]. These images were then 
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used to simulate fluid flow through the rock and to study the properties of the rock at the pore 

scale [29]. 

In 2004, researchers at the University of Texas at Austin unveiled a new digital rock 

technology called "pore-scale modeling." This technique involved using computational fluid 

dynamics (CFD) simulations to model the behavior of fluids in a rock sample at the pore scale 

[30]. This allowed researchers to gain insights into the complex interactions between fluids and 

rock, and to develop more accurate models for predicting fluid flow in reservoirs [31]. 

Since then, digital rock technology has continued to evolve and gain popularity in the 

petroleum industry [32]. In 2007, Schlumberger, one of the world's largest oilfield services 

companies, launched a digital rock analysis service called "Rock Physics Labs" [33]. This 

service uses advanced imaging and modeling techniques to provide detailed analysis of rock 

samples [34], helping oil and gas companies to optimize production strategies [35] and reduce 

exploration risks [36]. 

In recent years, researchers have continued to develop new digital rock techniques, including 

the use of artificial intelligence and machine learning algorithms to analyze and interpret digital 

rock data [36-38]. These techniques are helping to drive innovation in the petroleum industry 

and to improve our understanding of the complex processes that govern fluid flow in reservoirs 

[39, 40]. 

Digital rock technology has rapidly evolved over the past two decades and has become an 

important tool for petroleum engineers [41]. The technology was first introduced in the early 

2000s by researchers at Lawrence Berkeley National Laboratory and the University of Texas at 

Austin, and has since been adopted by major oil and gas companies such as Schlumberger [42, 

43]. As the technology continues to develop, it is likely that we will see more widespread 

adoption of digital rock techniques in the industry, leading to improved reservoir analysis and 

production optimization [44-47]. 

There are several companies and research centers that provide commercial digital rock 

analysis services. These services involve the use of advanced imaging techniques and 

computational methods to analyze the three-dimensional microstructure of rock samples. 

Corelab, FEI (now part of Thermo Fisher Scientific) and Digital core are some of the active 

centers which provide digital rock services to oil and gas companies. Additionally, there are 

Some universities and research centers that have launched laboratories which specialize in 

digital rock analysis, such as University of Texas at Austin, Imperial College London and 

University of Oklahoma. These companies and research centers offer micro-CT scanning, 

image processing, and pore network modeling as part of their digital rock analysis services [8, 

48-50]. 

Features 

Digital rock properties are a rapidly evolving field of research that involves the use of 

advanced imaging and simulation techniques to analyze the physical and mechanical properties 

of rocks at the pore scale [51-53]. One of the key applications of digital rock properties is in the 

field of reservoir engineering, where it is used to optimize the design and operation of oil and 

gas reservoirs [9, 54, 55]. By providing detailed insights into the rock's properties, digital rock 

properties can help to improve reservoir performance, reduce production costs, and extend the 

life of mature fields [10, 55]. 

Fracture properties are one of the key areas of focus in digital rock properties. Fractures play 

a critical role in determining the permeability and porosity of rocks, and can have a significant 

impact on fluid flow within reservoirs [11, 56-58]. Recent advances in high-resolution imaging 

techniques, such as X-ray computed tomography (CT), have enabled researchers to visualize 



Journal of Chemical and Petroleum Engineering 2023, 57(2): 249-285 253 

and quantify fractures and cracks in rocks at the micron and sub-micron scale [12, 59, 60]. By 

analyzing the geometry, distribution, and connectivity of fractures within rocks, digital rock 

properties can provide valuable insights into the flow behavior of fluids within reservoirs, and 

help to optimize recovery strategies [13, 61, 62]. 

Petrophysical properties are another important area of investigation in digital rock 

properties. These properties include parameters such as porosity [62], permeability [63], and 

capillary pressure [64], which are critical in determining the feasibility and productivity of 

hydrocarbon reservoirs [65, 66]. Digital rock properties can be used to extract these properties 

from high-resolution images of rocks, enabling a more detailed understanding of reservoir 

behavior [9]. This information can be used to optimize the design of well completion [67] and 

stimulation techniques, such as hydraulic fracturing [68], and to predict the performance of 

enhanced oil recovery (EOR) methods [14, 69]. 

Digital rock properties are also relevant to the study of rock mechanics, particularly in the 

areas of deformation and failure [70]. By simulating the behavior of rocks under different stress 

conditions, digital rock properties can be used to predict the onset and propagation of fractures, 

and to evaluate the potential for reservoir compaction and subsidence [15, 71, 72]. These 

insights can help to optimize drilling [73] and completion operations [74], reduce the risk of 

production-related issues, and extend the life of reservoirs [16]. 

Understanding the electrical properties of a reservoir can help engineers determine the type 

of fluid contained within the rock, estimate its volume, and ultimately determine the overall 

viability of the reservoir. Accurately estimating electrical properties has become critical, 

particularly in identifying bypassed or remaining oil and gas within a reservoir.  DRP can be 

used to investigate the electrical properties of rocks. Generally, rocks are composed of minerals 

with different electrical properties, including dielectric constant, conductivity, and polarization 

behavior, which can be influenced by a range of factors, including mineral composition, 

porosity, and fluid content. By measuring the electrical conductivity of the rock in response to 

the fluid flow, researchers can extrapolate the electrical properties of the rock itself. DRP can 

be used to investigate the polarization behavior of rocks in response to an applied electric field. 

In addition, it can measure the dielectric properties of a rock sample as a function of frequency 

and temperature, providing information about the distribution and behavior of polar molecules 

within the rock. 

Knowing how rocks fail is crucial for geologists and engineers working in fields such as oil 

and gas exploration, mining, and geohazard assessment. One way to investigate the damaging 

mechanisms of rock is through pore network modeling. The use of Digital Rock Physics (DRP) 

in combination with theoretical rock physics has gained significant interest as a supplement to 

traditional laboratory measurements. DRP approach accompanied by other novel methods such 

as machine learning can help to build reliable rock mechanical property models. These models 

can predict Young’s modulus and other rock mechanical properties with good agreement with 

actual traditional laboratory outputs [75]. 

Digital rock properties can be used to estimate stimulation techniques of porous media, 

particularly those that involve reactive flow. The modeling helps estimate where and how 

stimulation, such as hydraulic fracturing, can be most effective. Using digital rock properties 

for stimulation techniques can help reduce costs and improve the effectiveness of the process. 

DRP can be a reliable tool for visualizing and characterizing acid fracturing operation and 

analyzing the results of acidizing tests with more accuracy [76]. An application of PNM in 

visualizing acidization is show Fig. 1. 
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Fig. 1. Concentration fields. (a-d) show 3D distribution of pH within the reactive transport pore network 

model (rtPNM) corresponding at times corresponding to pore volumes of (a) 0, (b) 35, (c) 1032, and (d) 2442. 

(e) evolution of the concentration of aqueous species with the injected number of pore volumes [77] 

In conclusion, digital rock properties offer a powerful tool for reservoir characterization and 

management. By using advanced imaging and simulation techniques, researchers can gain a 

detailed understanding of the physical and mechanical properties of rocks, and use this 

information to optimize reservoir performance and enhance hydrocarbon recovery [54, 78, 79]. 

Philosophy and Science Behind 

Digital rock is a field that involves using advanced imaging technologies to study the 

properties and behavior of rocks at the microscale. One of the key techniques used in digital 

rock is X-ray computed tomography (CT), which involves taking multiple X-ray images of a 

rock sample from different angles and using computer algorithms to reconstruct a 3D image of 

the internal structure of the rock [80]. Other techniques used in digital rock include focused ion 

beam scanning electron microscopy (FIB-SEM) [9] and micro-CT [81], which can provide even 

higher resolution images of rock samples. 

The philosophy behind digital rock is to gain a better understanding of the properties and 

behavior of rocks that can affect the flow of fluids through subsurface formations [82]. This is 

important for a variety of applications, including oil and gas exploration, groundwater 

management, and carbon sequestration [83, 84]. By studying the microscale properties of rocks 

[85], researchers and engineers can develop more accurate models of fluid flow in the 

subsurface and better predict the behavior of rock formations under different conditions [80]. 

One of the key benefits of digital rock is the ability to study rock properties in a non-

destructive manner [86]. Traditional laboratory techniques for studying rocks, such as thin-

section microscopy and permeability measurements, typically involve cutting or drilling into 

the rock sample, which can alter its properties [87, 88]. Digital rock, on the other hand, allows 

researchers to study the internal structure of the rock without altering it [89]. This is particularly 
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important for studying the behavior of rocks under in situ conditions, where the properties of 

the rock may be different than those observed in the laboratory [8]. 

Another important aspect of digital rock is the integration of data from multiple imaging 

techniques [42]. For example, X-ray CT can provide information on the porosity and 

mineralogy of a rock sample, while FIB-SEM can provide information on the pore network 

connectivity and grain structure [90]. By integrating data from multiple techniques, researchers 

can gain a more comprehensive understanding of the properties and behavior of rocks at the 

microscale [35, 91, 92]. 

In conclusion, digital rock is an interdisciplinary field that combines philosophy and science 

to study the properties and behavior of rocks at the microscale. By using advanced imaging 

technologies like X-ray CT and FIB-SEM, researchers can gain a better understanding of the 

subsurface properties and behaviors of rocks, which is critical for developing effective 

strategies for resource extraction and management [61, 93-96]. 

Despite its high accuracy and reliability, pore network modeling can be time-consuming and 

computationally intensive, especially for large-scale systems. This is where the Multi-

Resolution Approach (MRA) comes into play. MRA refers to a technique in which an image is 

analyzed at different scales, each having different levels of detail. It enables us to quickly 

capture the essential features of a complex structure and generate an accurate 3D representation 

without the need for the high computational cost. Of course, blending all this data together can 

be quite the challenge. That's where AI techniques come in handy. Machine learning algorithms 

can be trained to analyze and interpret the data from various sources, allowing us to create a 

cohesive 3D reconstruction of the porous media under study. Deep learning can create large 3D 

continuum-scale models with spatially varying flow and material properties when paired with 

pore scale simulations such as OpenPNM [97]. Generally, with AI, researchers have gained the 

ability to produce 3D images of porous material at a faster pace and with more precision. 

Statistical methods can be utilized to generate 3d images from known distribution functions. 

One common statistical method for 3D image reconstruction of porous media is the random 

sequential adsorption (RSA) method. In this method, particles are randomly placed in the image 

space, and then allowed to move until they reach a stable, non-overlapping configuration. The 

resulting configuration is representative of the underlying pore structure. Gaussian Random 

Field (GRF) can be used to create a 3D image by generating a random field based on a specified 

covariance function. Markov Chain Monte Carlo (MCMC) which involves generating a 

sequence of random samples probability distribution based on a Markov chain is another 

statistical approach being used. Fourier Transform-based methods involve generating a random 

field in the Fourier domain, and then transforming it back to the spatial domain to create a 3D 

image. Sequential Gaussian Simulation (SGS) generates conditional simulations that honor 

specified statistical properties at multiple scales. The generated simulations are then combined 

to create a 3D image that satisfies the specified statistical properties. 

As an alternative to solving nth-order partial differential equations (PDEs), we apply finite 

difference schemes to solve 1D analytical solutions to relevant transport equations. Multiphase 

transport can be accurately predicted with PNMs despite their simplification [9]. In this way, 

the structure and flow characteristics interact based on the size and configuration of the pores 

and throats. A variety of imaging techniques [98, 99] and computer-generated structures can be 

used to obtain the structural properties of porous materials [100-102]. Models reproduce 

experimental properties by arbitrarily adjusting pore and throat sizes [103]. The PNM is 

naturally suited to percolation calculations [104], which makes them easy to simulate [105]. As 

a result, fluid distribution within media can be described at pore scale, which affects almost all 

other transport processes. As long as pores and throats filled with one phase are labeled as 

closed in PNMs, experimentally inaccessible multiphase parameters can be predicted [106-

108]. Literature reviews and comparisons of pore network modeling are extensive [1, 20, 109]. 

For one selected generated porous medium, Fig. 2 shows pores and throats in three dimensions. 
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Fig. 2. Network of pores and throats in porous media 

Different computational techniques have been created and utilized for examining flow and 

transport phenomena at the pore scale [110]. Generally, there exist two types of pore scale 

modeling. The first type of model is commonly known as direct numerical simulation (DNS) 

[111, 112], which consists of standard computational fluid dynamics (CFD) , lattice Boltzmann 

method (LBM) [113, 114], and smoothed particle hydrodynamics (SPH) [115]. The second 

type, which represents the pore space as a network connected by simplified pore bodies and 

throats, is the aforementioned term, pore network modeling (PNM). Gridding the domain 

directly solves the governing equations for transport in DNS. Formerly, Navier-Stokes 

equations were numerically solved [116, 117], while latter methods used kinetic models to 

achieve the same results [118-120]. With DNS, one-phase or multiphase fluid flow in 

conjunction with diffusion, sorption, and reactive transport can be simplified [121-124]. The 

most common application of direct numerical simulation is when porous media is considered 

as a volume average continuum without microscale features determined. The mathematical 

complexity of continuum models limits their practical use. Experiments must be conducted to 

measure the appropriate relationships to describe porous media's macroscopic transport 

properties [125]. It is difficult to measure these properties, especially if there is multiphase flow, 

for example, permeability coefficient or effective diffusivity. Models that calculate the average 

amount of fluid based on volume average do not identify discrete pore-scale events; they 

calculate the average amount of fluid based on volume average instead. We need more 

comprehensive formulations to describe fluid distributions within a continuum since Darcy's 

law cannot accurately describe fluid distributions within a continuum. This issue can be 

addressed through porous network modeling; however, it removes the tricky math [126]. In 

comparison with other methods, PNM is extremely computationally efficient and thus may be 

highly suitable for quickly evaluating different options or conducting large simulations in 

situations where a slight overestimation of dispersive transport is not a concern. However, this 

superiority in computational cost sacrifices the physical complexities of fluid flow [127]. Thus, 

it is a debatable issue how to apply PNM in more complex samples such as carbonates 

accompanied with fractures. A brief review on different pore scale modeling techniques is given 

below: 
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Table 1 Different pore scale modeling techniques. 

Name Base Further explanation Reference 

CFD DNS, 

Continuum 

approach 

-Utilizes a range of numerical discretization techniques. Such as finite 

element and finite difference to solve the partial differential governing 

equations such as Navier Stokes. 

- the mass-conservativeness of this approach gives it superiority over 

other approaches. 

For a comprehensive revie of formulation of CFD method readers can 

refer to Clemens et al. [128] 

 

[127, 129] 

LBM DNS, 

particle 

based 

-It can represent complicated physical phenomena in irregular 

geometries using simple Cartesian grids. 

- This method solves a discretized Boltzmann equation that describes 

the movement and interaction of fluid particles on a regular lattice with 

minimal degrees of freedom. For each node on the lattice, a particle 

distribution is defined for every possible particle velocity vector. The 

number of these vectors is restricted by allowing particles to move to a 

neighboring node within a single time step. 

- The Multi-Relaxation-Time (MRT)-LBM model, which has multiple 

relaxation times, is reported to show better accuracy than the 

Bhatnagar-Gross-Krook (BGK)-LBM model, which only has a single 

relaxation time. 

For a comprehensive revie of formulation of CFD method readers can 

refer to Golparvar et al. [127] 

 

[129-131] 

SPH DNS, 

particle 

based 

- The meshless nature of SPH enables a more convenient simulation of 

movable or deformable boundaries, while the LaGrange nature of SPH 

makes it easier to incorporate additional physical effects at a fluid-fluid 

interface. 

- Unlike LBM, SPH solves discretized versions of the Navier-Stokes 

equations directly, similar to Computational Fluid Dynamics (CFD) 

methods. 

For a comprehensive revie of formulation of CFD method readers can 

refer to Zhu et al. [132] 

 

[129, 132] 

PNM Network 

based 

-By utilizing a network of interconnected pores and throats, PNM 

represents a sample's pore and simulates multiphase flow by solving 

flow and transport equations on this network. 

- PNM have proven to be the most effective models for conducting 

pore-scale simulations of two- and three-phase flow in the geological 

researches. 

 

[127, 130] 

Applications 

Digital rock has numerous applications in the oil and gas industry. Some of the key 

applications of digital rock include: 

Monitoring of oil and gas wells: Digital rock can be used to monitor the production of oil 

and gas wells by studying the properties and behavior of the reservoir rock. This can help in 

identifying any changes in the flow characteristics of the reservoir, such as changes in porosity 

or permeability, which can affect the production of oil and gas [133]. 

Systematic analysis of rock structure: Digital rock can be used to analyze the rock structure 

systematically, which can help in identifying the composition, texture, and properties of the 

rocks that make up the reservoir. This information can be used to develop better geological 

models of the reservoir, which can aid in resource extraction [83]. 

Specialized investigation of mobility conditions: Digital rock can be used to investigate the 

mobility conditions in the reservoir, which can help in optimizing the production of oil and gas. 

For example, digital rock can be used to study the flow of fluids through the reservoir rock 
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under different conditions, such as changes in pressure or temperature. This can help in 

identifying the most effective techniques for enhancing the recovery of oil and gas from the 

reservoir [134, 135]. 

Identification of carbon injection processes: Digital rock can be used to identify the 

processes involved in carbon injection, which is a technique used for enhancing the recovery 

of oil and gas from the reservoir. Digital rock can help in understanding the flow of fluids 

through the reservoir rock under different carbon injection conditions, which can aid in 

optimizing the process [136-138]. 

Learning from development conditions: Digital rock can be used to learn from the 

development conditions of oil and gas reservoirs. For example, digital rock can be used to study 

the properties and behavior of rocks that have been subjected to various types of stress or 

deformation, such as those caused by hydraulic fracturing. This information can be used to 

develop more effective hydraulic fracturing techniques and to optimize production from the 

reservoir [139, 140]. 

Overall, digital rock has numerous applications in the oil and gas industry. By using 

advanced imaging technologies to study the properties and behavior of rocks at the microscale, 

digital rock can help in developing more effective strategies for resource extraction [141], 

optimizing production [142], and enhancing recovery from oil and gas reservoirs [143]. 

Benefits and Limitations 

Digital rock technology offers several benefits to the oil industry, including: 

Cost savings: Digital rock technology can save costs by reducing the number of physical 

samples required for testing. This can also reduce the need for costly and time-consuming 

laboratory experiments [36, 75, 144]. For example, a study by Ghanbarian et al. (2015) showed 

that digital rock technology reduced the number of core samples required for permeability 

testing by up to 80%, resulting in significant cost savings [145]. 

Faster analysis: Digital rock technology can provide results more quickly than traditional 

laboratory experiments, enabling faster decision-making and reducing the time required for 

reservoir characterization and production optimization [82, 146, 147]. For example, a study by 

Clarkson et al. (2017) showed that digital rock technology enabled faster analysis of rock 

properties compared to traditional laboratory experiments, reducing the analysis time from 

several weeks to a few days [148]. 

Improved accuracy: Digital rock technology can provide more accurate and precise 

measurements of rock properties, such as porosity and permeability. This can improve the 

accuracy of reservoir models and reduce uncertainty in production forecasting [149, 150]. For 

example, a study by Tariq et al. (2019) showed that digital rock technology provided more 

accurate measurements of porosity and permeability compared to traditional laboratory 

experiments [151]. 

Limitations: Need for specialized expertise: Digital rock technology requires specialized 

expertise in image analysis and numerical simulations. This expertise can be expensive and 

may not be readily available within an organization [152-154]. For example, a study by Babak 

et al. (2018) highlighted the need for specialized expertise in digital rock technology and the 

potential cost of hiring external experts to perform the analysis [155]. 

Need for calibration and validation: Digital rock technology requires calibration and 

validation to ensure that the results are accurate and reliable. This can be time-consuming and 

may require the use of physical samples [156-159]. For example, a study by Li et al. (2016) 

showed the importance of calibration and validation in digital rock technology and the potential 

impact of inaccurate calibration on the results [160]. 



Journal of Chemical and Petroleum Engineering 2023, 57(2): 249-285 259 

Limited applicability: Digital rock technology may not be applicable to all types of rocks 

and reservoirs. Some rocks may have complex pore structures that are difficult to image and 

analyze using digital rock technology [161, 162]. For example, a study by Khatibi et al. (2018) 

showed that digital rock technology was not effective in analyzing complex carbonate 

reservoirs due to the limitations of image resolution [163]. 

Pore Network Modeling (PNM) 

Several disciplines have studied porous structures using a network of pores and throats (e.g. 

[17, 18]) and continue to do so (e.g. [19-21]). The morphology of any disordered porous 

medium must be realistically described in order to understand flow and transport phenomena 

[22]. To specify the pore connectivity, it is necessary to identify the porous structure, shape, 

and size of pore bodies and their large void spaces (geometry) [23]. It is necessary to make 

some arbitrary decisions about what constitutes a pore and a throat, as well as where and how 

these pore-throat constrictions meet, when mapping porous media onto pores and throats [23]. 

Computer simulation can be used to estimate the macroscopic properties of porous media, such 

as permeability, effective diffusivity, and resistivity, at a reduced computational cost with 

acceptable accuracy [22]. Porous media must first be sampled realistically in order to have a 

network of pores and throats [23]. 

PNM Generation Methods 

On a pore space, a PNM is composed of discrete networks of pores and throats. Mass balance 

equations are applied to each pore and Poiseuille-type equations are solved to calculate the flow 

in the throats. In addition to simulating drainage, imbibition, and single permeability, these 

simulations have also studied relative permeability [164]. Petrochemical [165-167], geological 

[106, 168, 169], filtration [170, 171], and fuel cell [172] applications use porous network 

models. For predicting macroscopic petrophysical and transport properties, porous structures, 

permeabilities, diffusivities, formation resistivity factors, breakthrough capillary pressures, and 

thermal conductivities are calculated. In addition, pore network modeling provides accurate 

descriptions of microscopic fluid flow mechanisms, such as multiphase flow, wettability, 

capillary trapping, dissolution, diffusion, and convection. A pore network should have the same 

morphology and size distribution as a real porous media for which it is constructed. In order to 

construct a model of a pore network, both statistical and process-based methods can be used. 

Based on measured statistical properties, such as porosity and pore size distribution, the 

statistical methods generate random pores and throats [173-175]. The network generation 

process requires core plane images to extract effective statistical information. The morphology 

of porous networks obtained from statistical methods may differ from that of the original 

sample, even though their statistical characteristics may be identical (compared with 3-D 

tomographic images [103, 176]). Using this method, a two-dimensional computed tomography 

(CT) image is combined with information regarding the main processes in the formation of 

rock, including sedimentation, compaction, cementation, and diagenesis [169]. As a result, 

process-based methods can underestimate pore connectivity and associated transport properties; 

however, they provide valuable insights into how geological processes affect pore structure. 

[176]. Deep oil reservoir rocks are often heterogeneous and diagenetic, making reproduction 

difficult. 

Pore network models can be constructed using a variety of methods. However, imaging 

techniques are the most common methods of analyzing pore structure and algorithms for 

network extraction (e.g., SEM, TEM, and X-ray micro-CT scan) [177, 178]. Numerical 

algorithms, such as medial axis (skeletonizing) [179, 180], watershed segmentation [181-184] 

and maximal ball [185] have proved their importance in pore network extraction after image 

analysis [186]. Many researchers have adopted other techniques for pore size distribution, such 
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as gas adsorption and mercury intrusion porosimeter. A pore size distribution is most commonly 

obtained by imaging or gas adsorption in pore network modelling [187]. 

Three main components of porous media modeling are defined and solved: the geometrical 

and structural characteristics, the governing equations, and the macro properties. [188]. By 

doing so, larger scales can incorporate porous medium properties that are underappreciated. 

Using pore-scale modeling, you can estimate the dynamic properties of porous structures by 

distributing fluid phases heterogeneously inside voids. As Blunt and coworkers describe in 

detail, it involves various disciplines, such as spatial statistics, imaging, and mathematical 

modeling, which help characterize the desired phenomenon [9, 106, 189-193]. Three-

dimensional objects can be scanned and reconstructed in porous media using techniques he has 

developed. Okabe and Blunt (2004), Valvatne et al. (2005), Mostaghimi et al. (2012), and Blunt 

et al. (2013) have used these reconstructions and mathematical models to study Newtonian and 

non-Newtonian flow in several rock samples. 

Single Phase and Two/Three Phase Flow Approaches 

Pore network modeling has gained great importance and interest over the last two decades. 

In principle, this can be attributed to two factors: computational developments and 

improvement in rock-fluid system descriptions. It is possible to model some of the proposed 

EOR mechanisms at pore scale that have yet to be fully explained at larger scales, such as 

wettability alteration. Using adsorption particles, polymer entrapment, and viscous forces, 

Bolandtaba and Skauge (2011) investigated residual oil mobilization by polymer injection 

[194]. The surfactants in the rock-fluid system produced oil mobilization and wettability 

change, as studied by Hammond and Unsal (2012) and Qin and Hassanizadeh (2015) [195, 

196]. Using a model for in situ combustion of forward filtration, Lu and Yortsos (2001) 

investigated the effects of porous microstructure on filtering combustion dynamics [197]. 

Multi-physics models were carried out to reduce potential risks related to high combustion 

temperatures and low oxygen rates in practical applications by Xu et al. [198]. LSWF occurs 

due to theoretical considerations at the pore scale, according to Sorbie and Collins (2010). 

[199]. A commonly discussed mechanism in LSWF is wettability alteration. The authors 

assessed the degree of uncertainty associated with this mechanism. Oil-water-rock parameters 

are investigated systematically using the generated network [200]. An analysis of LSWF effects 

on oil recovery was conducted by Boujelben et al. (2018) under dynamic flow conditions. This 

method tracks salinity spatial distributions during recovery, and fluid distributions are updated 

based on capillary and viscous forces. Contact angle and local injected water concentrations are 

related to capillary effects and salinity [201]. 

By using X-ray images or numerically constructed porous materials, this method extracts 

pore networks directly from X-ray images. Micro-CT or other X-ray imaging facilities are 

necessary for image-based methods to obtain three-dimensional (3-D) images. Pore networks 

are constructed from 3-D images using an extraction algorithm [186, 202]. Several image 

processing techniques are used to prepare 3-D images, including cropping, noise removal, and 

phase segmentation. Using binary images as void spaces and connections, the 3-D network of 

pores and throats is created. Lindquist et al. developed an algorithm to calculate geometrical 

properties from CT-images, including geometric tortuosity and how pores are connected, based 

on a topological skeleton (medial axis) [203]. 

CT images can be analyzed using several algorithms [204]. Flow studies involving two 

phases (gas-water) frequently use the maximum ball algorithm. Silin and Patzek used this 

algorithm [205]. AlKharausi and Blunt then improved the maximal ball algorithm [186]. 

Multiple spheres (called maximal balls) are generated by the maximum ball algorithm in pore 
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space. Big spheres represent pores. Throats are small spheres that connect large spheres. 

Cylindrical throats are formed by small spheres between these large ones. The maximal ball 

algorithm extracts pore network from 3D CT images. There are spheres and cylinders in this 

pore network [98, 206]. With transport equations and extracted pore networks, porosity, 

absolute permeability, and relative permeability can be measured [207]. Fig. 3 describes the 

procedures to estimate transport properties by PNM. 

 

Fig. 3. Estimation of transport properties using porous network modeling 

PNM Types and Software 

There are two primary approaches to PNM: the quasi-static method and the dynamic method. 

Quasi-static PNEMs assume that the fluid flow is slow enough to be considered in equilibrium 

with the porous material [208, 209]. This approach is often used in applications where the fluid 

flow is slow, such as in groundwater management or membrane filtration. Quasi-static PNEMs 

are computationally efficient and can provide valuable insights into the behavior of fluids in 

porous media. Dynamic PNEMs, on the other hand, account for the unsteady nature of fluid 

flow and are often used in applications where the fluid flow is fast [209, 210]. This approach is 

more suitable for studying dynamic processes, such as fluid injection or production in oil and 

gas industry, and for predicting the behavior of reservoirs under different operating conditions. 

However, it requires more computational resources and may be more complex to implement 

than quasi-static methods. Thus, choosing the proper approach is dependent on the objectives 

defined for a project in which PNM is being utilized [208-211]. 

PoreXpert is currently the most well-known commercially viable software product, arising 

from a Plymouth University research group (formerly known as Pore-Cor [212]), although 

some groups publish overviews of their internal code [188]. PNM is not being developed in any 

other open-source framework. Compared to computational fluid dynamics, where quite a few 

powerful open source and commercial frameworks are available [213]. For internal use within 

their research groups, PNM researchers generally develop their own code. It is also unlikely 

that existing code is optimized for speed, modularity, extensibility, or maintainability, and it is 

rarely well documented for future users. Open PNM was developed to address these problems, 

which are all too common. A general, powerful, and flexible framework will be available to the 

porous media community to handle all kinds of PNM problems effectively. We will all be able 
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to build on each other's work, allowing researchers to share code, compare models, and speed 

up research. 

Developed at the University of Waterloo, OpenPNM is open source software [214]. 

Simulation of single- and multiphase transport in porous materials is provided. It has gained 

popularity among researchers, engineers, and students in various fields, including materials 

science, chemical engineering, and geology. From simulating blood flow in medical 

applications to simulating the behavior of membranes and catalysts in materials science 

OpenPNM has exhibited promising results. Considering the vital need for a profound 

knowledge of porous media in petroleum engineering, OpenPNM is a topic of interest in oil 

and gas industry. The software can simulate the behavior of fluids in different types of porous 

media, including sandstone, shale, and limestone. OpenPNM can also be used to analyze the 

properties of the rock formations, such as porosity and permeability, and how they affect fluid 

flow [214-216].OpenPNM has been used by many scholars. In Yang et al., slippage and 

adsorption effects were considered in pore-scale simulations of shale oil [217]. The geometry 

variation of carbonate rock during dissolution was studied with OpenPNM [218]. Among the 

easy-to-implement choices for studying fluid motion and transport, Golparvar et al. [127] 

reviewed various pore scale modeling methods. A number of applications use PNM [188], 

including reactive transport. Basically, PNM maps pore space onto a regular or irregular site-

bond lattice [107]. With PNM, large scale modeling and repeated simulations are possible due 

to the lower computational costs. The displacement process through sandstone can be simulated 

by four types of 2D networks [219]. Chatzis and Dullien [17] developed Fatt’s PNM to 3D and 

simulated mercury intrusion in sandstones. PNM extraction from core samples by Dong and 

Blunt [98] was modified using the maximal ball algorithm. Mahanta et al. [220] investigated 

PNM attributes in high-temperature heat-treated sandstones. Foroozesh et al. [221] studied 

stress-dependent fluid dynamics in shales using PNM. As Mehmani et al. report in [222], PNM 

has been applied to studying complex pore structures for the past 60 years, including extracting 

PNM from core samples and constructing stochastic PNM based on specific porosities. 

A comprehensive examination of porous media can be done using various modules that 

OpenPNM software provides. Several modules are designed in this software which can solve 

specific types of problems in porous media. ‘Network Module’ allows users to create 

customized network geometries and topologies and create pores and throats. Creating complex 

3D geometries of porous media can be possible with using ‘Geometry Module’. In addition, 

this module can combine with network simulations for more accuracy of the model. ‘Physics 

Module’ contains algorithms required for illustrating physical process inside the porous media 

such as heat transfer, mass transfer and fluid flow equations. The numerical algorithms required 

for solving equations existing in physics module can be accessed via ‘Algorithm Module’. This 

module consists of solvers for various types of design such as steady state, transient and 

Multiphysics simulation [214-216]. 

OpenPNM provides some crucial benefits. Firstly, it is open source which makes it 

accessible to everyone. In addition, high flexibility of this software enables the customization 

of the problem based on the user’s needs and the special project in hand. However, some 

limitations can be challenging for using this software such as steep learning curve and limited 

user support. Thus, it can be slightly challenging for users without a programming background 

to learn how to employ this software and makes individuals depend on online forums for solving 

their problems [214-216]. 
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Fig. 4. Output of OpenPNM random and cubic generation algorithms visualized with Paraview [215] 

In addition to OpenPNM and PoreXpert there are some other software which provide digital 

rock analysis and a variety of imaging data, including micro-CT scans. Avizo and Image-J are 

some of these software. A brief introduction and worthful notes from each one is given in Table 

2 [214-216]: 

 Table 2. The Softwares for applying PNM and DRP 

Name Developer 
Commercial / 

Open source 
Features Reference 

OpenPNM 

A group of 

researchers led by 

Dr. Jeff Gostick 

Open source 

- The framework is general enough to 

accommodate any topology. This enables 

the user to import any topology 

-To accommodate the vast diversity of 

networks, systems and applications, 

OpenPNM is able store an unlimited 

number of user defined pore and throat 

properties 

-OpenPNM is capable of simulating 

diffusion and permeability in either phase 

[214-

216] 

PoreXpert PoreXpert Ltd Commercial 

- One of the unique features of PoreXpert 

is its ability to generate virtual core plugs 

from the digital rock data 

- Allows the study of the pore level 

properties of any mesoporous or 

microporous solid, i.e. a solid with pore 

sizes greater than 2 nm 

[223, 

224] 

Avizo 
Thermo Fisher 

Scientific 
Commercial 

- Generally, contains the following 

modules: Volume Edit, Interactive 

Thresholding, Fill Holes, Mask, Separate 

Objects and Generate Pore Network Model 

- Can process the data from X-ray 

tomography: CT, micro-/nano-CT, electron 

microscope, and synchrotron 

- Will precisely calculate the porosity, 

analyze the pore connectivity and skeleton 

the pore network modeling for the multi-

scale and multi-mode data 

[225, 

226] 
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Image-J 

National 

Institutes of 

Health (NIH) 

Open source 

- Has become a popular platform for image 

processing and is widely applied in 

medical, biological and agricultural 

sciences 

- Enables processing and analyzing X-ray 

micro-CT images 

- Provides 16 different automatic 

thresholding methods for segmentation, 

including the widely used “Default”, 

“Huang” and “Otsu” methods 

[227, 

228] 

Validation Challenges 

One of the challenges of pore network extraction methods (PNEMs) is the accuracy of the 

extracted pore network. The quality of the extracted network depends on the resolution of the 

image used, the segmentation algorithm used to extract the pores, and the post-processing steps 

used to remove artifacts and noise. Inaccuracies in the pore network can lead to inaccurate 

predictions of fluid flow behavior. The segmentation process which comprises of both noises 

and artifacts in the computing process has been a challenge for researchers.  There are several 

methods which have been applied to overcome the difficulties such as manual thresholding 

techniques, machine learning and convolutional neural networks (CNN). Another challenge of 

PNEMs is the choice of model parameters, such as the contact angle and pore size distribution. 

These parameters can have a significant impact on the predicted fluid flow behavior and must 

be carefully calibrated to experimental data [159, 229-232]. 

There have been several modeling techniques developed in recent years to reconstruct pore 

structure. Process-oriented pore-scale approaches, optimization-based algorithms (OBA), and 

multiple-point statistics approaches are a few examples [233]. In analyzing the geometry and 

connectivity of sedimentary rock pores, Silin and Patzek [205] proposed the maximal sphere 

(or ball) concept. Pore and throat bodies were distinguished and their connectivity was 

established. Dong and Blunt [98] compared their results with network data extracted by several 

methods with the maximal sphere algorithm modified by Al-Kharusi and Blunt [186]. A search 

algorithm was developed instead of layer-by-layer growth of a void ball to reduce memory 

usage. It is possible to capture pore morphology and understand transport in porous materials 

using image-based pore network modelling, but how the CT-image is segmented, how the 

digital volume is extracted, and how it is simulated affect the predictions of macroscopic 

properties. Moreover, this method is limited without access to sophisticated X-ray imaging 

equipment. A statistical reconstruction algorithm, like the genetic algorithm, can be used to 

perform pore network reconstruction without the need for X-rays. Using a random pore size 

distribution such as normal or Weibull, this approach tunes the geometric parameters of a 

regular network model [234]. By generating network models, other properties that are difficult 

to measure can be predicted [20, 235]. Using a network model that was tuned to match capillary 

pressure measurements, Fischer and Celia [235] were able to predict absolute and relative 

permeability reasonably well for various rocks. A network model had been tuned to match 

capillary pressure by Dillard et al. [236] for predicting dissolution experiments. It is very 

important and challenging to set the initial guess values of the network parameters, though these 

algorithms are used to generate random pore networks that match some flow properties. This 

type of analysis requires an understanding of porosity and pore size distribution. The 

construction algorithm is faster when the network parameter values are reasonable guesses. The 
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most common way of categorizing PNM extraction methods was to divide them into topology-

centered and morphology-centered ones [130]. As they are the most widely used methods from 

both groups, we will discuss medial axis, maximal balls and watershed algorithms below. 

Topology-central methods such as medial axis extraction belong to this group. They all thin 

rock surfaces by removing pore space until a medial axis can be identified, i.e., a thin line 

denoting the pore space's center. Pore identification and partitioning may be difficult with 

methods that are relying on thinned pores to capture pore interconnections. In most cases, 

skeletonization-based methods have the downside of being sensitive to small pore defects, 

which leads to an over-segmentation of pores, making it difficult to identify fake brunches. It 

is possible to avoid this problem by preprocessing the input images [179, 203]. A maximal ball 

algorithm (MB) was proposed by Silin and Patzek for modeling pore networks [205]. Using 

this method, the largest inscribed balls are extracted from each void voxel that touches the grain 

or a boundary. In order to reduce the complexity of the resulting output, spheres that are 

completely inside others should be deleted. Families of pores can be formed by clustering them 

by their common ancestor. It can also be determined that a throat is a child of parents from 

different origins [205]. In the maximal ball algorithm, pores and throats are explicitly 

distinguished. The MB method generally works well for finding pores. Due to overlapping 

smaller spheres, connecting pores can be difficult when building throats [98]. Comparing MB 

networks to other techniques, some researchers noted small throats [237]. Finally, the pore 

space can be separated on discrete network elements by applying a watershed algorithm, a 

method that was proposed by Sheppard et al. [238] and Thompson et al. [239] more than a 

decade ago. A segmented pore space image can be used to calculate the distance map. Pores 

can be separated by throats [240]. Using this technique, distance and watershed transforms are 

combined in order to produce satisfactory results only for images with varying minima and 

catchment basins. In order to understand this, it helps to imagine two connected objects that 

have their local deepest points at their centers (these are called catchment basins). Watershed 

ridge lines are the first contact lines before liquid is mixed in both 'valleys' or peaks when water 

begins to fill these 'peaks'. In this way, the two touching objects can be marked as pore bodies, 

and the line between them as a pore throat by cutting the composition along this line [240]. Due 

to the fact that each local minimum can easily become the catchment basin, watershed 

segmentation can be sensitive to noise and over-segment input images as a result. Additionally, 

Gostick [237] noted that the distance transform might include ridges and plateaus as well as 

peaks at pore centers. As part of SNOW's improved algorithm, spurious local maxima resulting 

from over segmentation are detected. This method will be discussed in the next subsection. 

Most Affecting Parameters That Control PNM Performance 

A delaunay tessellation approach was used by Bryant et al. to construct a pore network 

associated with mono-dispersed packing of spherical grains and calculate their permeability 

[241]. Models of Berea sandstone were constructed using spherical and ellipsoidal grains by 

Oren and Bakke and flow simulations were conducted on the models [101, 242]. Various 

geological and geomechanically processes were also considered using spheres of varying sizes. 

In their model, only spheres were available in grain shapes, but they pointed out that grain 

shapes were not an important parameter when estimating permeability. To study the effects of 

geomechanically deformations on the flow properties of porous media, the Distinct Element 

Method (DEM) and Pore Network Model (PNM) are used [176, 243]. A sample subjected to 

shearing was captured using DEM and PNM by Manchanda et al. [244]. Combined rigid 

spheres form clumps, which are a rigid, non-spherical, whole element, formed by more than 

one rigid sphere. The distribution of sets of clumps is similar to that of distributing penetrable 

or impenetrable spherical grains to generate porous media (Fig. 5). 
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Fig. 5. Generating a porous medium by distributing (a) sets of balls and (b) sets of clumps in PFC3D 

Ramparchikolaee and colleagues calibrated a DEM model based on packed sand/sandstone 

rock mechanical data to examine the relationship between seismic source mechanisms and 

permeability in deformed rock joints [245]. A specific stress path was then applied to the sample 

and flow simulations were run. A more recent study by Yang and Juanes modeled pore pressure 

effects on fault slip failure modes using the Delaunay tessellation scheme for packing spherical 

balls in a DEM simulator [246]. 

Modeling the flow at the continuum scale can be done using Darcy's law. In addition, porous 

media parameters like porosity and relative permeability affect the accuracy of their models 

[164]. Rock imaging tools have improved our understanding of porous media flow in recent 

years by imaging porous rocks and fluids inside them. Simulate the flow in these media using 

this tool and publicly available numerical tools [206]. Typical conventional relationships are 

inadequate to quantify transport properties of complex geological materials such as carbonates 

and tight sandstones. There are numerous different sizes of vugs in multimodal carbonates, 

from nanometers to millimeters [233]. A significant portion of the world's hydrocarbon reserves 

reside in such carbonate rocks, so modeling and simulating their multiphase flow is an open 

challenge [247]. This necessitates pore-scale studies and physics-based transport properties for 

these complex rocks [248]. 

Researches Toward Predictive PNM That Relax Experimental Validation 

Capillary forces are often taken into account in quasi-static models for slow invasion of a 

wetting fluid in porous materials. Due to the difficulty of predicting imbibition permeability 

from pore network models, this approximation has been disputed in the literature. It is possible, 

nevertheless, for a model to be overfitted if it is compared only with continuum-scale 

experiments. Therefore, neither network extraction nor pore filling rules have been shown to 

influence generalizing model performance. By studying continuum-scale fluid distributions, 

Bultreys et al. investigated the validity of this model [249]. By implementing capillary-

dominated pore filling and snap-off, as well as a sophisticated cooperative pore filling model, 

they compare fluid arrangement evolution measured in fast synchrotron micro-CT experiments 

on two rock types. Their workflow for validating pore scale multi-phase flow models is shown 

in Fig. 6. Through numerical simulation or experimental micro-CT imaging, the researchers 

generated fluid distributions in a pore network model based on a micro-CT scan of the sample. 
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Their next step is to see if the simulation predicts up-scaled flow properties as well as the 

experiment does. 

 

Fig. 6. Bultreys et al.'s workflow for validating multi-phase flow models for imbibition in rocks [177] 

In some cases, quasi-static PNMs were able to match experimental relative permeability 

curves [243, 250], but a substantial body of research has not yet yielded satisfactory predictive 

abilities [251]. A number of shortcomings have been attributed to inconsistencies in the 

extracted network or pore filling rules. As a result of X-ray micro-CT experiments [252, 253], 

viscous and inertial effects, such as ganglion dynamics, have been observed, challenging the 

quasi-static assumption [254, 255]. At intermediate scales of fluid clusters, the quasi-static 

approximation may produce fundamentally flawed predictions, but it is unclear how strongly it 

deviates from experimental reality. Since model simplifications lead to fewer macroscopic 

parameters, the validation question is complicated by the number of internal microscopic 

degrees of freedom. As a consequence, when adjusted to experimentally measured continuum 

scale flow properties, such as relative permeability and capillary pressure-saturation functions, 

the model may overfit the experimental data. [251]. A system's internal state should be 

determined by criteria that contain sufficient information [256]. 

Future Directions 

Improved imaging techniques: One of the main challenges of digital rock technology is 

obtaining high-quality images of the pore structures of rocks. Advances in X-ray CT imaging 

technology have greatly improved our ability to image rock samples in three dimensions. For 

example, the use of synchrotron-based micro-CT imaging has allowed for the resolution of sub-

micron features in rock samples [257]. Other imaging techniques, such as magnetic resonance 

imaging (MRI) and focused ion beam scanning electron microscopy (FIB-SEM), may also hold 

promise for improving our understanding of rock properties [258, 259]. 

Machine learning and artificial intelligence: Machine learning and artificial intelligence are 

becoming increasingly important in the oil industry, and there is potential for these technologies 

to be applied to digital rock data. For example, machine learning algorithms can be used to 

identify patterns in digital rock data and develop predictive models of reservoir behavior[260]. 

Artificial intelligence can also be used to optimize drilling and well completion operations [36]. 
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Integration with other technologies: Digital rock technology can be integrated with other 

technologies to provide a more complete understanding of oil reservoirs. For example, the 

combination of digital rock data with seismic data can provide a better understanding of the 

structure and properties of a reservoir [261, 262]. Additionally, the use of well logging data can 

help validate digital rock models and improve our understanding of the relationship between 

rock properties and well performance [263]. 

3D printing: 3D printing technology has the potential to revolutionize the way we study and 

test rocks. By using digital rock data to create physical models of rocks, we can perform 

laboratory experiments to validate digital rock models and better understand the properties of 

reservoir rocks [146]. Additionally, 3D printing can be used to create custom-designed tools 

for drilling and well completion operations [264]. 

Applications beyond oil: Digital rock technology may have applications beyond the oil 

industry. For example, it could be used to study the properties of other porous materials, such 

as concrete or soil [265]. Digital rock technology could be used in the field of medicine to study 

the properties of bone and other biological tissues [266]. 

Conclusion 

There is a high correlation between the internal structure of porous media and the 

morphology of the pore spaces in terms of the flow and transport within them. The size and 

shape of the solid particles affect how they are arranged in the pores. The size and shape of the 

solid particles also affect how they are spread out in the pores. The digital core model is an 

important tool for experimenting with the petrophysics of rocks because it can be used as a 

simulation platform. It can be used to simulate a wide variety of petrophysical properties and 

transport processes, including solid mechanics, acoustic transport, electricity transport, fluids, 

and fluid-solid couplings. In a numerical simulation experiment, the model is constructed using 

a 3D model of the rock, which must be accurate in order to conduct all the numerical simulation 

experiments. A variety of different physical and chemical processes have been simulated using 

porous network models, including phase exchange processes, non-Newtonian displacements, 

non-Darcy flows, reactive transport, and thermodynamically consistent layers of oil. These 

models have been applied in many different applications. An overview of how digital rock has 

evolved from its origins in porous media research to its development into a practical tool Digital 

rock analysis analyzes rock samples at the pore scale, utilizing X-ray micro-computed 

tomography and pore-scale modeling. Digital rock is discussed in the petroleum industry and 

its applications in reservoir characterization, fluid flow simulation, and enhanced oil recovery. 

A review of digital rock is presented, emphasizing the importance of working with 

complementary laboratory techniques and carefully interpreting the results. It is also discussed 

how pore network modeling can be used to simulate fluid flow in porous media. Digital rocks 

will be integrated with other data sources in the future, including new imaging and modeling 

techniques. 
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DNS Direct numerical simulation 

PNM Pore Network Model 
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Si Saturates of phase i 

T Time 
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