- بهاری، روحالامین؛ عباسپور، رحیم علی و پهلوانی، پرهام. (1394). پهنهبندی آلودگی ذرات معلق (PM) با استفاده از مدلهای آماری محلی در GIS (مطالعه موردی: کلانشهر تهران). علوم و فنون نقشهبرداری، 5 (3)، 74-165.
- شرعیپور، زهرا. و علی اکبری بیدختی، عباسعلی. (1393). بررسی توزیع مکانی زمانی آلایندههای هوا در شهر تهران برای ماههای سرد سالهای 2013-2011. علوم و تکنولوژی محیط زیست، 16 (1)، 149-166.
- نادیان، مرضیه؛ میرزایی، روحالله و سلطانی محمدی، سعید. (1397). کاربرد شاخص خودهمبستگی فضایی موران در تحلیل فضایی-زمانی آلاینده (مطالعه موردی: شهر تهران). مهندسی بهداشت محیط، 5 (3)، 197-213.
- AL-Qaness, M. A., Fan, H., Ewees, A. A., Yousri, D. & Abd Elaziz, M. (2021). Improved ANFIS model for forecasting Wuhan City air quality and analysis COVID-19 lockdown impacts on air quality, Environmental Research, 194,
- Akbary, M., Kermani, A. & Alijani, B. (2018). Simulation and analysis of polluted days in Tehran. International Journal of Environmental Research, 12, 67-75.
- Arhami, M., Hosseini, V., Shahne, M. Z., Bigdeli, M., LAI, A. & Schauer, J. J. (2017). Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmospheric Environment, 153, 70-82.
- Akinyemi, M., Emetere, M., & Akinwumi, S. (2016). Dynamics of wind strength and wind direction on air pollution dispersion. Asian Journal of Applied Sciences, 4 (2), 1-12.
- Azarmi, F., Kumar, P., Marsh, D. & Fuller, G. (2016). Assessment of the long-term impacts of PM 10 and PM 2.5 particles from construction works on surrounding areas. Environmental Science: Processes & Impacts, 18, 208-221.
- Alizadeh-Choobari, O., Bidokhti A A., Ghafarian, P., & Najafi, MS. (2016). Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran. Atmos Environ, 141, 443-53.
- Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27, 93-115.
- Anselin, L. & Getis, A. (1992). Spatial statistical analysis and geographic information systems. The Annals of Regional Science, 26, 19-33.
- Arjun, K., & Aneesh, K. (2015). Modelling studies by application of artificial neural network using matlab.
- Journal of Engineering Science and Technology, 10, 1477-1486.
- Budnik, T., & Casteleyn, L. (2019). Mercury pollution in modern times and its socio-medical consequences. Science of The Total Environment, 654, 720-734.
- BaldaufL, R. W., Isakov, V., Deshmukh, P., Venkatram, A., Yang, B. & Zhang, K. M. (2016). Influence of solid noise barriers on near-road and on-road air quality. Atmospheric Environment, 129, 265-276.
- Baghban, , Ahmadi, M. A., & Shahraki, B. H. (2015). Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches. The Journal of supercritical fluids, 98, 50-64.
- Basser, H., Karami, H., Shamshirband, S., Akib, S., Amirmojahedi, M., Ahmad, R., Jahangirzadeh, A. & Javidnia, H. (2015). Hybrid ANFIS–PSO approach for predicting optimum parameters of a protective spur dike. Applied Soft Computing, 30 ,649-642.
- Banu, G., & Suja, S. (2014). Fault location technique using GA-ANFIS for UHV line. Archives of Electrical Engineering,12, 247-262.
- Berkowicz, R., Palmgren, F., Hertel, O. & Vignati, E. (1996). Using measurements of air pollution in streets for evaluation of urban air quality—meterological analysis and model calculations. Science of the total environment, 189, 259-265.
- Cichowicz, R., Wielgosinski, G., & Fetter, W. (2020). Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry, 77, 35-48.
- Cujia, A., Agudelo-Castaneda, D., Pacheco-Bustos, C. & Teixeira, E. C. (2019). Forecast of PM10 time-series data: A study case in Caribbean cities. Atmospheric Pollution Research, 10, 2053-2062.
- Ceylan, Z., Pekel, E., Ceylan, S. & Bulkan, S. (2018). Biomass higher heating value prediction analysis by ANFIS, PSO-ANFIS and GA-ANFIS. Global Nest Journal, 20, 589-597.
- Chen, Y. (2018). Prediction algorithm of PM2. 5 mass concentration based on adaptive BP neural network. Computing, 100, 825-838.
- Chinneck, J. W. (2006). Practical optimization: a gentle introduction. Systems and Computer Engineering), Carleton University, Ottawa. http://www. sce. carleton. ca/faculty/chinneck/po. html, 11.
- De Rooij, M. M., Heederik, D. J., Borlee, F., Hoek, G. & Wouters, I. M. (2017). Spatial and temporal variation in endotoxin and PM10 concentrations in ambient air in a livestock dense area. Environmental research, 153, 161-170.
- Fang, C., Wang, Z., & Xu, G. (2016). Spatial-temporal characteristics of PM 2.5 in China: A city-level perspective analysis. Journal of Geographical Sciences, 26, 1519-1532.
- Feng, Q., Wu, S., Du, Y., Xue, H., Xiao, F., Ban, X. & Li, X. (2013). Improving neural network prediction accuracy for PM10 individual air quality index pollution levels. Environmental engineering science, 30, 725-732.
- Ghasemi, A., & Amanollahi, J. (2019). Integration of ANFIS model and forward selection method for air quality forecasting. Air Quality, Atmosphere & Health, 12, 59-72.
- Ghotbi, S., Sotoudeheian, S. & Arhami, M. (2016). Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmospheric Environment, 141, 333-346.
- Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.
- Goodchild, M. F. (1986). Spatial autocorrelation. Geo Books.
- Humpe, A., Brehm, L., & Gunzel, H. (2021). Forecasting Air Pollution in Munich: A Comparison of MLR, ANFIS, and SVM. ICAART, (2), 500-506.
- Han, L., Zhao, J., Gao, Y., Gu, Z., Xin, K., & Zhang, J. (2020). Spatial distribution characteristics of PM2. 5 and PM10 in Xi’an City predicted by land use regression models. Sustainable Cities and Society, 61, 102329.
- Heger, M., & SARRAF, M. (2018). Air pollution in Tehran: Health costs, sources, and policies, World Bank.
- Hossaini, M., Mekhilef, S., Afifi, F., Halabi, L. M., Olatomiwa, L., Seyedmahmoudian, M., Horan, B. & Stojcevski, A. (2018). Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability. PloS one, 13, e0193772.
- Habibi, R., Alesheikh, A. A., Mohammadinia, A. & Sharif, M. (2017). An assessment of spatial pattern characterization of air pollution: A case study of CO and PM2. 5 in Tehran, Iran. ISPRS international journal of Geo-information, 6, 270.
- Hosseini, V., & Shahbazi, H. (2016). Urban air pollution in Iran. Iranian Studies, 49, 1029-1046.
- Haupt, R. L., & HAUPT, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.
- Johansson, C., Norman, M., & Gidhagen, L. (2007). Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environmental monitoring and assessment, 127, 477-487.
- Jang, J. S. (1996). Input selection for ANFIS learning. Proceedings of IEEE 5th International Fuzzy Systems, IEEE, 1493-1499.
- Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23, 665-685.
- Keykhosrowi, G., & Lashkari, H. (2014). Analysis of the relationship between the thickness and height of the inversion and the severity of air pollution in Tehran.
- Khan, F., Latif, M. T., Juneng, L., Amil, N., Mohd Nadzir, M. S. & Syedul Hoque, H. M. (2015). Physicochemical factors and sources of particulate matter at residential urban environment in Kuala Lumpur. Journal of the Air & Waste Management Association, 65, 958-969.
- Koza, J. (2007). Introduction to genetic programming. Proceedings of the 9th annual conference companion on Genetic and evolutionary computation, 3323-3365.
- Katsouyanni, K., Pantazopoulou, A., Touloumi, G., Tselepidaki, I., Moustris, K., Asimakopoulos, D., Poulopoulou, G. & Trichopoulos, D. (1993). Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Archives of Environmental Health: An International Journal, 48, 235-242.
- Li, H., Guo, B., Han, M., Tian, M. & Zhang, J. (2015). Particulate matters pollution characteristic and the correlation between PM (PM 2.5, PM 10) and meteorological factors during the summer in Shijiazhuang. Journal of Environmental Protection, 6, 457.
- Lei, K. S., & Wan, F. (2012). Applying ensemble learning techniques to ANFIS for air pollution index prediction in Macau. International Symposium on Neural Networks, Springer, 509-516.
- Masoudi, M., Sakhaei, M., Behzadi, F. & Jokar, P. (2016). Status of PM10 as an air pollutant and its prediction using meteorological parameters in Tehran, Iran. Environ. Bull, 25, 2008-201.
- Mihalache, S. F., Popescu, M. & Oprea, M. (2015). Particulate matter prediction using ANFIS modelling techniques. 19th International Conference on System Theory, Control and Computing (ICSTCC), 2015. IEEE, 895-900.
- Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical analysis, 27, 286-306.
- Prasad, K., Gorai, A. K. & GOYAL, P. (2016). Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmospheric environment, 128, 246-262.
- Paschalidou, A. K., Karakitsios, S., Kleanthous, S. & Kassomenos, P. A. (2011). Forecasting hourly PM 10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management. Environmental Science and Pollution Research, 18, 316-327.
- Rezakazemi, M., Dashti, A., Asghari, M. & Shirazian, S. (2017). H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. International Journal of Hydrogen Energy, 42, 15211-15225.
- Rosenlund, M., Picciotto, S., Forastiere, F., Stafoggia, M., & Perucci, C. A. (2008). Traffic-related air pollution in relation to incidence and prognosis of coronary heart disease. Epidemiology,15, 121-128.
- Roberts, S. (2004). Interactions between particulate air pollution and temperature in air pollution mortality time series studies. Environmental research, 96, 328-337.
- Sulaiman, G., & Younes, M. K. (2018). Modelling of traffic emissions using modified synchro-anfis integrated model on traffic signals. Feb-Fresenius Environmental Bulletin, 8308.
- Shahbazi, H., Ganjiazad, R., Hosseini, V. & Hamedi, M. (2017). Investigating the influence of traffic emission reduction plans on Tehran air quality using WRF/CAMx modeling tools. Transportation Research Part D: Transport and Environment, 57, 484-495.
- Stoimenova, M., Voynikova, D., Ivanov, A., Gocheva-Ilieva, S. & Iliev, I. (2017). Regression trees modeling and forecasting of PM10 air pollution in urban areas. AIP Conference Proceedings, AIP Publishing LLC, 030005.
- Sbihi, H., Tamburic, L., Koehoorn, & Brauer, M. (2016). Perinatal air pollution exposure and development of asthma from birth to age 10 years. European Respiratory Journal, 47, 1062-1071.
- Shahbazi, H., Reyhanian, M., Hosseini, V. & Afshin, H. (2016). The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission control science and technology, 2, 44-56.
- Shahraiyni, H. T., Sodoudi, S., Kerschbaumer, A. & Cubasch, U. (2015). A new structure identification scheme for ANFIS and its application for the simulation of virtual air pollution monitoring stations in urban areas. Engineering Applications of Artificial Intelligence, 41, 175-182.
- Sharipour, Z., & Akbaribidokhti, A. (2014). Investigation of spatial and temporal distributions of air pollutants over Tehran in cold months of 2011-2013. Journal of Environmental Science and Technology, 16, 149-166.
- Tella, A., & Balogun, A.-L. (2021). Prediction of ambient PM10 concentration in Malaysian cities using geostatistical analyses. Journal of Advanced Geospatial Science & Technology, 1, 115-127.
- Taheri Shahraiyni, H., & Sodoudi, S. (2016). Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere, 7, 1-15.
- Venegas, L., & MAazzeo, N. (2006). Modelling of urban background pollution in Buenos Aires City (Argentina). Environmental Modelling & Software, 21, 577-586.
- Wu, J., Winer, A. M., & Delfino, R. J. (2006). Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires. Atmospheric Environment, 40, 3333-3348.
- Yanosky, J. D., Fisher, J., Liao, D., Rim, D., Vander Wal, R., Groves, W. & Puett, C. (2018). Application and validation of a line-source dispersion model to estimate small scale traffic-related particulate matter concentrations across the conterminous US. Air Quality, Atmosphere & Health, 11, 741-754.
- Yavari, H., & Saligheh, M. (2011). Air pollution inversion levels in Tehran city.
- Zhang, J. & Ding, W. (2017). Prediction of air pollutants concentration based on an extreme learning machine the case of Hong Kong. International journal of environmental research and public health, 14, 114.
- Zhu, Y., Hinds, W. C., Kim, S., Shen, S. & Sioutas, C. (2002). Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmospheric environment, 36, 4323-4335.
|