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ABSTRACT  

Soil moisture is an important parameter in various applications such as climatology, meteorology, 

hydrology, and water resource management, so it is quintessential to have a product with high spatial 

resolution. Due to the fact that soil moisture data with high spatial resolution is not currently available, 

one of the goals of this article is to downscale the existing soil moisture products and improve their spatial 

resolution to 1 square kilometer. For this purpose, two methods have been used based on regression and 

neural network along with other available satellite data and products including different combinations of 

land surface temperature (LST), normalized difference vegetation index (NDVI), passive microwave 

sensor data including brightness temperature in different polarizations (TBH and TBV), digital elevation 

model (DEM) and short-wavelength infrared (SWIR) data from MODIS to downscale the 3 km SMAP 

satellite soil moisture products. The innovation of this study includes investigating the effect of window 

size on the accuracy of downscaling, the effect of interpolation type and the use of Sentinel-3 satellite. The 

evaluation results have shown that the soil moisture of Fars and Golestan provinces, respectively, have a 

correlation coefficient (R) of 0.82 to 0.93 and 0.72 to 0.77, the mean absolute percent error (MAPE) in 

both regression and neural network methods less than 21 to 30 and 42 to 46 percent, and the lowest root 

mean square error (RMSE) equal to 0.0448 and 0.0445 in the neural network method. Also, in the area of 

Fars province, the regression modeling results of the plain area are more satisfactory than those of the 

mountain area. 
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1. Introduction 

Achieving soil moisture is an important and challenging 

issue due to its wide applications. Remote sensing is used as 

an effective tool to estimate soil moisture in regional and 

global scales, especially for places where there is no basic 

knowledge. (Piles et al., 2014). Several approaches have 

hitherto been made to measure soil moisture either directly 

or indirectly using different remote sensing sensor in 

different electromagnetic wavelengths (Koley & Jeganathan, 

2020). 

However, the soil moisture measurements from remote 

sensing satellites are very low resolution, the main reason 

why we cannot use soil moisture products in a medium scale. 

The relationship between soil moisture and temperature 

and vegetation has been known since the early 1990s. 

Optical and thermal satellite observations are usually used 

to increase the spatial resolution of microwave data. 

(Usually, the resolution of these satellites is several 

kilometres). Triple models are one of the most important 

models that are widely used in remote sensing to downscale 

the soil moisture product using data from optical and 

thermal satellites. This model uses the relationship between 

soil moisture, temperature, and vegetation (Kim & Hogue, 

2012). In most of the conducted studies, this relationship is 

established by linear and non-linear model between soil 

moisture, Land Surface Temperature (LST) and Normalized 

Difference Vegetation Index (NDVI) (Ru et al., 2016). 

In 2017, Sadeghi et al. used the triangle model, which is 

the most popular remote sensing approach for surface soil 

moisture, and actually establishes a relationship between 
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soil moisture and land surface temperature, which is 

obtained through remote sensing optical observations. This 

method is called Thermal Optical TRAapezoid Model 

(TOTRAM) model, which uses the model within the land 

surface temperature-vegetation index (LST-VI) space in 

order to obtain soil moisture. The main weakness of this 

model; however, is that it is not suitable for satellites that do 

not have a thermal band (for example, Sentinel-2 satellite). 

To solve this problem, Sadeghi used the OPtical 

TRApezoid Model )OPTRAM( model, which is based on the 

linear relationship between soil moisture and shortwave 

infrared transformed reflectance (STR), and the 

parameterization is based on the pixels distributed within the 

short-wave infrared transformed reflectance-vegetation 

index (SRT-VI) space. In this study, data used is from 

Sentinel-2 and Landsat-8 satellite data. The predictions of 

OPTRAM and TOTRAM are comparable, the only difference 

between the models is that the observations in the OPTRAM 

model require observations in the frequency range of 

electromagnetic waves (Sadeghi et al., 2017). In 2018, 

Babaeian et al. used the global OPTRAM model for a long 

time (several decades), this study aimed to discover the 

history of soil moisture and agricultural drought in response 

to climate change in different regions (Babaeian et al., 

2018). 

In 2018, Cui et al. used the Leaf Area Index )LAI( from the 

GLASS satellite, the Microwave Polarization Difference 

Index (MPDI) obtained from the L-band brightness 

temperature of the SMAP satellite and the land surface 

temperature (LST) from the MODIS satellite to downscale 

the SMAP L3 product. Entering new data into the previous 

multiple linear regression model increased the accuracy of 

downscaling (Cui et al., 2018). 

The SMAP satellite has produced soil moisture data with 

a resolution of 9 km through a combination of L-band radar 

and radiometer observations with a balance between 

accuracy and resolution. On July 7, 2015, the SMAP radar 

failed and soil moisture production with a resolution of 1 km 

was not possible. Therefore, the possibility of hydrological 

applications became impossible. In 2019, Hongtao et al. 

used a spatio-temporal fusion model based on a non-local 

filter called Spatio-Temporal Fusion Model (STFM) to 

downscale 36 km data to 9 km data with the help of past 9 

km and 36 km products (Hongtao et al., 2019). 

In addition to triple models from different researchers, 

other models such as machine learning algorithm and 

artificial intelligence have been used for downscaling of soil 

moisture (Liu et al., 2020). 

In the research conducted by Portal, using important 

variable, the linear regression was employed to downscale 

the soil moisture. No comprehensive study has been carried  

out on the effectiveness of difference factor in downscaling 

soil moisture, for instance Digital Elevation Model (DEM) 

and Short-Wave Infrared (SWIR) are two most important 

factors for downscaling soil moisture but they do not use the 

regression method used by Portal et al. (2018).  

Based on the lack of DEM and SWIR effectiveness results 

in previous studies that used LST and NDVI for downscaling, 

two methods including multivariate regression and artificial 

neural network are employed all over two difference case 

study Fars and Golestan in different climatic conditions. The 

main innovations of the parameters in multivariate 

regression are also examined. These include windows size, 

interpolation method and the performance of Sentinel-3. 

In sections 2 and 3, case study and the frameworks of these 

methods are explained, respectively. In sections 4 and 5, 

results and conclusions are presented, respectively. 

2. Case Study 

Both downscaling methods were applied to two regions 

located in the north and south of Iran, Golestan province, 

whose climatic conditions are moderate and rainy, and Fars 

province, whose climatic conditions are cold, hot, and dry. 

Soil moisture results can provide important information for 

the management of water resources in various applications 

to governments. Therefore, it is substantial to have accurate 

and reliable soil moisture product. 

3. Material and Method 

3.1. Material  

The auxiliary data used for downscaling is NDVI, LST, 

TBH, TBV, DEM and SWIR spectral band which are mainly 

provided by MODIS.  

One of the goals of this research is to check the accuracy 

of Sentinel-3 products in the downscaling of soil moisture in 

comparison with MODIS products, therefore, at this stage, 

LST and NDVI have been extracted from Sentinel-3. 

Table 1. Satellite images used in this study 

Data Product Spatial 

Resolution 

Acquisition 

date 

 

SMAP 

SPL2SMAP-S 1-3 km 2021 

(Jun. 8); 

2021 

(Oct. 9) 

 

L1C-TB 9 km 

 

MODIS 

MYD11A1 

1 km MYD13A2 

MYD021KM 

 

Sentinel-3 

SL-2-LST 
500 m 

OL-1-EFR 

SRTM DEM 30 m 

3.2. Method 

In this paper, an attempt is made to downscale the SMAP 

soil moisture product using auxiliary data which are mostly 

produced by MODIS. The first method used for downscaling 

is an enhanced version of the regression method already 

proposed by Portal et al. (2018). The main difference lies in 

the input parameters used for the regression. In the method 

proposed by Portal, four different information layers 



Earth Observation and Geomatics Engineering 6(2) (2022) 67-75 
 

69 

 

including NDVI, LST, TBV and TBH are originally used. One 

of the main innovations of the method used in this paper is to 

include two more data which may be directly related to the 

soil moisture, i.e., DEM and SWIR band of MODIS. Eq. (1) 

illustrates the relation used for the regression: 

 

0 1 2 3 4 5 6BH BVSM b b LST b NDVI b T b T b DEM b SWIR         (1) 

 

Where 
ib  are the model parameters as coefficients which 

are to be estimated. The model parameters were estimated 

locally within a window with a specific size. One of the 

objectives of the present research is to investigate the effect 

of the estimation window size on the accuracy of the 

downscaled product. Moreover, this estimation is performed 

based on the information layers which are resampled on a 

grid with the pixel size of 3*3 km
2
. After the estimation of the 

coefficients, they are interpolated on a new grid with the 

pixel size of 1*1 km
2
. Evaluating the effect of different 

interpolation methods on the final results is another 

objective of the present article. The overall processing steps 

performed in the regression method is illustrated in Figure 

1. 

 

Figure 1. Different stages of downscaling using data from 

different satellites with multivariate regression method. 

𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 and 𝑏6 are the coefficients of the main 

regression model and 𝑏0́, 𝑏1́ , 𝑏2́, 𝑏3́ , 𝑏4
́ , 𝑏5́ and 𝑏6́  are the 

coefficient used to generate the downscaled map. 

 

Another comparison method of this research is the use of 

neural network for downscaling of the SMAP soil moisture, 

which, according to previous research, has not been already 

used. Similar to the regression method, the types of input 

parameters of the model in the case of the neural network 

will also be examined in the accuracy of the results. Based 

on the neural network, the model forms a downscaling model 

globally for the entire region. The effect of different network 

architectures and structures on downscaling accuracy is 

also evaluated. The ANN method is shown in Figure 2. 

 

Figure 2. Different stages of downscaling using data from 

different satellites with ANN method 

In order to investigate the effect of different input 

parameters including DEM and SWIR in the algorithm of 

regression and neural network methods, different 

combinations of input parameters were investigated. 

According to Table 2, statistical parameters for evaluating 

the downscaled products include correlation coefficient (R), 

Root Mean Square Error (RMSE) and Mean Absolute 

Percentage Error (MAPE). 

Table 2. Statitistical metric used between downscaled soil 

moisture and 1 km SMAP soil moisture product which has 

already been downscaled using Sentinel-1 

Metric Mathematical Definition 

 

R  
 

 

RMSE  

 

 

 

MAPE  
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4. Results 

As mentioned in the previous section, both regression and 

neural network methods are used to downscale the SMAP 

soil moisture. In this section, the results of these two methods 

are discussed. 

Adding DEM and SWIR into the initial input parameters 

already mentioned do not always significantly improve the 
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downscaling results. This conclusion is achieved while 

examining the downscaling approached on other areas 

whose results are not presented in this article. We came to 

the conclusion that it is not possible to make a general rule 

for choosing the input parameters for downscaling. The 

performance of downscaling and its relationship with the 

input parameters are highly influenced by the climatic and 

topography conditions of the study area.  

The downscaling results are compared to the soil moisture 

product which has been already downscaled using Sentinel-

1 SAR data. This product which is used as an assessment 

criterion is one of the standard products of SMAP. The main 

goal of re-downscaling of 3km product is to evaluate how 

much the optical and passive microwave remote sensing has 

potential for downscaling similarly to the SAR data whose 

backscattering coefficient is directly related to the soil 

dielectric constant or soil moisture. The evaluation shows 

that the correlation coefficient in Golestan and Fars 

provinces for the regression method is 93% and 77%, 

respectively, while this coefficient for the neural network 

method in Golestan and Fars provinces is estimated at 87% 

and 42%, respectively. Also, the best RMSE of Golestan and 

Fars province is estimated as 0.0436 and 0.0440, 

respectively, and belongs to the regression method. The 

lowest MAPE is related to the regression method in Golestan 

province, which is calculated as 21%. 

Also, the evaluation shows that the correlation coefficient 

in Fars provinces for the regression method with MODIS 

data is 73% but with Sentinel-3 data is 77%. 

Regarding the evaluation quantities, the downscaling 

results are comparable to similar studies. It is expected that 

the results would be more satisfactory in plains when 

compared to the mountainous areas. However, in the 

Golestan province, despite the presence of topography, the 

results of downscaling in plain and mountains were almost 

similar which is probably due to the high percentage of 

moisture in the soil over the whole area. The downscaling 

results are presented in Figure 3,4 (c and d). As observed, 

the small-scale variations of soil moisture are satisfactorily 

modeled by the regression. The reason is that the model 

parameters are locally estimated in this method. On the other 

hand, the neural network method is only able to model the 

main spatial trends of the soil moisture. However, the results 

of both methods are more smoothed than the original 1 km 

soil moisture that is depicted in Figure 3 and 4 (b). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. (a) 3 km SMAP soil moisture product, (b) 1 km  

SMAP soil moisture product which has already been 

downscaled using Sentinel-1, (c) 1 km SMAP soil moisture 

product downscaled using regression method  
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(a) 

 

 
(b) 

 
(c)  

 

 
(d) 

Figure 4. (a) 3 km SMAP soil moisture product, (b) 1 km   

SMAP soil moisture product which has already been 

downscaled using Sentinel-1, (c) 1 km SMAP soil moisture 

product downscaled using regression method and (d) 1 km 

SMAP soil moisture product downscaled using neural 

network method 

In this article, the effect of different data from different 

types of satellites, such as the effect of microwave waves in 

determining SM or the effect of waves from passive sensors 

and their related products in downscaling methods, is 

investigated. Due to the fact that each satellite has its own 

unique products, the corresponding parameter of the 

regression model will be different and as a result, the method 

used and the accuracy will be different. The products used 

are various products from different satellites that have the 

highest correlation with SM data. Among these products, 

SWIR, DEM or the combination of these two products are 

mentioned. 

Adding DEM and SWIR in two regions according to the 

chosen method (regression or neural network) and also the 

satellite used brings different accuracy, so that in some of the 

areas of adding named products to the main products 

improved the results but, in some areas, it did not improve 

the results. The results are presented in each area in Tables 

3, 4, 5, 6 and 7. 
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Table 3. Statistical metrics for the comparison of downscaled 

SM maps against concurrent in 1 km SMAP SM product 

which has already been downscaled using Sentinel-1 with 

Regression method for the 2021/10/09 in the Golestan 

province 

Regression Method 

(Linear Interpolation) 

Input Features R 
RMSE 

(cm3/cm3) 
MAPE 

(%) 

LST, NDVI, TBH, 

TBV 
0.83 0.069 30.09 

LST, NDVI, TBH, 

TBV, SWIR 
0.83 0.069 30.03 

LST, NDVI, TBH, 

TBV, DEM 
0.82 0.07 30.10 

LST, NDVI, TBH, 

TBV, SWIR, DEM 
0.82 0.07 30.00 

Table 4. Statistical metrics for the comparison of downscaled 

SM maps against concurrent in 1 km SMAP SM product 

which has already been downscaled using Sentinel-1 with 

ANN method for the 2021/10/09 in the Golestan province 

ANN method 

Input Features R 
RMSE 

(cm3/cm3) 
MAPE 

(%) 

LST, NDVI, TBH, 

TBV 
0.88 0.045 24.05 

LST, NDVI, TBH, 

TBV, SWIR 
0.89 0.046 24.33 

LST, NDVI, TBH, 

TBV, DEM 
0.89 0.045 23.55 

LST, NDVI, TBH, 

TBV, SWIR, DEM 
0.88 0.045 23.90 

Table 5. Statistical metrics for the comparison of downscaled 

SM maps against concurrent in 1 km SMAP SM product, 

which has been already, downscaled using Sentinel-1 with 

Regression method for the 2021/06/08 in the Fars province 

Regression Method 

(Linear Interpolation) 

Input Features R 
RMSE 

(cm3/cm3) 
MAPE 

(%) 

LST, NDVI, TBH, 

TBV 
0.74 0.047 42.71 

LST, NDVI, TBH, 

TBV, SWIR 
0.73 0.048 42.92 

LST, NDVI, TBH, 

TBV, DEM 
0.73 0.048 42.64 

LST, NDVI, TBH, 

TBV, SWIR, DEM 
0.73 0.048 42.65 

Table 6. Statistical metrics for the comparison of downscaled 

SM maps against concurrent in 1 km SMAP SM product, 

which has already been downscaled using Sentinel-1 with 

ANN method for the 2021/06/08 in the Fars province 

ANN method 

Input Features R 
RMSE 

(cm3/cm3) 
MAPE 

(%) 

LST, NDVI, TBH, 

TBV 
0.35 0.046 46.21 

LST, NDVI, TBH, 

TBV, SWIR 
0.35 0.046 45.32 

LST, NDVI, TBH, 

TBV, DEM 
0.39 0.045 45.51 

LST, NDVI, TBH, 

TBV, SWIR, DEM 
0.42 0.045 44.24 

Table 7. Statistical metrics for the comparison of downscaled 

SM maps against concurrent in 1 km SMAP SM product 

which has already been downscaled using Sentinel-1 with 

Regression method using features extracted from Sentinel-3 

data for the 2021/06/08 in the Fars province 

Regression Method 

(Linear Interpolation) 

Input Features R 
RMSE 

(cm3/cm3) 
MAPE 

(%) 

LST, NDVI, TBH, 

TBV 
0.77 0.044 43.58 

LST, NDVI, TBH, 

TBV, SWIR 
0.76 0.044 43.50 

LST, NDVI, TBH, 

TBV, DEM 
0.77 0.044 43.80 

LST, NDVI, TBH, 

TBV, SWIR, DEM 
0.76 0.045 42.73 

 

Based on the MAPE map in Figure 5, it can be seen that 

the MAPE value is systematically lower in some areas and 

higher in others. With a closer examination, we find that the 

value of MAPE is lower in the plain and in areas where the 

area is flat and without topography, and higher in 

mountainous areas. In other words, the downscaled soil 

moisture product in flat and plain areas is more accurate 

compared to mountainous areas. 

The linear regression method in the plain area of Fars 

province has far better results than the mountain area. One 

of the reasons can be that the humidity changes in the plains 

have more spatial correlation and less diversity due to the 

lack of topography, so it can be modeled with the help of a 

simple regression model. On the other hand, in mountainous 

areas, due to the spatial variation of the soil moisture 

product, the regression method will not be able to model 

these spatial changes. Therefore, the result of downscaling 

will not be accurate enough. 

In the plain, most of the pixels in the area have an error of 

less than 50%, while in the mountain region; this value 

reaches 200% in Figure 6 (a), (b). Also, the minimum and 

maximum value of Residual error in the plain is 

approximately -0.05 and +0.05, while this quantity is 



Earth Observation and Geomatics Engineering 6(2) (2022) 67-75 
 

73 

 

approximately -0.1 and +0.1 in the mountains in Figure 7(a), 

(b). 

Figure 8(a), (b), shows the regression diagram in the 

plains and mountains, where the correlation coefficient in 

the plains is much higher than the correlation coefficient in 

the mountains. 

According to Table 8, the percentage of pixels presence is 

displayed based on the average error for the plains and 

mountains. Then, based on the average percentage of error, 

the plain and mountain areas are also classified into three 

classes 1, 2 and 3. According to the table, unlike the 

mountain region, most of the pixels in the plain area of Fars 

province (approximately 95%) fall into the three mentioned 

classes. Therefore, these high percentages of the presence of 

pixels in the three classes of the plain region compared to the 

mountains show the very appropriate performance of the 

regression method in the plain area of Fars province. 

 

Figure 5. Diagram of the mean absolute percent error 

(MAPE) in the whole Fars province. 

 
(a) 

 
(b) 

Figure 6. Mean absolute percent error (MAPE)  histogram 

of the regression method in Fars province (a) mountain 

area, (b) plain area. 

 
(a) 

 
(b) 

Figure 7. Residual error histogram of the regression 

method in Fars province (a) mountain area, (b) plain area. 
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                                               (a) 

 
                                             (b) 

Figure 8. Diagram of regression method in Fars province (a) 

mountain area, (b) plain area. 

Table 8. The percentage of presence of pixels based on the 

mean absolute percent error (MAPE) in Fars province (a) 

mountain area, (b) plain area 

Class MAPE 

(%) 

Percentage of 

pixels (%) 

1 

2 

3 

<10 

<20 

<50 

12.08 

24.83 

51.27 

(a) 

Class MAPE 

(%) 

Percentage of 

pixels (%) 

1 

2 

3 

<10 

<20 

<50 

49.29 

77.69 

95.18 

(b) 

The effect of increasing the estimation window size is 

shown in Figure 9. We came to the conclusion that, in 

general, increasing the size of the estimation window in the 

regression approach decreases the accuracy of downscaling 

of soil moisture. The reason for the decrease in accuracy due 

to the increase in the window size is the decrease in the 

efficiency of the regression method in modeling the soil 

moisture of heterogeneous data. Moreover, the comparison 

between the results of cubic and linear interpolation methods 

show that the cubic interpolation improves the downscaling 

results. 

The neural network with different architectures is also 

applied for downscaling the SMAP soil moisture. As a result, 

we observed that increasing the dimension of the neural 

network does not highly affect the results. Therefore, we 

chose the simplest type of architecture.  

 

Figure 9. Effect of increasing the estimation window size on 

the downscaling results. 

5. Conclusion 

In this article, two different methods based on multivariate 

regression and artificial neural network were used for 

downscaling soil moisture. The effect of different variable in 

downscaling is investigated. The main contribution of this 

research is to incorporate DEM and SWIR in multi 

regression method. 

By comparing the performance of two downscaling 

methods, it was found that the regression-based model, due 

to its nature of local estimation, could estimate the local and 

small-scale soil moisture effects, while the neural network-

based method is only able to model the general spatial trend 

of the soil moisture. Moreover, the results were not 

considerably improved by adding the DEM and SWIR 

spectral band. However, regarding the assessment 

quantities, the downscaling results are comparable to the 

similar studies. This is an indication of the high performance 

of the proposed downscaling methods. 

The results of the downscaling evaluation show a 

correlation coefficient of about 0.72 to 0.93, which is 

comparable to the research done by other researchers. For 

example, in the research conducted by Portal et al., the value 

of the correlation coefficient of the investigated method in a 

35 square kilometre network in Spain, in the range of 0.31 to 

0.86 and in a 60 square kilometre network in Australia, in 

the range of 0.63 to 0.92 has been calculated (Portal et al., 

2018). In the OPTRAM and TOTRAM method proposed by 

Sadeghi et al., the value of the correlation coefficient 

between 0.54 to 0.90 and 0.69 to 0.94 was obtained, 

respectively (Sadeghi et al., 2017). Also, in the OPTRAM 

method by Babaeian et al., correlation coefficient was 

calculated in the range of 0.10 to 0.70 (Babaeian et al., 

2018). The validation results of the downscaling product by 
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Fang et al., show relatively good accuracy with an average 

correlation coefficient of 0.73 (Fang et al., 2020). 

The results are achieved over the study areas with different 

climatic conditions. The result in different climate showed 

the data of the Fars province with the predominant cold and 

dry climate, the regression modeling results in the plains 

were more satisfactory than those of the mountains. 

However, the results achieved in the Golestan province with 

a predominant moderate and rainy climate, despite the 

presence of altitudes, the results over plains and mountains 

were the same and both are satisfactory, because in this 

area, in addition to high humidity, there are no large spatial 

changes in soil moisture. 

The effect of Sentinel-3 satellite on Fars province was 

investigated too. The results showed the high accuracy of 

Sentinel-3 in extracting LST and NDVI, which has caused 

more accuracy in downscaling and improved results. 
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