تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,105,254 |
تعداد دریافت فایل اصل مقاله | 97,210,784 |
اثر پوشش و دبی بر الگوی رطوبتی و نگهداشت آب خاک در سامانه آبیاری قطرهای نواری | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 2، اردیبهشت 1402، صفحه 337-351 اصل مقاله (1.93 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.355882.669458 | ||
نویسندگان | ||
میلاد پورمنصوری* 1؛ عبدالرحیم هوشمند2؛ سعید برومندنسب3؛ خشایار پیغان4 | ||
1گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
2دانشیار گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
3استاد گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
4دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
آبیاری قطرهای نواری در صورت طراحی و اجرای صحیح، روشی موثر در افزایش راندمان آبیاری است. تحقیق حاضر به منظور بررسی اثر پوشش پلاستیکی و دبی بر ابعاد الگوی رطوبتی و نگهداشت آب خاک از یک منبع خطی انجام شد. بدین منظور، آزمایشی در قالب طرح آماری بلوکهای کامل تصادفی با چهار تیمار متشکل از دو عامل کاربرد یا عدم کاربرد پوشش و دبی (2 و 4 لیتر بر ساعت) در سه تکرار طراحی شد. این پژوهش در مزرعه دانشکده مهندسی آب و محیطزیست دانشگاه شهید چمران اهواز، در خاکی با بافت لوم رسی سیلتی صورت گرفت. ابعاد الگوی رطوبتی خاک، 24 ساعت پس از پایان آبیاری تعیین گردید. اختلاف رطوبت خاک بین روزهای دوم و چهارم پس از آبیاری بهعنوان معیار نگهداشت آب خاک در نظر گرفته شد. رطوبت خاک پس از گذشت 24 و 72 ساعت از پایان آبیاری، اندازهگیری شد. مطابق نتایج، با کاربرد پوشش عمق، عرض و مساحت خیسشده خاک بهترتیب 59/13، 25/20 و 54/38 درصد نسبت به تیمارهای بدون پوشش افزایش یافتند که این افزایش معنیدار بود. اختلاف رطوبت خاک بین روزهای دوم و چهارم پس از آبیاری، از 96/1 درصد در نوارهای بدون پوشش به 65/0 درصد در نوارهای پوششدار کاهش یافت. با افزایش دبی از 2 به 4 لیتر بر ساعت، عمق خیسشده خاک از 22/27 به 55/23 سانتیمتر کاهش، عرض خیسشده خاک از 72/26 به 88/31 سانتیمتر افزایش و مساحت خیسشده خاک از 17/602 به 28/658 سانتیمترمربع افزایش یافت که در تمامی موارد حاکی از اثر معنیدار افزایش دبی بر این پارامترها میباشد. افزایش دبی سبب افزایش نگهداشت آب خاک گردید اما این اثر معنیدار نبود. کاربرد پوشش، نسبت به افزایش دبی، تاثیر بیشتری بر افزایش ابعاد الگوی رطوبتی و نگهداشت آب خاک داشت. بنابراین، کاربرد پوشش پلاستیکی جهت افزایش راندمان سامانه آبیاری قطرهای، توصیه میشود. | ||
کلیدواژهها | ||
آبیاری تحت فشار؛ پوشش پلاستیکی؛ جبهه رطوبتی خاک؛ عرض خیس شده؛ یکنواختی پخش قطرهچکان | ||
مراجع | ||
Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific reports, 11(1), 1-10. Bazaneh, M., Khorsand, A., Zeinalzadeh, K., & Besharat, S. (2016). Evaluation of HYDRUS 2D software to estimate storedwater and wetting pattern of surface drip Irrigation. Water and Soil Science, 26(1-2), 287-301. (In Persian) Bilal, A., Ramazan, T., & Fariz, M. (2009). Effect of applied water and discharge rate on wetted soil volume in loam or clay-loam soil from an irrigated trickle source. African Journal of Agricultural Research, 4(1), 049-054. Bu, L. D., Liu, J. L., Zhu, L., Luo, S. S., Chen, X. P., Li, S. Q., ... & Zhao, Y. (2013). The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 123, 71-78. Cai, W., Gu, X., Du, Y., Chang, T., Lu, S., Zheng, X., ... & Cai, H. (2022). Effects of mulching on water saving, yield increase and emission reduction for maize in China. Agricultural Water Management, 274, 107954. Coelho, E. F., Santos, D. L., de Lima, L. W. F., Castricini, A., Barros, D. L., Filgueiras, R., & da Cunha, F. F. (2022). Water regimes on soil covered with plastic film mulch and relationships with soil water availability, yield, and water use efficiency of papaya trees. Agricultural Water Management, 269, 107709. Dasberg, S., & Bresler, E. (1985). Drip irrigation manual. International Irrigation Information Center. Elmaloglou, S., & Diamantopoulos, E. (2010). Soil water dynamics under surface trickle irrigation as affected by soil hydraulic properties, discharge rate, dripper spacing and irrigation duration. Irrigation and Drainage, 59(3), 254-263. Eskandari Tadavani, Z., Azhdary, K., Delghandi, M., Hosseini, S.H., & Dorostkar, V. (2019). Numerical and Empirical Simulation of Wetting Pattern in Subsurface Drip Irrigation in Clay Loam Soil, Iranian Journal of Soil and Water Research, 50(8), 1885-1897. (In Persian) Ghosh, U., Vimalkumar, I., Biswas, R. K., & Banerjee, D. (2022). Evaluation of soil wetting patterns in drip irrigation. Crop Research (0970-4884), 57. Gu, D., Guo, J., Fan, Y., Zuo, Q., & Yu, L. (2022). Evaluating water-energy-food system of Yellow River basin based on type-2 fuzzy sets and Pressure-State-Response model. Agricultural Water Management, 267, 107607. Guo, L., Cao, H., Helgason, W. D., Yang, H., Wu, X., & Li, H. (2022). Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China. Agricultural Water Management, 270, 107731. Han, M., Zhao, C., Feng, G., Yan, Y., & Sheng, Y. (2015). Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D. Water, 7(6), 2622-2640. Heidari, Z., Farasati, M., & Ghobadian, R. (2016). Effect of slope on soil wetting pattern under surface drip irrigation and simulation HYDRUS-2D model. Water and Irrigation Management, 5(2), 277-288. (In Persian) Heidari, Z., Farasati, M., & Ghobadian, R. (2018). Applicability of support vector machine in simulating wetting pattern under trickle irrigation. Journal of Water and Soil Science, 22(2), 373-382. (In Persian) Iran Meteorological Organization. (2019). (In Persian) Jamei, M., Karimi, F., Ali, M., Karimi, B., Karbasi, M., & Aminpour, Y. (2022). Experimental and computational assessment of wetting pattern for two-layered soil profiles in pulse drip irrigation: Designing a novel optimized bidirectional deep learning paradigm. Journal of Hydrology, 614, 128496. Karimi, B., Karimi, N., Shiri, J., & Sanikhani, H. (2022). Modeling moisture redistribution of drip irrigation systems by soil and system parameters: regression-based approaches. Stochastic Environmental Research and Risk Assessment, 36(1), 157-172. Karimi, B., Mohammadi, P., Sanikhani, H., Salih, S. Q., & Yaseen, Z. M. (2020). Modeling wetted areas of moisture bulb for drip irrigation systems: An enhanced empirical model and artificial neural network. Computers and Electronics in Agriculture, 178, 105767. Karimi, S., Ramezani Etedali, H., & Daneshkar Arasteh, P. (2018). Experimental study of mulch effect on distribution of soil moisture and salt in Fallow Season. Iranian Journal of Irrigation & Drainage, 12(2), 481-490. (In Persian) Kilic, M. (2020). A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system. Agricultural Water Management, 228, 105898. Koohi Chellehkaran, N., Dehghanisanij, H., Naghavi, H., & Kanani, E. (2020). Investigating Changes inYield and Water Productivity in Different Maize Hybrids (KSC 704 and KSC 410) Under Irrigation Management Using Strip Drip and furrow Irrigation Methods. Iranian Journal of Irrigation & Drainage, 14(5), 1639-1649. (In Persian) Li, S. X., Wang, Z. H., Li, S. Q., Gao, Y. J., & Tian, X. H. (2013). Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agricultural water management, 116, 39-49. Li, Y., Nie, W. B., & Feng, Z. J. (2022). Development of a soil wetting pattern estimation model for drip irrigation. Water Supply. Majd, S. K., & Azadi, G. R. (2021). Results Of the First Application of Drip Irrigation System on Yield and Water Productivity in Tea Plantations. Iranian Water Research Journal, 15(42), 81-90. (In Persian) Mehdizadeh, Y. M., Besharat, S., & Behmanesh, J. (2020). Effect of the Gravel Filters and Plastic Cover on Improving Water Infiltration Process and Increasing Moisture Storage of Rainwater Harvesting Systems in Sloping Lands. Iranian Journal of Watershed Management Science and Engineering, 14(48), 100-110. (In Persian) Ministry of Energy. (2020) Simple recommendations for water consumption management, office of consumption management and improvement of water efficiency. (In Persian) Mohammadi, S., Mirlatifi, S. M., Dehghanisanij, H., Hajirad, I., & Homaee, M. (2021). Modeling Soil Wetting Patterns under Pulsed Drip Irrigation by Dimensional Analysis Method and Comparison with HYDRUS-2D Numerical Model. Iranian Journal of Soil and Water Research, 52(7), 1903-1913. (In Persian) Mohanpuria, R., Kaur, S., Kaur, T., Singh, K. B., Brar, A. S., & Deol, J. S. (2022). Integration effect of drip irrigation and mulching on weeds and spring maize productivity. Naglič, B., Kechavarzi, C., Coulon, F., & Pintar, M. (2014). Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrigation science, 32(6), 421-436. Nikbakht, J., & Abdollahi Siahkalroudi, M. (2015). Effect of Magnetization of Irrigation Water on the Properties of Soil Wetting Pattern in Surface Drip Irrigation. Water and Soil Science, 24(4), 139-152. (In Persian) Orojian Mashhadi, O., Mirlatifi, S. M., & Dehghanisanij, H. (2021). Effects of Furrow and Subsurface Drip Irrigation Systems on Water Productivity of Vineyard in Bowed trellis and Creeping Plantation Systems. Irrigation and Drainage Structures Engineering Research, 22(84), 19-36. (In Persian) Panigrahi, B., Paramjita, D., & Paul, J. C. (2019). Impact of drip and furrow irrigation on tomato yield under mulch and non-mulch conditions. IJCS, 7(5), 3202-3207. Paul, P., Karmakar, S., Oraon, S., Biswas, S., Deb, S., Islam, S., ... & Ghosh, U. (2021). Evaluation of Soil Wetting Patterns in Clay Loam Soil under Drip Irrigation. Current Journal of Applied Science and Technology, 1-7. Piroozfar, V., Boroomandnasab, S., & Salehi, F. (2020). Effect of Drip Irrigation on Grain Yield and Water Use Efficiency (WUE) of Corn (Zea mayze. L) Under Winged and Non-Winged Tape Under Ahwaz Climatic Condition. Water and Soil Science, 30(4), 29-41. (In Persian) Rank, P. H., Unjia, Y. B., & Kunapara, A. N. (2019). Soil Wetting Pattern under Point and Line Source of Trickle Irrigation. Int. J. Curr. Microbiol. App. Sci, 8(7), 785-792. Shokri, S., Hooshman, A., & Ghorbani, M. (2017). The Estimation Evaporation Pan Coefficient for Calculating Reference Evapotranspiration in Ahvaz. Irrigation Sciences and Engineering, 40(1), 1-12. (In Persian) Vidya, K. N., Nagarajan, K., Kannan, B., Ramanathan, S. P., & Duraisamy, M. R. (2022). Modelling of wetting patterns for surface drip irrigation in dense clay soil. Journal of Applied and Natural Science, 14(2), 437-442. Vishwakarma, D. K., Kumar, R., Kumar, A., Kushwaha, N. L., Kushwaha, K. S., & Elbeltagi, A. (2022). Evaluation and development of empirical models for wetted soil fronts under drip irrigation in high-density apple crop from a point source. Irrigation Science, 1-24. Wang, J., Du, G., Tian, J., Jiang, C., Zhang, Y., & Zhang, W. (2021). Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity. Agricultural Water Management, 255, 106992. Water, U. N. (2020). Water and climate change. The United Nations World Water Development Report; UNESCO: Paris, France. Xiukang, W., Zhanbin, L., & Yingying, X. (2015). Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agricultural Water Management, 161, 53-64. Yaghi, T., Arslan, A., & Naoum, F. (2013). Cucumber (Cucumis sativus, L.) water use efficiency (WUE) under plastic mulch and drip irrigation. Agricultural water management, 128, 149-157. Zhang, Y. L., Wang, F. X., Shock, C. C., Yang, K. J., Kang, S. Z., Qin, J. T., & Li, S. E. (2017). Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agricultural Water Management, 180, 160-171. Zobeidi, T., Yaghoubi, J., & Yazdanpanah, M. (2022). Farmers’ incremental adaptation to water scarcity: An application of the model of private proactive adaptation to climate change (MPPACC). Agricultural Water Management, 264, 107528. | ||
آمار تعداد مشاهده مقاله: 188 تعداد دریافت فایل اصل مقاله: 217 |