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ABSTRACT ARTICLE INFO

This paper proposes a novel population-based meta-
heuristic optimization algorithm, called Perfectionism
Search Algorithm (PSA), which is based on the psy-
chological aspects of perfectionism. The PSA algorithm
takes inspiration from one of the most popular model of
perfectionism, which was proposed by Hewitt and Flett.
During each iteration of the PSA algorithm, new so-
lutions are generated by mimicking different types and
aspects of perfectionistic behavior. In order to have a
complete perspective on the performance of PSA, the
proposed algorithm is tested with various nonlinear op-
timization problems, through selection of 35 benchmark
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1 Abstract continued

functions from the literature. The generated solutions for these problems, were also
compared with 11 well-known meta-heuristics which had been applied to many complex
and practical engineering optimization problems. The obtained results confirm the high
performance of the proposed algorithm in comparison to the other well-known algorithms.

2 Introduction

Over the past decades, development and application of optimization models have attracted
growing attention amongst mathematicians and engineers. In recent years, , they have
received enormous attention, due to the rapid progress of computer technology, including
development and availability of different types of user-friendly software, high-speed and
parallel processors, and artificial neural networks. Even though most practical optimiza-
tion problems have some restrictions that must be satisfied, study of available techniques
for unconstrained optimization problems is important for several reasons. For example,
many algorithms solve a constrained problem by converting it into a sequence of un-
constrained problems via either Lagrangian multipliers or penalty and barrier functions.
Moreover, most methods proceed by finding an improving direction and then function
minimization takes place along this direction. This line search is equivalent to minimizing
a function of one variable without constraints or with simple constraints, such as lower
and upper bounds of the variables [2]. It is worth stating that, improving directions
are the backbone of many well-known optimization algorithms such as the Cyclic Co-
ordinate method, the Hooke and Jeeves, the Rosenbrock, the Steepest Descent method,
the Newton’s method and its modifications, and Quasi-Newton and Conjugate Gradient
methods.
Although, the above-mentioned mathematical based methods are fast, quick in finding a
local minimum, and can guarantee global optima in both simple and ideal models, but
they suffer from limitations, as the optimality conditions and convergence of these pro-
cedures all rely on some specific assumptions. For instance, some types of convexity, the
first (or higher) order differentiability of an objective function; continuity, linearity or the
order of nonlinearity of constraints; the linear independence or orthogonality of direc-
tions along which an objective function is optimized and the closeness of some mappings
or regions in problems. Furthermore, to guarantee convergence to the global optimum,
some algorithms require careful attention in selecting the initial values. However, these
assumptions do not hold true for many problems, and in any case, they cannot be easily
verified.
On the other hand, over the past decades, there has been a growing interest in the de-
velopment of meta-heuristic algorithms. These algorithms are inspired by the behaviors
of natural phenomena and do not require any consideration of previous prerequisites [31].
Thus, meta-heuristics can allow for near-optimum solutions to be found within a reason-
able computation-time, with efficient use of memory, without any loss of subtle nonlinear
characteristics of the model and any need for complex derivatives or gradient information,
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and require careful selection of initial values. Metaheuristic optimization algorithms rely
on rather simple concepts and are easy to implement. Moreover, these algorithms can
bypass local optima and applied to a wide range of problems covering different disciplines.
Additionally, it has been experimentally shown that these algorithms which are able to
perform well, can provide suitable solutions for complex engineering optimization prob-
lems. These algorithms are in fact, good alternative approach to traditional methods,
especially for solving combinatorial problems, NP-hard problems and problems in which
the search space grows exponentially with the size of the problem [18]. For all these
reasons, many meta-heuristics were designed to solve various types of applied problems
such as Scheduling problems [56], pattern recognition [15], data clustering [37], tuning of
neural networks [33], data mining [64], engineering [5,20] and optimization [4,22,36,54,55].
Also, in recent years, there has been a growing attempt in developing algorithms inspired
by nature, providing some proofs of convergence, solving different classes of optimization
problems and investigating some other theoretical analyses [11,18].
Nature-inspired metaheuristic algorithms can be roughly classified into four categories
according to their inspirations: evolution-based, physics-based, swarm-based and human-
based methods. Evolution-based methods are inspired by the laws of natural evolution.
The most popular evolution-inspired technique is Genetic Algorithm [27]. Other popular
algorithms are Biogeography Based Optimization (BBO) [44], Evolution Strategy (ES)
[42] and Probability Based Incremental Learning (PBIL) [9]. Physics-based methods imi-
tate the physical rules in the universe. Examples of these algorithms include Gravitational
Search Algorithm (GSA) [41], Black Hole (BH) algorithm [22], Simulated Annealing [32],
Central Force Optimization (CFO) [14] and Water wave optimization (WWO) [65]. The
third group of nature-inspired methods includes swarm-based techniques that imitate the
social behavior of groups of animals. The most popular algorithms are Particle Swarm
Optimization (PSO) [29] and Ant Colony Optimization (ACO) [10,48]. Other examples
of swarm-based techniques are Bees Algorithm (BA) [38], Firefly Algorithm (FA) [61],
Whale Optimization Algorithm (WOA) [35], Forest Optimization Algorithm (FOA) [17],
Social Spider Optimization (SSO) [8], Cuckoo Optimization Algorithm (COA) [39], Grey
Wolf Optimizer (GWO) [34], Lion Pride Optimizer (LPO) [58] and Bat-inspired Algorithm
(BA) [60]. The final category consists of methods which are inspired by human behaviors.
Some of the most popular algorithms are Teaching Learning Based Optimization (TLBO)
[40], Harmony Search (HS) [16], Cultural Algorithm (CA) [43], Group Search Optimizer
(GSO) [23], Exchange Market Algorithm (EMA) [19] and Group Counseling Optimization
(GCO) algorithm [12].
In addition to the fundamental differences between these algorithms in terms of their
inspirations, they also differ in many other ways such as: types of selection strategies,
the generation of new solutions and the definition of exploitation and exploration opera-
tors. For instance, CFO, Stochastic Algorithm (SA) and (1+1)- Evolution Strategy (ES)
[30] are the three approaches that are shown to be very different amongst the heuris-
tic algorithms. CFO is a deterministic heuristic search algorithm which works based on
the metaphor of gravitational kinematics and does not use any random parameter in its
formulation; SA is a stochastic algorithm in which the search starts from a single point
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and continues in a sequential manner; and (1+1) - ES is a simple evolutionary algorithm
with one parent generating one offspring per iteration. However, most of the heuristic
algorithms have a stochastic behavior, where they do search in a parallel manner with
multiple initial points and generate several offsprings from several parents. In spite of the
previously mentioned differences among the heuristic algorithms, population-based meta-
heuristic optimization algorithms share a common feature regardless of their nature. The
search process is divided into two phases: (i) exploration - the ability to expand the
search space, and (ii) exploitation - the ability to find the optima around a good solution
[1]. Finding a right balance between exploration and exploitation is the most challenging
task in the development of any metaheuristic algorithm. Moreover, the individuals within
population-based algorithms usually pass three steps to complete the two phases of explo-
ration and exploitation: (i) self-adaptation (each individual improves its performance),
(ii) cooperation (individuals cooperate with each other through transfer of information),
and (iii) competition (individuals compete to survive).
It is important to mention that there is no single algorithm to achieve the most appropriate
solutions for all classes of problems. Some algorithms, in comparison to others, provide
better solutions for some particular problems. Generally, the effectiveness of different
optimization algorithms vary based on their generality, reliability, precision, sensitivity
to parameters and data, computational effort and convergence. Therefore, pursuing for
a new optimization technique based on its similarities with either natural or artificial
phenomena is an open problem [59]. This study describes a novel human-based meta-
heuristic optimization algorithm (namely, Perfectionism Search Algorithm - PSA). The
source of inspiration for PSA is the behaviors of extreme perfectionists from a psycho-
logical perspective. Perfectionism is a multi-dimensional personality trait characterized
by a person’s continuous striving for flawlessness and setting exceedingly high standards
of performance, accompanied by tendencies for overly critical evaluations of one’s own
behavior [52]. Perfectionism is best conceptualized as a multi-dimensional characteristic
[51], since psychologists agree that such type of characteristic consists of many positive
and negative aspects. The maladaptive form of perfectionism, drives people to try and
achieve an unattainable ideal, while the adaptive form of perfectionism can motivate them
to reach their goals. When perfectionists do not reach their goals, they often fall into de-
pression [62]. Recognizing that perfectionism has personal and social dimensions, Hewitt
and Flett [24] proposed a model with an ability to distinguish between the three forms of
perfectionism: Self-Oriented perfectionism (SOP), Other-Oriented perfectionism (OOP),
and Socially Prescribed Perfectionism (SPP), where the three forms comprise of different
attitudes, motivations, and behaviors.
The model proposed by Hewitt and Flett which explains the concept of perfectionism
has been the main source of inspiration for the development of PSA algorithm. In the
proposed algorithm, the above-mentioned types of perfectionism are mathematically mod-
eled. Then, PSA assigns a probability to each type, which are dynamically changed by
each round of iterations. During each iteration, PSA attempts to generate perfect solu-
tions; i.e. solutions with higher objective function values. In order to generate a new
solution, the algorithm initially selects one type of perfectionism based on its associated
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probability, and then generates a solution according to the behaviors of perfectionists
belonging to that particular group. In each case, a comparison is made to decide if the
new generated solution is a good solution or not (compared with the worst solution in the
population). If the generated solution is not a good one, the probability of the selected
type of perfectionism is decreased for the next round of generation. This case is corre-
lating to the depression case when perfectionists do not reach their goals. The efficiency
of the PSA algorithm proposed and developed in this research is evaluated by solving 35
mathematical optimization problems. Optimization results from these problems demon-
strate that PSA is an efficient algorithm for complex optimization problems compared to
the 11 well-known metaheuristic algorithms.
The remainder of this paper is organized as follows. In section 2, some characteristics of
SOP, OOP and SPP perfectionists are briefly discussed. This section provides some back-
ground information which are the psychological sources of inspiration for the proposed
algorithm. In Section 3, the proposed algorithm (PSA) is outlined, and its characteristics
and implementation steps are explained in details. Section 4 provides a discussion of the
proposed approach which presents the most considered theoretical aspects and applied
suggestions concerning PSA. Comparative study, test problems and experimental results
are presented and discussed in Section 5. In this section, the performance of the presented
algorithm is illustrated with several benchmark datasets and compared with ACO, PSO,
TLBO, BBO, Differential Evolution (DE) [53], HS, FA, WOA, BA, GSA and BH. Finally,
Section 6 summarizes the main findings of this study and suggests directions for future
research.

3 Basic Rules for PSA – A Brief Conceptual Discus-

sion on Perfectionism

As mentioned in the previous section, Hewitt and Flett’s tripartite perfectionism model
divides perfectionism into three forms of SOP, OOP and SPP. In the following, a brief
overview of important characteristics for these three forms will be provided. This discus-
sion provides a complete background into creating an outline of PSA, which is done by
deriving the basic aspects from the perfectionistic behaviors. In the next section, these
basic rules are mathematically modeled in order to perform the optimization.

3.1 Self-Oriented Perfectionism (SOP)

SOP reflects beliefs that are striving for perfection and generally, being perfect is impor-
tant. Self-oriented perfectionists have exceedingly high personal standards from them-
selves, continuous expectation of being perfect, and are very self-critical if they fail to
meet the expected criteria and demands [24]. In addition to the above, SOP can be
considered to be double-edged, in a way that can also be associated to some positive
characteristics such as conscientiousness, nurturing, intimacy, social development, and
altruism [49,51]. On the other hand, these characteristics often cause self-esteem deficits
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and self-evaluation and make individuals more prone to depression [46].

3.2 Other-Oriented Perfectionism (OOP)

OOP reflects beliefs, where it is important for others to strive for perfection and be perfect
[24,26]. Other-oriented perfectionists have exceedingly high standards from others, expect
others to be perfect, and are also highly critical of others who fail to meet the expectations
[24,26]. So, individuals with tendencies towards OOP have behaviors that are similar to
self-oriented perfectionists, with a difference of behavior directed outward towards others
rather than requiring the self to be perfect. Such characteristics result in lack of trust
towards others [24]. OOP is similarly double-edged and displays positive associations with
grandiose narcissism, Machiavellianism, psychopathy, and aggressive humor [45, 49,50].
Nonetheless, OOP is also tied to lower burnout [7], superior problem solving [13], and
positive self-regard [49].

3.3 Socially Prescribed Perfectionism (SPP)

Socially prescribed perfectionists believe that exceedingly high standards are being im-
posed on them. They believe others expect them to be perfect, and think that others
will be highly critical of them if they fail to meet their expectations [24,26]. SPP involves
a tendency towards having a fear of negative social evaluation and desire for approval
from those around them. When the perceived standards are not met, individuals blame
themselves and lower their self-worth, consequently resulting in depressive symptoms [24].
Socially prescribed perfectionists think and behave in ways that generate stress, which in
turn increases the risk for depression disorder [25].
For ease of future reference and before going into in-depth description of the PSA algo-
rithm, the basic rules of PSA algorithm, which have been derived from the above state-
ments, will be summarized below. The generated solution from PSA algorithm applied
to an optimization problem, is based on the following two main rules:
Rule1 (Striving step) – Perfectionists strive for flawlessness, set high standards of perfor-
mance and have tendencies for overly critical evaluations of one’s behavior [52].
Rule2 (Depression step) – When perfectionists do not reach their expectation, they often
fall into depression mood [62].
In PSA, implementation of the striving step is conducted by modeling some basic charac-
teristics of the above three types of perfectionism. These characteristics can be expressed
as follows:

CHARACTERISTICS OF SELF-ORIENTED PERFECTIONISTS IN PSA
SOP1 They expect to be perfect [24].
SOP2 They have exceedingly high personal standards [24].

CHARACTERISTICS OF OTHER-ORIENTED PERFECTIONISTS IN PSA
OOP1 They expect others to be perfect [24,26].
OOP2 They have high standards from others [24,26].
OOP3 They have lack of trust towards others [24,26].
OOP4 They display a positive correlation with narcissism [45,49,50].

CHARACTERISTICS OF SOCIALLY PRESCRIBED PERFECTIONISTS IN PSA
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SPP1 They believe others expect them to be perfect [24].
SPP2 They desire approval from those around them [24].

Also, the depression step is performed by modeling the rate of depression based on the following observations:
DEPRESSION EFFECTS

Dep1
When perceived standards are not met, the characteristics of SOP and SPP

can make individuals more prone to depression [25,46].
Dep2 OOP is tied to lower burnout [7] and positive self-regard [49].

4 Mathematical Model and Optimization Algorithm
PSA is initialized with random solution vectors (individuals or persons). For generating new solution, the algorithm iterates
over two main steps called Striving and Depression. Striving step is done in two phases. In phase one, the PSA selects
one of the three types of perfectionism SOP, OOP and SPP according to their associated probabilities PSOP , POOP , PSPP ,
respectively. In phase two, a novel solution is produced with regards to the mathematical model of the selected type of
perfectionism. In order to achieve this, SOP, OOP and SPP are individually mathematically modeled as three operators,
based on their characteristics.
After generating a new solution, the depression step is executed. If the new solution has a desirable performance (i.e., it is
better than the previously obtained worst solution in the population), algorithm continues to progress by randomly selecting
a type of perfectionism and generating another solution. Otherwise, the probability of the selected type is updated. Fig. 1
shows the flow chart for a typical iteration performed by PSA. Moreover, in order to further improve the performance of
the algorithm (in terms of complexity), PSA has been made to control the number of function evaluations by generating as
many new solutions as the population size.

Figure 1: Outline of PSA

In the following subsections, the details of the different steps, consisting of generating the initial individuals and performing
the striving and depression steps, will be presented. Then, the mathematical models of SOP, OOP and SPP are provided.
The detailed description of how the depression step is created will also be presented later, followed by the complete
description of the PSA algorithm.
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4.1 Initialization
As mentioned earlier, the first step is to randomly generate the population over the solution space. The objective function
value for each solution is treated as the performance of that solution, and PSA focuses on achieving solutions with high
levels of performance. In an n-dimensional optimization problem, a solution (individual or person) is represented as
x = (x1, x2, ..., xn) where n is the number of the decision variables (such as activities, traits or behavioral factors of that
person). The performance of each solution x = (x1, x2, ..., xn) is computed by evaluating its objective function value,
f(x) = f(x1, x2, ..., xn). Also, the number of solution vectors in the population is denoted by N which is kept constant
during the optimization process. During the searching process, the population update is accomplished by adding a set of
newly generated solutions to the population and then removing the same number of worst solutions from the population;
this is done in order to maintain the same number for the total population size (N). This process ensures that only the
best solutions are kept within the population, therefore adhering to our main inspiration, i.e., perfectionism - as the name
suggests. At the end of each iteration, solutions X1, X2, ..., XN are put in order (sorted) from the best to worst according
to their objective values (their performance values), i.e., for a minimization problem: f(X1) ≤ ... ≤ f(XN ). So, X1 is the
best solution (the solution with the smallest objective value), X2 is the solution with the second smallest value and so forth,
up to X N that is the solution with the largest objective value (i.e. the worst solution).
As mentioned before, for each new solution, the generation process is carried out over two phases. Phase one consists of
choosing one of the three types of perfectionism. Phase two consists of using the characteristics from the chosen type to
generate a new solution. In the following section, the mathematical formulations for SOP, OOP and SPP as optimization
operators are explained in more details.

4.2 Self-Oriented Perfectionism (SOP)
SOP operator generates a new solution X′ = {x′

1, x
′
2, ..., x

′
n) by modeling the characteristics SOP1 and SOP2, which were

defined in section 2. In this case, new solution X′ is considered as a self-oriented perfectionist who expects to be perfect (
SOP1) and has exceedingly high personal standards ( SOP2). For this purpose, 10% of the best solutions (i.e., 10% of the
first solutions in the sorted population) are considered as a set of patterns for X′ The X′ perfectionist, in the first instance,
randomly selects a solution (person) X∗ = (x∗

1, x
∗
2, ..., x

∗
n) as a finite sequences {(j, x∗

j )}nj=1 including n terms in the xy-

plane. So, finite sequence {(j, x∗
j )}nj=1 can be shown as number of points in the plane where the horizontal axis (x) is the

index number of the term j , and the vertical axis (y) is its value, x∗
j . Since this finite sequence is a function whose domain

is set 1, 2, ..., n, its graph (denoted by G∗) consists of some isolated points with coordinates (1, x∗
1), (2, x

∗
2), ..., (n, x

∗
n). In

PSA algorithm, Graph G∗ is interpreted as the behavior of X∗ . An example of how such a (behavioral) graph may look
like is depicted in Fig. 2.

Figure 2: Graph G∗ : the interpretation of the behavior of point X∗ .

A new solution X′ is generated by imitating the behavior of X∗ . In doing so, a random pattern X * is first selected from
the set of patterns. Then, SOP operator chooses a random component j0 ∈ {1, 2, ..., n} , and assigns the value of the j‘th
component from the selected solution ( x∗ ), to the corresponding component of the new solution ( x′

j0
). Thus, we will

have (j0, x∗
j0
) = (j0, x′

j0
). Point (j0, x∗

j0
) (or equivalently, (j0, x′

j0
) is labelled by ”∗” in Fig. 3. Finally, other components

x′
k(k ̸= j0) are then generated by the following equation:

x′
k = x′

j0
+ rk(x

∗
k − x∗

j0
), k ∈ {1, 2, ..., n} − {j0} (1)

Where rk is a uniform random number between −2 and 2 . Algorithm 1, as shown below presents the generation of a new
solution X′ = {x′

1, x
′
2, ..., x

′
n) using SOP operator.



19 A. Ghodousian/ JAC 55 issue 1, June 2023, PP. 11 - 36

Algorithm 1 (SOP operator)

Randomly select solution (pattern) x∗ from {X1, X2, ..., X N
10

}
Randomly choose a component x∗

j0
(j0 ∈ {1, 2, ..., n}) from the selected solution X∗ = (x∗

1, x
∗
2, ..., x

∗
n).

Set x′
j0

= x∗
j0

for each k ∈ {1, 2, ..., n} − {j0}
Choose a uniform random number; rk ∈ U(−2, 2)
Generate x′

k byEquation(1).
end for

A clear visualization of how a new position is generated using SOP operator is presented in Fig. 3, where in graph
G∗ , the behavior of X∗ is shown by solid line and in graph G′ , the behavior of X′ is shown by dotted line, which are all
sawtooth-shaped. Graph G∗ includes points (k, x∗

k) – shown by black circles – and G′ consists of points k (k, x′
k) – shown

by white circles.

Figure 3: Graph G′ : the imitation of the behavior of X∗ by new solution X ′ .

To illustrate the rationale behind equation (1), graphs G∗ and G′ need to be considered, and since x′
j0

= x∗
j0
, two points

(j0, x∗
j0
) ∈ G∗ and (j0, x′

j0
) ∈ G′ coincide and are equal to each other. Then, G′ is obtained from G∗ by replacing every

point of (k, x∗
k) ∈ G∗ by point (k, x∗

j0
+ rk(x

∗
k − x∗

j0
)) whose vertical difference from the point (j0, x∗

j0
) has been enlarged

if rk > 1 and reduced if rk < 1. This construction can be called rk-fold vertical expansion of the graph G∗, where the
term “expansion” allows for enlargement (rk > 1, e.g., point (k1, x∗

k1
) as shown in Fig.3). no change at all (rk = 1, e.g.,

point (j0, x∗
j0
)) and reduction (0 < rk < 1, e.g., point (k4, x∗

k4
)). Moreover, it also allows for enlargement or reduction

coupled with reflection (rk < 0) in the x-axis, that is, −2 < rk < −1 for reflected enlargement (e.g., point (k3, x∗
k3

)) and

−1 < rk < 0 for reflected reduction (e.g., point (k2, x∗
k2

)).
Consequently, in order to mathematically model the behavior of self-oriented perfectionists, condition SOP1 is achieved by
generating a new solution according to one of the best solutions, which is selected from the top 10 percent of solutions.
Also, Equation (1) satisfies condition SOP2 in the sense that it can be considered as a high personal standard performed
to each component of the new solution.

4.3 Other-oriented perfectionism (OOP)
OOP operator generates new solutions based on the best solution obtained so far (the most perfect person) within the
population. Similar to previously, the population is sorted at the end of each iteration. So, the existing best solution is the
first solution (i.e., X1 = {x1,1, x1,2, ..., x1,n}) in the sorted population. By this operator, X1 is considered as the other-
oriented perfectionist. For generating a new solution, OOP operator focuses only on X1 (condition OOP4, i.e., narcissism)
and does not pay attention to other solutions of the population. Also, it does not allow other solutions (X2, X3, ..., Xn)
to participate directly in the production of new solutions (condition OOP3 , i.e., a lack of trust). The fundamental idea
underlying OOP operator is the generation of a new solution around X1 = {x1,1, x1,2, ..., x1,n} (condition OOP1, where X1

expects X′ (new solutions) to be perfect). To model the only remaining condition ( OOP2 , i.e., X1 has high standards for X′

), some restrictions are created on the position of X′ , and as such the j’th component of a new solution X′ = {x′
1, x

′
2, ..., x

′
n}

is calculated as follows:
x′
j = x1.j + n(0, 2σj), j = 1, 2, ..., n (2)
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Where n(0, 2σj) is a randomly generated number with a normal distribution, mean value of 0 and standard deviation of
2σj . In order to establish the value of standard deviations, the average distance from the j ’th component of best solution
to that of other solutions X1 = {x1,1, x1,2, ..., x1,n} , i = 1, 2, ...,Kbest are calculated, where Kbest ∈ {2, 3, ..., N}. So,
using approach, the distance between x1,j and all xi,j ‘s , i = 1, 2, ...,Kbest are initially calculated, and then the value of
parameter σ2

j is created as follows: ∑Kbest
i=2 |x1,j − xi,j |

N − 1
(3)

Where |x1,j − xi,j | indicates the distance from j’th component of X1 (the best solution obtained so far) to that of Xi .
The whole process is repeated for each dimension j = 1, 2, ..., n and each time the average distance is calculated using only
the single dimension j . An example of how this approach can be used to generate the j‘th component (x′

j) from the new

solution X′ = {x′
1, x

′
2, ..., x

′
n}, is presented in Fig. 4. This figure illustrates equation (2), where P (x′

j) is the probability

that value x′
j will be selected as the j’th component of X′.

Figure 4: Probability density function P (x′
j) for generating j’th component of X ′.

The position of X1 and n–dimensional cube generated by σj ‘s (j = 1, 2, ..., n), for n = 2 has been shown in Fig. 5. According
to equations (2) and (3), the probability that a certain point X′ = {x′

1, x
′
2, ..., x

′
n} is generated as a new solution is equal

to:

Πn
j=1{

1

2σj

√
2π

e
− 1

2
(
x′
j−x1,j
2σj

)2

} (4)

Fig. 5 shows these probabilities for all the points in the plane. The points located in the darker regions are more likely to
be selected as the new solutions.
During the entire process of iterations, new solutions which are generated by the OOP operator, explore a good area
surrounding the best solution in a random manner. However, using the standard normal distribution presented in equation
(2), the search is more biased toward the best solution and less biased towards points which their distances from the best
solution are greater than the average distance calculated by equation (3). This guarantees the exploitation step of the
algorithm. Summary of how Algorithm 2 (OOP operator) can be expressed is as follows:

Algorithm 2 (OOP operator)

Choose a uniform integer random number Kbest ∈ {1, 2, ..., N}
for j = 1, 2, ...N

Calculate σj by Equation (3).
Generate a random number x′

j by Equation (2)..

end for

The stochastic character of variable Kbest can be used as the way to achieve a reasonable compromise between exploration
and exploitation steps. In such a way, only the best solutions ( Kbest ) are used in equation (3). The lower the value
of Kbest, the higher the convergence speed of the algorithm. In this case, the worse solutions in the population are not
considered.

4.4 Socially Prescribed Perfectionism (SPP)
On the contrary to the previous approach, the SPP operator generates a new solution corresponding to the solutions from
the population. In this case, a new solution X′ is interpreted as a socially prescribed perfectionist who is influenced by all



21 A. Ghodousian/ JAC 55 issue 1, June 2023, PP. 11 - 36

Figure 5: Cube generated by σ1 and σ2 ; the probabilities of points which may be generated
as a new solution.

the solutions of the population. The main idea behind SPP consists of two steps: (1) all the solutions have the same chance
to generate X′ (condition SPP1, i.e., X′ believes others expect him/her to be perfect); (2) the components of X′ are the
copies of the corresponding components from the solutions X1, X2, ..., XN (condition SPP2 , i.e., X′ desires approval from
those around him/her). Therefore, SPP operator is simply stated as follows:

Algorithm 3 (SPP operator)

for j = 1, 2, ...N
Randomly select a solution X̄ = {x̄1, x̄2, ..., x̄N .
Set x′

j = x̄j .

end for

This operator generates the new solutions within an area of minimal cell ( n-dimensional cube) including all the previously
obtained solutions (X1, X2, ..., XN ). So, this operator enhances the diversity of the population and shares information
among individuals. As a consequence, it assists the proposed algorithm to search solution space randomly and avoid any
trap within the local optima.

4.5 Depression
The fundamental idea underlying the depression step is the formulation of depression and its effects on the self- oriented
and socially prescribed perfectionists (see condition Dep1). Depression can be mathematically modelled based on the biased
probabilistic choice of SOP and SPP operators. Furthermore, due to the condition Dep2 , no negative effects have been
considered for OOP operator in this step. These probabilities are initialized with the initial values of PSOP = POOP =
PSPP = 1

3
. During an arbitrary iteration, if a new solution (X′) which is generated by SOP operator fails to meet the set

expectation (i.e., X′ is worse than the worst solution within the current population), then probability (PSOP ) is decreased
by a certain value of ∆ = 1

3N
. To make sure that the equation PSOP + POOP + PSPP = 1 remains true for the next

generation, the probabilities of PSPP and POOP are increased to PSPP + ∆
2

and POOP + ∆
2
, respectively. So, for generating

new solution, SOP , OOP and SPP may be selected with probabilities of PSOP −∆, POOP + ∆
2
, and PSPP + ∆

2
, respectively.

Similarly, for each of the failed new solution (X′) generated by SPP operator, PSPP is decreased to PSPP −∆; PSOP and
POOP are increased by ∆

2
. This process will continue until the end of the iteration.

As mentioned earlier, N number of new solutions are produced during each iteration and, therefore, each of the SOP, SPP
and OOP operators can be selected at most N times during each iteration. Hence, in an arbitrary iteration, if SOP (or
SPP) operator is selected N times with N number of failed new solutions, then the associated probability will be reduced
from the initial value 1

3
to 1

3
−N∆ = 0 at the end of the iteration. However, at the beginning of the next iteration, we set

PSOP +POOP +PSPP = 1
3
. Using this strategy, the algorithm will have the same opportunity (in each iteration) to search

the space using the three operators. Hence, Depression step makes the algorithm more likely to choose the most successful
types of operators.
The probability update, however, is optional in the sense that PSOP , POOP , and PSPP may be considered as the same con-
stant values over the course of iterations. In this case, any of the perfectionism type has the same chance of being selected,
i.e., each of the types (SOP, OOP, or SPP) has a probability of 33.3% being selected. On the one hand, this strategy can
enable the algorithm to quickly compute approximate solutions, but on the other hand, it causes the algorithm to achieve
less accurate solutions. In the second way, the probabilities can be updated during an iteration. Although this method
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allows carefully considered selections of SOP, OOP and SPP operators (and hence increases the), but it also decreases the
speed of the algorithm. In this paper, we have employed a method to compromise between the accuracy of the algorithm
and the speed at which the best solutions can be achieved. To this end, we set POOP = 1

2
and PSOP = PSPP = 1

4
as the

fixed probabilities for all iterations.
Finally, Algorithm 4 shows the PSA algorithm for a minimization problem, where OP ∈ {SOP,OOP, SPP} is a variable
indicating which operator has been selected for generating a new solution.

Algorithm 4 (Perfectionism Search Algorithm)

Generate the initial population.
Evaluate each solution and sort the solutions in an ascending order of their objective values.
Calculate the best solution X∗ by setting X∗ = X1.
While ( t ≤ maximum number of iterations)

for i = 1, 2, ...N
Select operator OP ∈ {SOP,OOP, SPP} according to probabilities
POOP = 1

2
and PSOP = PSPP = 1

4
.

if OP = SOP,
Generate new solution X′ by Algorithms 1 and evaluate X′.

elseif OP = OOP,
Generate new solution X′ by Algorithms 2 and evaluate X′.

else
Generate new solution X′ by Algorithms 3 and evaluate X′.

end if
end for
Generate the new population by keeping
the N best solutions and removing the N worst ones.
Sort the solutions of the resulted population.
Update the best solution X∗ by setting X∗ = X1 , if f(x1) ≤ f(x∗).
t = t+ 1.

end while

5 Theoretical Aspects, Applied Suggestions and Brief

Comparative Study
In order to see how PSA solves optimization problems, it’s important to note some points:
(A) In PSA, new solutions are generated using the three types of optimization operators. It assists the algorithm to look
for an optimal point from different strategies.

(B) In PSA, each search strategy focuses on a specific region; SOP considers neighborhoods around 10% of the best solu-
tions, OOP pays attention to the neighborhood of the best-so-far solution and SPP includes the region between the entire
solutions. As such, it creates a balance between exploration and exploitation, and increases the capability of the algorithm
to be applied to the optimization of multi-modal problems.

(C) By considering POOP = 1
2
and PSOP = PSPP = 1

4
, an appropriate balance is made between the accuracy and speed

of the algorithm.

(D) In SOP operator, if |r| is close to 2 (|r| ≈ 2), the exploration power is increased around the current best so-far solution,
which allows for more diversification of the search (higher robustness). Also, if |r| is close to 0 (|r| ≈ 0), the intensification
capability is increased, that leads to a faster convergence (higher convergence speed and higher efficiency).

(E) In OOP, since new solutions are generated from the neighborhoods of 10% of the best solutions, more promising regions
are investigated.

(F) SOP and OOP assist PSA to exploit information from the neighborhood of the best solutions that hold valuable knowl-
edge.

(G) In SOP (when |r| < 1) and OOP (by lapse of iterations), the space is searched more locally. So, it can be considered
as an adaptive learning rate.

(H) The minimal covering cell used by SPP operator assists the algorithm to increase the exploration power. So, the search
mechanism in SPP has two advantageous; escaping from local optima and avoiding rapid convergence of the algorithm.
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(I) Since in SPP, all the previously obtained solutions contribute towards generation of new solutions, this operation can
be considered as an information – transferring tool.

The following points highlight some of the main characteristics of PSA that differentiates it from the other algorithms.

(i) Unlike many of the previously introduced heuristic algorithms (such as ACO, PSO, CA, HS, etc), PSA is a memory-
less algorithm that works efficiently and has a good convergence rate.

(ii) One major difference between PSA and most of the other heuristic algorithms is that many heuristic algorithms
use some improving directions (e.g., PSO, BBO, GSA, FA, BA, TLBO, BH, ...), while PSA does not apply any
particular direction to improve the solutions.

(iii) SOP operator, unlike many optimization operators, does not consider the distance between solutions; however, it
works only by changing the differences between the components of the best solution.

6 Experimental Results
In order to evaluate the performance of our algorithm in comparison to other known methods, the typical benchmark
test functions have been employed by selecting a comprehensive set of 35 benchmark functions that are typically used in
the literature for presenting the performance of different methods and algorithms. List of the test functions, number of
dimensions used, initialization interval, optimal solutions and the optimal values are presented in Appendix A. A more
detailed description of the test functions may be found in [28,63]. These functions listed in Appendix, Tables A.1-A.3 range
from very simple to quite complex, and were selected for their particular characteristics. Functions fi(i = 1, 2, ..., 11) are

unimodal (Table A.1) and gi(1 = 1, 2, ..., 13) are multimodal (Table A.2). Also, h̃i(i = 1, 2, ..., 11) are the shifted functions

which have resulted from some unimodal and multimodal functions hi so that h̃i(x) = hi(x−1) where 1 = [1, 1, 1, ..., 1]1×n.
The proposed PSA is compared with 11 well-known metaheuristic methods including the most famous algorithms and also
some of the recent popular ones, namely, Ant Colony Optimization (ACO) [6,48], Particle Swarm Optimization (PSO) [29],
Teaching Learning Based Optimization (TLBO) [40], Biogeography Based Optimization (BBO) [44], Differential Evolution
(DE) [53], Harmony Search (HS) [16], Firefly Algorithm (FA) [61], Whale Optimization Algorithm (WOA) [35], Bees
Algorithm (BA) [38], Gravitational Search Algorithm (GSA) [41] and Black Hole (BH) algorithm [22]. In order to ensure
a fair comparison, we carefully used the parameters suggested by the authors for each algorithm.
In all cases, population size (N) is set to N = 50 . 30-dimensional versions of the functions ( n = 30 ) were used and 30
independent runs were performed in all the experiments. In addition, two types of comparison were made. For the first
type, maximum iteration is considered as a stopping condition and is set to 1000 . For each test problem, the following
performance indices (averaged over 30 runs) are reported: the best optimal value (Table 1), the average best-so-far solutions
(Avg), median of the best solutions (Mdn) and standard deviation (SD) for the last iterations (Tables 2 – 4). For the second
type, a comparison was made based on the number of function evaluations needed to reach the following stopping condition:

|fbest − f∗| < ϵfbest + ϵ2 (5)

Where fbest is the value of the best solution found by an algorithm, f∗ is the known optimal value for a given test problem,
and ϵ1 and ϵ2 are respectively the relative and absolute errors [48]. For all the test runs, we used ϵ1 = ϵ2 = 10−4. For
each test problem, the mean number of function evaluations (NFE) is supplied for all the algorithms. Moreover, numbers
in square brackets indicate the percentage of successful runs (PSR), i.e., average number of cases in which the required
accuracy was reached (Tables 2 – 4). In all the tables, shaded boxes have been used to show the best results for a given
problem.
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WOA TLBO BBO DE ACO PSA

f1 4.7485e-276 3.7512e-246 1.0295e-10 7.9684e-19 6.6077e-72 0
f2 0.6667 0.9041 0.3490 0.6667 0.6667 2.2288e-19
f3 3.6732e-266 9.8671e-245 6.1491e-08 6.9791e-10 1.3055e-09 0
f4 0.5 0.5 0.5 0.5 0.5 0.5
f5 26.2707 28.7923 5.2982 18.3086 0.71274 0
f6 34.2804 1.5839e-243 1.5839e02 0.98238 0.0011337 0
f7 5.7295e-149 6.2017e-121 2.1409e-05 3.6638e-08 4.8992e-41 3.2188e-245
f8 3.402e-152 1.3215e-121 2.1443e-06 7.268e-09 5.6872e-42 5.8602e-247
f9 1.6524e-273 7.6983e-245 4.3522e-09 8706e-15 6.416e-69 0
f10 0 1 0 0 0 0
f11 2.0678e-275 3.0112e-244 3.8436e-10 1.1107e-16 4.3393e-71 0
g1 8.8818e-16 4.4409e-15 1.1597e-05 1.2372e-08 4.4409e-15 8.8818e-16
g2 -0.86175 -0.7625 -1 -0.76236 -0.66986 -1
g3 -1 -0.93625 -0.47778 -0.81731 -0.78575 -1
g4 0 0 3.6267e-08 2.6645e-15 0 0
g5 0.2571 1.3853 5.2297e-11 2.4151e-16 0.0895 1.4998e-32
g6 0 2.9848e-07 4.0758 0 11.707 0
g7 0.2409 1.7004 4.3376e-10 1.4941e-15 2.3359e-32 1.3498e-32
g8 9.146e-275 2.3084e-243 0.1475 7.3163e-09 2.795e-51 0
g9 12.533 47.1373 3.7756e-05 4.8925e-06 4.4409e-16 0
g10 3.618e-134 0.0999 0.5999 0.1999 0.1999 0
g11 2.0415e-146 8.7349e-243 0.0001 1.5972e-11 4.7422e-50 -1.2302e-320
g12 -3.4551 -3.165 -3.5 -1.4239 -0.0657 -3.5
g13 -38.8512 -27.1919 -37.7525 -39.1662 -37.2813 -39.1662

h̃1 0.0942 5.9096 4.5125e-07 1.258e-07 3.0705e-16 0

h̃2 1.2157e05 1.1110e07 0.0028 1.3957e-09 3.6978e-26 0

h̃3 22.2976 50.3096 5.0246e-08 6.8945e-14 0 0

h̃4 0.1101 1.7681e02 4.6465e-17 6.5906e-30 5.4694e-63 0

h̃5 1.4442e-05 6.9221 2.889e-20 4.3705e-14 2.2613e-88 1.6005e-94

h̃6 1.4569e02 3.6972e03 0.0004 1.6213e-13 5.1465e-30 0

h̃7 26.0988 29.9126 13.9294 10.6000e01 19.8992 0

h̃8 6.9944e-05 5.4866 4.3223e-14 8.8788e-32 2.5627e-144 0

h̃9 5.6469 33.3308 2.0375 0.128 0.0023 0

h̃10 0.3005 0.5197 0.2422 0.4975 0.06738 0

h̃11 3.7697e02 19.4955 10.8001 0.1280 1.0532e-06 0

Table 1: THE BEST OPTIMAL VALUES OF THE TEST PROBLEMS FOUND BY
WOA, TLBO, BBO, DE, ACO AND PSA
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FA BA PSO HS BH GSA

f1 2.3386 2.2448e-23 2.6202e-16 0.0112 1.6336 4.4408e02
f2 26.7541 0.6667 0.6668 6.4017 0.6667 0.6667
f3 1.4256e02 0.0012 8.8712e-07 2.1427 6.5624e-05 2.6722e-06
f4 3.1697 2.353 0.5 0.5000 0.5 0.5
f5 18.1205e01 19.6798 25.8392 24.7479e01 26.766 25.1698
f6 5.4192 17.4221 91.5358e02 22.0260e02 86.5808 28.7561
f7 5.8056 16.0956 1.9953e-07 10.3322 4.8536e-06 1.0754e-08
f8 5.2023 2.9572 1.0309e-08 0.79269 3.3232e-08 1.0185e-08
f9 1.5422 1.9182e-20 2.2316e-15 9.0222 5.7282e-09 5.1986e-18
f10 0 25 0 10 0 0
f11 19.8964 1.0639e-08 2.4254e-16 1.1945 1.0761e-09 2.9106e-17
g1 18.9259 10.5707 0.0045 1.1693 1.5185e-05 1.8428e-09
g2 -0.7042 -1 -0.97548 -0.98858 -0.99636 -1
g3 -0.6195 -0.15277 -0.17987 -0.78568 -0.6195 -0.47773
g4 1.4024e02 2.3315e-15 2.2502e-06 1.0714 1.0145e-06 1.1449
g5 18.1618 22.9755 6.9424e-12 0.0437 6.1388e-10 2.0405e-18
g6 10.6185 10.0504 10.3806 5.0166 9.0053 7.7226
g7 0.2776 0.0141 4.594 0.6096 9.0718e-08 5.8712e-19
g8 13.6073e02 44.2623e02 51.2685e01 10.2741e01 43.7389e01 20.9931
g9 36.5972 3.5685 10.0071 10.821 1.1311e-05 1.18e-07
g10 0.20869 0.59987 2.4009 0.96516 0.49987 0.90598
g11 32.4466 24.9864e04 0.0002 36.1400e01 5.4209e-05 9.3929e-17
g12 -1.1778 -3.4994 -0.051724 -0.64447 -3.4765 -3.5
g13 -34.5706 -37.2811 -35.3964 -39.155 -36.7842 -36.3388

h̃1 11.8138 2.3454 0.0008 0.1004 0.0003 1.1154e-09

h̃2 1.5635e06 3.6084 7.7902e-08 6.9181e06 0.0618 0.3074

h̃3 20.4495 11.5618 2.8914e-07 19.2699 5.544e-07 0

h̃4 2.738 2.8102e-31 1.11e-34 1.0473e02 8.234e-15 2.4956e-35

h̃5 0.0555 4.3294e-42 1.4731e-08 4.2817e-09 0.3111 5.5874e-54

h̃6 1.7006e04 2.5809e04 4.6137e-14 3.5254e03 24.696 73.5399

h̃7 14.8043e01 10.3606e01 31.8505 10.0787 24.2123 11.9395

h̃8 0.0008 7.3501e-08 1.3389e-16 8.7973e-11 0.0490 1.0409e-15

h̃9 1.4600e02 0.5661 4.5534 3.1674 3.2997 0.4865

h̃10 0.5458 0.4065 0.1382 0.0174 0.2365 0.6184

h̃11 1.7421 2.4295e-09 2.2660e02 37.1223 0.0412 52.5817

Table 2: The best optimal values of the test problems found by FA, BA, PSO, HS, BH
and GSA

Unimodal functions. Table 1 include the best values,f∗(x), found by the algorithms over 30 runs. These tables demon-
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strate the impressive ability of the proposed algorithm to detect the optimal solutions from the test problems. PSA is a
clear winner for f1 − f3 , f5 − f9 and f11 . For f4 and f10 almost all the algorithms found the global optimum.
The good convergence rate of PSA can be observed from Table 2. According to these Tables, PSA produced the best results
in terms of Avg, Mdn and SD for all the test problems, with the only exception of f2 where ACO produced a better standard
deviation. For f1 − f3 , f5 − f9 and f11 , PSA is the only algorithm that obtained the best Avg and Mdn. For f4 , almost
all the algorithms performed similarly well and for f10 , some algorithms attained the best results. Based on these results,
PSA tends to find the global optimum much faster in comparison to other algorithms and hence has a higher convergence
rate. Furthermore, it can produce high quality solutions with low average error (good accuracy) and low standard deviation
(good stability) for all the unimodal functions.
Moreover, using PSA the required accuracy is reached in every run (i.e., PSR = 100%) for each unimodal function; and in
all cases it has the minimum number of function evaluations. Also, it is to be noted that for f2 and f5 , PSA is the only
algorithm that reached this accuracy.

WOA TLBO BBO DE ACO PSA

f1

Avg
Mdn
SD

NFE [PSR]

1.4377e-257
1.1616e-266

0
12,312.3 [100%]

3.7929e-242
6.7492e-244

0
2,601.3 [100%]

8.0804e-09
1.4835e-09
1.6572e-08

22,622.6 [100%]

5.4333e-17
2.9971e-17
5.5677e-17

15,740.7 [100%]

7.7876e-69
1.7912e-69
1.584e-68

4,954.9 [100%]—

0
0
0

600.6 [100%]

f2

Avg
Mdn
SD

NFE [PSR]

0.6667
0.6667

2.7959e-05
50,050 [0%]

0.9550
0.9605
0.0210

100,050 [0%]

1.209
0.6903
0.9522

50,050 [0%]

0.7605
0.6667
0.4956

50,050 [0%]

0.6667
0.6667

1.4189e-16
50,050 [0%]

3.6769e-13
9.9902e-17
1.799e-12

11,186.2 [100%]

f3

Avg
Mdn
SD

NFE [PSR]

6.3149e-27
6.6672e-188
3.3934e-26

13,963.9 [100%]

4.5583e-240
6.4553e-242

0 3,551.8 [100%]

0.0001
8.74e-05

9.1247e-05
49,949.9 [53.3%]

9.2893e-07
9.9539e-08
1.8022e-06

22,022 [100%]

5.3943e-09
4.8139e-09
3.0165e-09

6,631.6 [100%]

0
0
0

1,051 [100%]

f4

Avg
Mdn
SD

NFE [PSR]

0.5
0.5

3.3307e-17
11,186.2 [100%]

0.5
0.5
0

1,400.7 [100%]

0.5
0.5

8.2834e-17
5,280.3 [100%]

0.5
0.5

2.7481e-10
11,436.4 [100%]

0.5
0.5

5.2336e-17
2,952.9 [100%]

0.5
0.5
0

325.3 [100%]

f5

Avg
Mdn
SD

NFE [PSR]

27.3042
27.073
0.7647

50,050 [0%]

28.8927
28.8999
0.0433

100,050 [0%]

64.541
77.3741
33.8184

50,050 [0%]

37.4842
25.8895
23.7393

50,050 [0%]

48.8164
22.0362
52.6671

50,050 [0%]

6.6429e-28
0

3.1271e-27
4,254.2 [100%]

f6

Avg
Mdn
SD

NFE [PSR]

5.5902e03
4.6003e03
4.7965e03
50,050 [0%]

2.7584e-239
1.0467e-240

0
3,801.9 [100%]

7.4737e02
6.4937e02
3.2609e02
50,050 [0%]

9.8156
6.1309
9.9271

50,050 [0%]

0.0186
0.0132
0.0143

50,050 [0%]

3.3907e-294
1.6304e-321

0
1,876.9 [100%]

f7

Avg
Mdn
SD

NFE [PSR]

3.1658e-142
2.0906e-144
1.2868e-141

14,639.6 [100%]

6.6069e-119
1.2272e-119
1.1014e-118

6,003 [100%]

0.0002
0.0001
0.0002

47,072 [36.7%]

1.768e-07
1.4899e-07
1.0872e-07

35,435.4 [100%]

1.4602e-39
6.7007e-40
1.6051e-39

8,358.3 [100%]

8.52e-225
1.5417e-233

0
1,351.3 [100%]

f8

Avg
Mdn
SD

NFE [PSR]

2.1075e-141
7.5248e-147
1.1259e-140

14,664.6 [100%]

1.1094e-119
1.7977e-120
2.34e-119

5,252.6 [100%]

1.6921e-05
1.2936e-05
1.4481e-05

35,160.1 [100%]

4.5861e-08
4.2129e-08
2.4938e-08

31,406.4 [100%]

2.4516e-40
1.4192e-40
2.5119e-40

7,757.7 [100%]

3.9638e-225
2.4596e-238

0
1,226.2 [100%]

f9

Avg
Mdn
SD

NFE [PSR]

1.012e-255
2.4036e-262

0
14,589.6 [100%]

7.596e-240
1.039e-241

0 3,751.9 [100%]

2.4358e-07
8.8815e-08
3.5563e-07

24,699.7 [100%]

2.2608e-14
1.2951e-14
2.1513e-14

22,722.7 [100%]

1.398e-66
3.0118e-67
3.0587e-66

6,281.3 [100%]

0
0
0

825.8 [100%]

f10

Avg
Mdn
SD

NFE [PSR]

0
0
0

10,310.3 [100%]

4.7667
5

1.3337
100,050 [0%]

0
0
0

7,432.4 [100%]

0.1333
0

0.3399
14,514.5 [86.7%]

1.3667
0

2.7384
26,826.8 [56.7%]

0
0
0

350.3 [100%]

f11

Avg
Mdn
SD

NFE [PSR]

3.4449e-255
2.0673e-264

0
13,413.4 [100%]

4.3177e-240
3.7965e-242

0
3,451.7 [100%]

7.9675e-08
1.5504e-08
1.3562e-07

21,196.2 [100%]

2.2508e-15
2.4628e-15
1.6665e-15

21,821.8 [100%]

3.0985e-67
1.4344e-67
6.0618e-67

5,580.6 [100%]

0
0
0

850.8 [100%]

Table 3: Minimization result of benchmark functions from Table 9 & 10 (Unimodal test
functions) found by WOA, TLBO, BBO, DE, ACO and PSA, where n = 30 and maximum
number of iterations are 1000
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FA BA PSO HS BH GSA

f1

Avg
Mdn
SD

NFE [PSR]

3.1585
3.2604
0.3448

2,200,356 [0%]

31.4751
0.1947
49.1488

1,275,050 [40%]

0.0096
2.3295e-12

0.0519
24,374.3 [96.7%]

0.0158
0.0158

0.0021 50,050 [0%]

2.4951
2.532
0.3481

50,050 [0%]

2.8493e06
1.4669e04
83.6615e05
50,050 [0%]

f2

Avg
Mdn
SD

NFE [PSR]

45.7822
41.6323
15.1427

2,170,322.5 [0%]

15.8948e03
9.7789

38.9877e03
1,275,050 [0%]

29.2921e04
68.9928e03
46.7798e04
50,050 [0%]

10.0314
9.3557
2.9611

50,050 [0%]

0.9917
0.6708
0.6884

50,050 [0%]

0.6755
0.6667
0.0300

50,050 [0%]

f3

Avg
Mdn
SD

NFE [PSR]

1.8942e02
1.8805e02
21.7892

2,199,033.5 [0%]

6.9592e02
49.8555

12.9251e02
1,275,050 [0%]

60.9412e02
19.8971

13.2010e03
50,050 [3.3%]

2.7806
2.8373
0.2990

50,050 [0%]

0.0054
0.0028
0.0073

50,050 [3.3%]

7.272e-05
6.5751e-05
3.4463e-05

37,412.4 [76.7%]

f4

Avg
Mdn
SD

NFE [PSR]

4.2587
4.314
0.5768

2,291,196.5 [0%]

2.353
0.5

8.1566
887,434.8 [73.3%]

27.4722
5.336

39.4775
50,050 [6.7%]

0.5000
0.5000

5.1406e-06
31,281.2 [100%]

0.5
0.5

1.2651e-12
6,431.4 [100%]

0.5
0.5
0

12,612.6 [100%]

f5

Avg
Mdn
SD

NFE [PSR]

5.2905e02
2.5318e02
5.4441e02

2,008,748 [0%]

8.9811e06
35.1230e02
20.5514e06

1,275,050 [0%]

82.5440e06
35.7361e06

84.4992e06 50,050 [0%]

5.6377e02
4.8958e02
3.8020e02
50,050 [0%]

1.0514e02
78.0888

1.0116e02
50,050 [0%]

28.8558
25.7126
13.6662

50,050 [0%]

f6

Avg
Mdn
SD

NFE [PSR]

10.3257
8.7419
5.0396

1,339,726.5 [0%]

94.9561e02
44.6956e02
10.4469e03

1,275,050 [0%]

30.1030e03
31.4372e03
11.8775e03
50,050 [0%]

61.0023e02
57.4462e02
18.8530e02
50,050 [0%]

1.6389e02
1.6942e02
45.5732

50,050 [0%]

1.0234e02
1.0104e02
35.8842

50,050 [0%]

f7

Avg
Mdn
SD

NFE [PSR]

9.2836
7.0446
4.939

1,349,762.5 [0%]

1.6889e02
54.4746

2.1129e02
1,275,050 [0%]

0.0403
0.0002
0.1187

50,050 [36.7%]

12.3562
12.4165
0.9441

50,050 [0%]

0.0002
8.9254e-05

0.0004
50,050 [53.3%]

0.4660
1.5737e-08

1.8153
31,331.3 [80%]

f8

Avg
Mdn
SD

NFE [PSR]

5.9462
5.9285
0.3582

2,128,931.5 [0%]

18.6205
9.8503
24.1327

1,275,050 [0%]

0.0319
6.4271e-05

0.1476
36,211.2 [60%]

1.188
1.1897
0.1239

50,050 [0%]

2.3094e-06
4.517e-07
5.7193e-06

33,483.4 [100%]

0.0400
1.5185e-08

0.1834
31,506.8 [93.3%]

f9

Avg
Mdn
SD

NFE [PSR]

1.9569
1.9741
0.1910

1,718,742 [0%]

43.1083e02
1.0844e-09
86.7370e02

314,937.3 [56.7%]

2.3678e02
0.0145

7.2513e02
39,514.5 [40%]

13.1538
12.9999
1.8022

50,050 [0%]

1.3031e-07
7.4392e-08
1.4585e-07

32,157.1 [100%]

1.0826e-17
9.6156e-18
4.4511e-18

16,942 [100%]

f10

Avg
Mdn
SD

NFE [PSR]

1.3667
1

0.54671
1,731,419.5 [3.3%]

2.2032e03
4.985e02
3.7426e03

1,275,050 [0%]

17.1257e02
9

6.0310e03
50,050 [6.7%]

14.1667
14

1.9336
50,050 [0%]

0.066667
0

0.24944
28,153.1 [93.3%]

0
0
0

6,206.2 [100%]

f11

Avg
Mdn
SD

NFE [PSR]

26.7122
26.2813
3.0663

2,179,059.5 [0%]

7.7361e02
73.2921

12.0210e02
1,033,428 [20%]

5.1003e-05
1.6173e-08

0.0002
41,241.2 [96.7%]

1.777
1.8128
0.24023

50,050 [0%]

2.787e-07
4.8899e-08
6.6026e-07

34,334.3 [100%]

9.0687e-17
8.3128e-17
3.0573e-17

21,121.1 [100%]

Table 4: Minimization result of benchmark functions from Table 9 & 10 (Unimodal test
functions) found by FA, BA, PSO, HS, BH and GSA, where n = 30 and maximum number
of iterations is 1000

Multimodal functions. As Table 1 & 2 illustrate, PSA achieves the best values in all the multimodal test problems. In
each case, there are few other algorithms whose results are similar to the results found by PSA. Exceptions are g5, g7 , g8
and g11 where the performance of PSA is strictly better than that of all other algorithms. The reported Avg, Mdn and SD
results for multimodal functions have been summarized in Table 5 & 6.
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WOA TLBO BBO DE ACO PSA

g1

Avg
Mdn
SD

NFE [PSR]

3.9672e-15
4.4409e-15
2.5509e-15

14,990 [100%]

4.4409e-15
4.4409e-15

0
4,902.4 [100%]

7.5645e-05
6.0913e-05
5.5484e-05

44,769.7 [80%]

3.7728e-08
3.4195e-08
1.5908e-08

31,281.2 [100%]

0.0310
7.9936e-15

0.1672
8,358.3 [96.7%]

1.125e-15
8.8818e-16
1.2755e-15

1,226.2 [100%]

g2

Avg
Mdn
SD

NFE [PSR]

-0.7622
-0.7766
0.0559

50,050 [0%]

-0.6860
-0.6881
0.0338

100,050 [0%]

-1
-1

4.2973e-10
9,959.9 [100%]

-0.6289
-0.6105
0.0500

50,050 [0%]

-0.6068
-0.601
0.0275

50,050 [0%]

-1
-1
0

1,126.1 [100%]

g3

Avg
Mdn
SD

NFE [PSR]

-0.9297
-0.9362
0.0526

50,050 [13.3%]

-0.9362
-0.9362

4.9521e-17
100,050 [0%]

-0.3311
-0.2888
0.0838

50,050 [0%]

-0.7871
-0.7857
0.0058

50,050 [0%]

-0.6568
-0.6195
0.1099

50,050 [0%]

-0.9936
-1

0.0191
1,651.6 [90%]

g4

Avg
Mdn
SD

NFE [PSR]

0.0020
0

0.0110
13,588.6 [96.7%]

0
0
0

4,152.1 [100%]

0.0102
0.0086
0.0100

41,016 [30%]

0.0025
7.7549e-14

0.0046
25,300.3 [76.7%]

0.0067
0

0.0128
6,831.8 [66.7%]

0
0
0

775.8 [100%]

g5

Avg
Mdn
SD

NFE [PSR]

0.7933
0.7471
0.3219

50,050 [0%]

2.091
2.1168
0.3355

100,050 [0%]

0.4483
1.2967e-09

0.6559
32,532.5 [53.3%]

0.1445
1.5596e-15

0.2633
35,660.6 [63.3%]

1.2708
0.9534
0.9554

50,050 [0%]

1.4998e-32
1.4998e-32
1.0948e-47

850.8 [100%]

g6

Avg
Mdn
SD

NFE [PSR]

2.0075
0

3.9385
22,998 [73.3%]

2.3438
3.3723
2.0551

100,050 [16.7%]

6.3019
6.4489
0.8323

50,050 [0%]

4.6805
4.8145
1.2038

50,050 [3.3%]

12.3604
12.3783
0.2587

50,050 [0%]

0
0
0

1,001 [100%]

g7

Avg
Mdn
SD

NFE [PSR]

1.0839
1.1711
0.5197

50,050 [0%]

2.6068
2.6507
0.3785

100,050 [0%]

8.7806e-08
6.5568e-09
2.9285e-07

22,397.4 [100%]

0.1208
1.526e-12
0.6456

26,952 [86.7%]

0.2464
2.4591e-31

0.7697
28,528.5 [63.3%]

1.3498e-32
1.3498e-32
5.4738e-48

650.6 [100%]

g8

Avg
Mdn
SD

NFE [PSR]

3.612e-258
9.5972e-264

0
13,363.3 [100%]

2.4971e-239
1.0067e-240

0
4,502.2 [100%]

3.9828e02
3.4211e02
2.9528e02
50.050 [0%]

11.6561
2.7311e-07

33.188
37,837.8 [86.7%]

5.1257e02
4.8337e02
4.3578e02

50,050 [16.7%]

0
0
0

950.9 [100%]

g9

Avg
Mdn
SD

NFE [PSR]

28.3982
27.9624
9.0584

50,050 [0%]

66.12
66.6546
9.8457

100,050 [0%]

0.0027
0.0016
0.0038

50,050 [6.7%]

0.0002
3.3341e-05

0.0005
48,898.8 [70%]

9.3259e-15
6.8834e-15
7.6111e-15

10,335.3 [100%]

0
0
0

1,301.3 [100%]

g10

Avg
Mdn
SD

NFE [PSR]

0.1199
0.0999
0.0748

50,050 [16.7%]

0.0999
0.0999

0
100,050 [0%]

0.8467
0.7999
0.1686

50,050 [0%]

0.2247
0.2001
0.0406

50,050 [0%]

0.3832
0.2999
0.2130

50,050 [0%]

0.0333
0

0.0649
26,051 [73.3%]

g11

Avg
Mdn
SD

NFE [PSR]

4.3827e-78
4.0478e-99
2.3575e-77

21,221.2 [100%]

9.5776e-238
1.2101e-239

0
4,402.2 [100%]

0.0010
0.0008
0.0006

50,050 [0%]

2.3925e-10
1.4233e-10
3.523e-10

30,305.3 [100%]

1.7177e-46
1.4223e-47
6.4331e-46

9,584.6 [100%]

-5.1284e-321
-4.6689e-321

0
1,076.1 [100%]

g12

Avg
Mdn
SD

NFE [PSR]

-0.4961
-0.0189
1.0452

50,050 [0%]

-2.8297
-2.8175
0.17595

100,050 [0%]

-2.6667
-3.5

1.1785
37,387.3 [66.7%]

-0.7986
-0.6578
0.3233

50,050 [0%]

-0.0087
-0.0059
0.0111

50,050 [0%]

-3.3336
-3.5

0.6225
1,526.5 [93.3%]

g13

Avg
Mdn
SD

NFE [PSR]

-35.0577
-35.1778
2.3959

50,050 [0%]

-25.4244
-25.35
1.1513

100,050 [0%]

-35.9776
-36.1032
1.2025

50,050 [0%]

-38.1295
-38.2237
0.54951

50,050 [6.7%]

-35.5849
-35.632
0.9929

50,050 [0%]

-39.1662
-39.1662

0
500.5 [100%]

Table 5: Minimization result of benchmark functions from Table 10 & 11 (Multimodal
test functions) found by WOA, TLBO, BBO, DE, ACO and PSA, where n = 30and
maximum number of iterations is 1000
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FA BA PSO HS BH GSA

g1

Avg
Mdn
SD

NFE [PSR]

19.6837
19.7007
0.2346

2,289,964.5 [0%]

17.8574
18.5735
1.9865

1,275,050 [0%]

12.4815
13.509
5.5947

50,050 [0%]

1.7832
1.8374
0.18052

50,050 [0%]

0.01024
0.0018
0.0214

50,050 [13.3%]

2.3768e-09
2.3432e-09
3.0133e-10

27,552.5 [100%]

g2

Avg
Mdn
SD

NFE [PSR]

-0.6624
-0.6630
0.01560

2,367,082 [0%]

-0.9919
-0.9998
0.0253

867,034 [53.3%]

-0.8293
-0.8807
0.1126

50,050 [0%]

-0.9844
-0.9846
0.0021

50,050 [0%]

-0.9855
-0.9886
0.0085

50,050 [0%]

-0.9989
-1

0.0060
19,744.7 [96.7%]

g3

Avg
Mdn
SD

NFE [PSR]

-0.6094
-0.6193 0.0352
2,235,940 [0%]

-0.0536
-0.0481
0.0250

1,275,050 [0%]

-0.0536
-0.0431
0.0321

50,050 [0%]

-0.6674
-0.6195
0.0739

50,050 [0%]

-0.5392
-0.4778
0.0702

50,050 [0%]

-0.2735
-0.2882
0.1233

50,050 [0%]

g4

Avg
Mdn
SD

NFE [PSR]

2.2736e02
2.3281e02
39.963

1,277,054 [0%]

30.6158
4.8173
58.4573

1,275,050 [16.7%]

9.9293
0.2009
50.3343

50,050 [3.3%]

1.1191
1.1217
0.0178

50,050 [0%]

0.0180
0.0099
0.0198

50,050 [20%]

2.1985
1.9595
1.0096

50,050 [0%]

g5

Avg
Mdn
SD

NFE [PSR]

36.89
36.946
8.8642

2,277,246 [0%]

34.0034
32.4314
10.5226

1,275,050 [0%]

33.9449
23.3921
25.8672

50,050 [3.3%]

0.0680
0.0696
0.0111

50,050 [0%]

0.0060
5.3948e-08

0.0223
34,159.1 [90%]

0.0936
4.7577e-18

0.1895
16,416.4 [73.3%]

g6

Avg
Mdn
SD

NFE [PSR]

11.615
11.6374
0.3786

2,262,254 [0%]

10.9257
10.9854
0.3340

1,275,050 [0%]

12.1838
12.3338
0.6422

50,050 [0%]

6.596
6.6573
0.4748

50,050 [0%]

10.551
10.5379
0.5729

50,050 [0%]

9.5538
9.2904
1.0491

50,050 [0%]

g7

Avg
Mdn
SD

NFE [PSR]

0.3273
0.3317
0.0241

1,891,140 [0%]

11.2764e06
61.1277

27.5248e06
1,275,050 [0%]

51.1919e07
54.2408e07
35.0222e07
50,050 [0%]

0.8414
0.7970
0.1511

50,050 [0%]

0.0008
4.097e-06
0.0027

45,195.15 [83.3%]

0.0015
1.1127e-18

0.0037
32,432.4 [86.7%]

g8

Avg
Mdn
SD

NFE [PSR]

2.1681e03
20.2030e02
6.2277e02

2,002,219 [0%]

6.4985e03
64.0538e02
10.4159e02

1,275,050 [0%]

4.2626e03
39.7341e02
17.5046e02
50,050 [0%]

1.5742e02
1.4514e02
42.646

50,050 [0%]

1.8685e03
19.3556e02
10.0055e02
50,050 [0%]

2.3091e02
2.0661e02
1.5733e02
50,050 [0%]

g9

Avg
Mdn
SD

NFE [PSR]

56.3622
55.6749
10.7762

2,179,551 [0%]

29.5766e02
18.3567

97.9610e02
1,275,050 [0%]

85.7735e03
68.7687e03
77.8947e03
50,050 [0%]

14.8272
14.6629
1.8852

50,050 [0%]

0.0072
0.0005
0.0156

49,899.8 [16.7%]

4.4172
2.1003
4.9525

50,050 [33.3%]

g10

Avg
Mdn
SD

NFE [PSR]

0.3873
0.2999
0.1498

1,293,717.5 [0%]

7.3632
6.6499
4.7592

1,275,050 [0%]

7.33
6.3353
2.8086

50,050 [0%]

1.2166
1.2168
0.1583

50,050 [0%]

0.6899
0.6999
0.1012

50,050 [0%]

1.586
1.6893
0.3420

50,050 [0%]

g11

Avg
Mdn
SD

NFE [PSR]

41.7632
41.6016
4.5022

1,651,058 [0%]

59.2780e04
58.1649e04
11.3170e04

1,275,050 [0%]

18.1836e02
2.1673e02
51.0800e02
50,050 [0%]

5.5315e02
5.2091e02
1.2103e02
50,050 [0%]

0.0008
0.0004
0.0009

48,823.8 [3.3%]

2.4097e-16
2.4479e-16
6.1442e-17

21,221.2 [100%]

g12

Avg
Mdn
SD

NFE [PSR]

-0.9480
-0.9452
0.0835

2,277,505.5 [0%]

-3.2293
-3.2937
0.2281

1,275,050 [0%]

-0.0077
-0.0060
0.0086

50,050 [0%]

-0.4392
-0.4262
0.0974

50,050 [0%]

-2.0039
-2.4114
1.1432

50,050 [0%]

-3.0833
-3.5

0.9317
34,434.4 [83.3%]

g13

Avg
Mdn
SD

NFE [PSR]

-33.0316
-32.9629
0.8953

2,226,590 [0%]

-33.6979
-34.9251
3.1559

1,275,050 [0%]

-18.7046
-17.2052
5.4533

50,050 [0%]

-39.1494
-39.149
0.0029

50,050 [0%]

-33.7709
-33.9049
1.2115

50,050 [0%]

-33.9827
-33.9827
1.0466

50,050 [0%]

Table 6: Minimization result of benchmark functions from Table 10 (Multimodal test
functions) found by FA, BA, PSO, HS, BH and GSA, where n = 30and maximum number
of iterations is 1000

By comparing these obtained results with the best-so-far values of average, median and standard deviation of PSA, we
can see that PSA provides the best results except for the standard deviations related to g1 , g3 and g10 (compared with
TLBO) and g12 (compared with PSO). For other results, there are few other algorithms (in comparison with the unimodal
functions) with the same performance as the PSA. Also, for g5 , g7 , g9 and g13 , PSA provides strictly better results than
all the algorithms in all the criteria Avg, Mdn and SD.
Table 3 also include the number of function evaluation (NFE) and the percentage of successful runs (PSR) for the algo-
rithms. Based on these tables, PSA has the maximum successful rates and uses the minimum number of evaluation to
reach the required accuracy. Therefore, the performance of PSA is shown to be relatively good, as it achieves the best PSR
(=100) in 10 out of 13 test problems, PSR = 90% for g3 , PSR = 73.3% for g10 and PSR = 93.3% for g12.
These results prove the good convergence rate, accuracy and stability of PSA in handling the multimodal functions.

Shifted functions. As mentioned previously, functions h̃i have resulted from basic test function hi, listed in table A.5 ,
A.6, by shifting their global optimums. More precisely, h̃i(x) = hi(x−1), i = 1, 2, ..., 11, where 1 is an n-dimensional vector
with each component equal to one. Therefore, the optimal values will remain unchanged. In other words, if x∗ denotes
the optimum of h̃i then x∗ − 1 is the optimum of h1, and h̃i(x) = hi(x − 1). Table 7 and 8 present the basic benchmark

function h̃i, i = 1, 2, ..., 11. Some of the test functions are unimodal and others are multimodal functions. Comparison of the
results of best values found by PSA and those obtained using other algorithms show that PSA is the only best performing

algorithm for all the shifted test problems; results of which are presented in Table 1 and 2. In this respect only for h̃3,
ACO, and GSA perform similarly well.
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On the shifted test functions (especially, multimodal ones with a large number of local optima), finding good solutions and
escaping from local optima is very hard. However, by comparing the indices Avg, Mdn and SD which are summarized in
Table 4, it can be seen that PSA exhibits significant performance, and provides much better results in comparison to other

algorithms on these functions. Although, the only exceptions are Avg and SD for h̃1 obtained by ACO, Avg and SD for h̃3

obtained by BBO, SD for h̃1 obtained by TLBO and SD for h̃10 obtained by FA.

Furthermore, PSA achieved the best PSR (=100) for 8 out of 11 test problems. Also, it attained PSR=96.7% for h̃3,

PSR=53.3% for h̃1 and PSR = 63.3% for h̃10. Additionally, for h̃1, h̃9, and h̃10 , PSA is the only algorithm achieving
the required accuracy. All other algorithms in this category require many more function evaluations in order to reach the
required accuracy. Finally, like the unimodal functions ( fi ) and multimodal functions ( gi ), PSA used the minimum

number of function evaluation for solving shifted functions h̃i in all the test problems. To sum up, PSA is capable of
handling these types of problems very effectively.

WOA TLBO BBO DE ACO PSA

h̃1

Avg
Mdn
SD

NFE [PSR]

5.2305
4.7087
2.8235

50,050 [0%]

8.8366
8.4279
1.5058

100,050 [0%]

0.0014
0.0002
0.0032

50,050 [40%]

0.0012
4.3305e-05

0.0027
44,869.8 [63.3%]

2.3997e-15
1.4764e-15
2.3495e-15

7,157.1 [100%]

5.3308e-15
1.5613e-16
1.4228e-14

925.9 [100%]

h̃2

Avg
Mdn
SD

NFE [PSR]

32.9372e05
31.5471e05
20.1215e05
50,050 [0%]

17.9546e06
18.3487e06
29.8458e05
100,050 [0%]

0.1605
0.0625
0.3014

50,050 [0%]

3.2173e-08
1.2392e-08
4.4412e-08

38,763.7 [100%]

3.858e-25
3.0199e-25
3.2807e-25

10,635.6 [100%]

0
0
0

1,051 [100%]

h̃3

Avg
Mdn
SD

NFE [PSR]

31.3882
31.1355
6.0552

50,050 [0%]

73.6256
74.6363
10.1223

100,050 [0%]

2.6121e-06
6.5957e-07
4.3797e-06

30,205.2 [100%]

0.6924
1.0498
0.7700

38,288.2 [46.7%]

2.2209
2.0996
1.4975

28,453.4 [10%]

1.0092
0

5.4348
900.9 [96.7%]

h̃4

Avg
Mdn
SD

NFE [PSR]

25.2863
10.6199
37.5031

50,050 [0%]

3.8960e02
3.7391e02
1.2054e02

100,050 [0%]

1.0074e-12
3.0819e-15
4.4873e-12

14,764.7 [100%]

1.5526e-27
2.092e-28
3.7287e-27

17,792.8 [100%]

1.3837e-60
8.0978e-62
5.4722e-60

5,130.1 [100%]

0
0
0

875.9 [100%]

h̃5

Avg
Mdn
SD

NFE [PSR]

0.0030
0.0003
0.0105

50,050 [26.7%]

19.0203
19.1642
4.8144

100,050 [0%]

1.0772e-17
1.3193e-18
2.1481e-17

23,873.8 [100%]

1.349e-06
2.2837e-07
3.9214e-06

22,597.6 [100%]

6.5441e-08
3.2606e-09
1.3092e-07

2,602.6 [100%]

3.0601e-76
1.6005e-94
1.6479e-75

250.2 [100%]

h̃6

Avg
Mdn
SD

NFE [PSR]

1.2360e03
7.9364e02
1.0787e03
50,050 [0%]

7.7749e03
6.9387e03
3.1597e03

100,050 [0%]

1.6365
0.2409
3.5795

50,050 [0%]

2.887e-12
1.9148e-12
3.0327e-12

30,530.5 [100%]

4.7861e-28
2.3802e-28
5.4757e-28

7,707.7 [100%]

0
0
0

1,251.2 [100%]

h̃7

Avg
Mdn
SD

NFE [PSR]

28.9636
28.94
0.7954

50,050 [0%]

29.9497
29.9506
0.0205

100,050 [0%]

31.3412
31.8387
9.4835

50,050 [0%]

16.0096e01
16.4263e01
21.8432

50,050 [0%]

34.3924
32.3361
10.2233

50,050 [0%]

19.8992
0

30.1786
50,050 [53.3%]

h̃8

Avg
Mdn
SD

NFE [PSR]

0.0887
0.0003
0.3732

50,050 [13.3%]

16.4095
17.0282
4.9455

100,050 [0%]

5.8166e-09
3.2843e-10
1.1784e-08

19,694.7 [100%]

2.7032e-06
3.1885e-15
1.2511e-05

6,031 [100%]

8.2173e-34
7.5965e-65
3.0746e-33

2,577.6 [100%]

4.1087e-34
0

2.2126e-33
325.3 [100%]

h̃9

Avg
Mdn
SD

NFE [PSR]

78.4202
63.2084
56.8427

50,050 [0%]

82.3708
71.655
38.5358

100,050 [0%]

13.1452
11.8146
10.3958

50,050 [0%]

2.0126
1.7747
2.3634

50,050 [0%]

4.0905
2.0264
4.1748

50,050 [0%]

0
0
0

650.6 [100%]

h̃10

Avg
Mdn
SD

NFE [PSR]

0.4668
0.4790
0.0923

50,050 [0%]

0.5832
0.5808
0.0361

100,050 [0%]

0.3545
0.3475
0.0617

50,050 [0%]

0.6079
0.6187
0.0528

50,050 [0%]

0.4419
0.5494
0.2511

50,050 [0%]

0.0772
0

0.1198
25,175.1 [63.3%]

h̃11

Avg
Mdn
SD

NFE [PSR]

4.7887e02
4.5577e02
81.2657

50,050 [0%]

42.2103
35.6207
17.8737

100,050 [0%]

31.0847
28.4182
13.8752

50,050 [0%]

1.0199
0.7077
0.7690

50,050 [0%]

0.0023
0.0001
0.0066

50,050 [33.3%]

0
0
0

3,753.7 [100%]

Table 7: Minimization result of benchmark functions in Table 11 (shifted functions) found
by WOA, TLBO, BBO, DE, ACO and PSA, where n = 30 and maximum number of
iterations is 1000
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FA BA PSO HS BH GSA

h̃1

Avg
Mdn
SD

NFE [PSR]

16.5535
16.7776
2.2543

2,237,292 [0%]

7.4923
7.3576
3.8495

1,275,050 [0%]

5.8091
0.9473
14.0008

50,050 [0%]

0.0004
1.3989e-09

0.0010
26,301.3 [80%]

0.0626
0.0269
0.1056

50,050 [0%]

0.0004
1.3989e-09

0.0010
26,301.3 [80%]

h̃2

Avg
Mdn
SD

NFE [PSR]

18.8133e05
19.0087e05
1.5070e05

1,714,698 [0%]

36.3748e08
86.7148e02
73.7024e08

1,275,050 [0%]

13.1364e08
2.9052

66.8277e08
50,050 [3.3%]

98.8708
44.1272
107.579

50,050 [0%]

4.2282e02
1.9881e02
5.7525e02
50,050 [0%]

98.8708
44.1272

1.0758e02
50,050 [0%]

h̃3

Avg
Mdn
SD

NFE [PSR]

23.0051
23.2354
1.3196

1,964,025 [0%]

29.39376e02
1.0472e02
62.6571e02

1,275,050 [0%]

3.7845e02
4.877

18.2722e02
50,050 [3.3%]

0.61947
0.4414
0.6424

35,985.9 [40%]

0.3648
0.0040
0.4921

45,570.5 [30%]

0.6195
0.4414
0.6424

35,985.9 [40%]

h̃4

Avg
Mdn
SD

NFE [PSR]

4.2601
4.2018
0.7055

1,668,421 [0%]

13.5384e06
79.5771

49.7340e06
1,275,050 [43.3%]

16.2622e04
1.4027e-07
70.6541e04

39,939.9 [60%]

6.9258e-35
5.593e-35
4.0983e-35

11,486.5 [100%]

4.249e-11
8.1923e-13
1.922e-10

25,850.8 [100%]

6.9258e-35
5.593e-35
4.0983e-35

11,486.5 [100%]

h̃5

Avg
Mdn
SD

NFE [PSR]

0.1107
0.1099
0.0273

2,266,519 [0%]

3.66
0.6361
6.4116

1,275,050 [20%]

1.3524
0.0442
3.1091

50,050 [16.7%]

1.5744e-52
3.3009e-53
4.4847e-52

9,959.9 [100%]

0.3703
0.3769
0.0355

50,050 [0%]

1.5744e-52
3.3009e-53
4.4847e-52

9,959.9 [100%]

h̃6

Avg
Mdn
SD

NFE [PSR]

4.2740e04
3.8753e04
1.4213e04

1,288,368 [0%]

4.0173e05
4.5656e04
1.2319e06

1,275,050 [0%]

1.1783e-07
6.7044e-10
4.6328e-07

33,708.7 [100%]

9.6724e02
9.0891e02
5.4377e02
50,050 [0%]

4.6072e02
3.3705e02
4.1809e02
50,050 [0%]

9.6724e02
9.0891e02
5.4377e02
50,050 [0%]

h̃7

Avg
Mdn
SD

NFE [PSR]

1.9142e02
1.9346e02
19.0159

2,281,812.5 [0%]

1.6481e02
1.5773e02
41.6145

1,275,050 [0%]

1.6663e02
1.4775e02
1.0037e02
50,050 [0%]

19.9655
18.9042
5.744

50,050 [0%]

51.9033
51.8105
11.1337

50,050 [0%]

19.9655
18.9042
5.744

50,050 [0%]

h̃8

Avg
Mdn
SD

NFE [PSR]

0.0075
0.0068
0.0035

2,221,983.5 [0%]

9.1415
0.0425
21.9564

1,275,050 [36.7%]

0.1180
1.0283e-06

0.5612
43,018 [76.7%]

2.2962e-11
5.1698e-12
6.0402e-11

12,862.8 [100%]

0.0713
0.0727
0.0096

50,050 [0%]

2.2962e-11
5.1698e-12
6.0402e-11

12,862.8 [100%]

h̃9

Avg
Mdn
SD

NFE [PSR]

2.1263e02
2.1927e02
27.6932

2,293,639.5 [0%]

1.0686e02
41.6048

1.3891e02
1,275,050 [0%]

98.1528
17.3008

1.9507e02
50,050 [0%]

14.1375
13.2904
12.947

50,050 [0%]

11.6503
12.8832
7.4511

50,050 [0%]

14.1375
13.2904
12.947

50,050 [0%]

h̃10

Avg
Mdn
SD

NFE [PSR]

0.6116
0.6115
0.0288

2,335,961.5 [0%]

0.4698
0.4690
0.0427

1,275,050 [0%]

0.3232
0.301
0.1058

50,050 [0%]

0.7545
0.7691
0.0541

50,050 [0%]

0.3128
0.3183
0.0378

50,050 [0%]

0.7545
0.7691
0.0541

50,050 [0%]

h̃11

Avg
Mdn
SD

NFE [PSR]

3.0594
3.0853
0.3933

2,013,768 [0%]

12.148
0.0143
35.8589

1,275,050 [36.7%]

8.15971e02
7.4653e02
3.8495e02
50,050 [0%]

97.1866
94.3317
24.1285

50,050 [0%]

0.2276
0.1820
0.1451

50,050 [0%]

97.1866
94.3317
24.1285

50,050 [0%]

Table 8: MINIMIZATION RESULT OF BENCHMARK FUNCTIONS IN TABLE 11
(SHIFTED FUNCTIONS) FOUND BY FA, BA, PSO, HS, BH AND GSA, WHERE
n = 30 AND MAXIMUM NUMBER OF ITERATIONS is 1000

7 Conclusion
In this study, a novel population-based meta-heuristic optimization algorithm called Perfectionism Search Algorithm (PSA),
was introduced. PSA was designed based on simulation of the most popular model and psychological aspects of perfection-
ism, initially proposed by Hewitt and Flett. This research aimed at presenting the idea, theoretical and applied aspects of
the algorithm to continuous domains, as well as an implementation that performs well on standard benchmark test prob-
lems. In order to evaluate the efficiency of the introduced algorithm, it was applied to a set of various standard benchmark
functions by solving 35 mathematical nonlinear optimization problems. These test functions were categorized into three
classes of unimodal, multimodal, and shifted functions (which resulted from some unimodal and multimodal basic functions).
These benchmark functions were used to make two kinds of comparisons, based on different termination criteria: i) the
maximum iteration and ii) the number of function evaluations needed to reach an required accuracy. Also, the performance
of PSA was compared against a substantial number of famous algorithms and approaches such as: ACO, PSO, TLBO,
BBO, DE, HS, FA, WOA, BA, GSA and BH. The results obtained by PSA provided superior results in global optima
achievement in comparison to the other approaches. Also, from the best-so-far results of average, median and standard
deviation obtained from the execution of PSA, it was observed that this algorithm has a high stability and capability of
finding high quality solutions with fast convergence rate. Moreover, PSA has high percentage of successful runs in satisfying
the accuracy requirements and uses the minimum number of function evaluation in all the test problems. The optimization
results demonstrated that PSA is an efficient algorithm to deal with complex optimization problems and may, therefore,
be considered as a competitive approach when compared to other renowned meta- heuristic algorithms. Finally, further
research into the performance of PSA on the constrained optimization problems will be the subject of future publications.
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8 Appendix A
Table 9 (unimodal functions), Table 10 (multimodal functions) and Table 11 (shifted functions) where n denotes the
dimension of a given function.

Name Function Interval

Brown f1(x) =
∑n−1

i=1 ((x2
i )

(x2
i+1+1) + (x2

i+1)
(x2

i+1)) [−1, 4]n

Dixon-Price f2(x) = (x1 − 1)2 +
∑n

i=2 i(2x
2
i − xi−1)

2 [−10, 10]n

Powell singular 2 f3(x) =
∑n−2

i=2 (xi−1 + 10xi)
2 + 5(xi+1 − xi+2)

2 + (xi − 2xi+1)
4 + 10(xi−1xi+2)

4 [−4, 5]n

Quartic f4(x) =
∑n

i=1 ix
4 +Random([0, )) [−1.28, 1.28]n

Rosenbrock f5(x) =
∑n−1

i=1 (100(xi+1 − x2
i ))

2 + (xi − 1)2 [−30, 30]n

Schwefel 1.2 f6(x) =
∑n

i=1(
∑i

j=1 xj)
2 [−100, 100]n

Schwefel 2.20 f7(x) =
∑n

i=1 |xi| [−100, 100]n

Schwefel 2.22 f8(x) =
∑n

i=1 |xi|+Πn
i=1|xi [−10, 10]n

Sphere f9(x) =
∑n

i=1 x
2
i [−100, 100]n

Step 2 f10(x) =
∑n

i=1([xi + 0.5])2 [−10, 10]n

Sum squares f11(x) =
∑n

i=1 ix
2
i [−10, 10]n

Table 9: UNIMODAL TEST FUNCTIONS USED IN THE EXPERIMENTAL STUDY

In table 9, most of the test functions being minimized have a global minimum at x∗ = 0 (where 0 is an n-dimensional
zero vector) with optimal value equal zero (i.e., fx∗ = 0). Exceptions are as follows: Dixon-Price with f2(x∗) = 0 at

[2(2
1−i−1)]ni=1; Quartic with f2(x∗) = Random[0.1) (in this paper we set Random[0.1) = 0.5) at x∗ = 0; Rosenbrock with

f5(x∗) = 0 at x∗ = [1]n; Step 2 with f10xx∗
at x∗

i ∈ [−0.5, 0.5)(i = 1, 2, ..., n).
In table 10, forfunctions g1 , g4 , g6 , g8 , g10 and g11, the global minimums are located at x∗ = 0 with f(x∗) = 0.

Exceptions are as follows: Deb 1 with g2(x∗) = −1 at x∗
i =

(2ti+1)
2

where t ∈ (1, 2, ..., n); Drop wave with g3(x∗) = −1
at x∗ = [0]n; Levy with g5(x∗) = 0 at x∗ = [1]n; Penalty 2 with g7(x∗) = 0 at x∗ = [1]n; Quintic with g9(x∗) = 0 at
x∗ = [−1]n or x∗ = [2]n; Sinusoidal with g12(x∗) = −3.5 at x∗ = [180]n and and Styblinski–Tang with g13(x∗) = −39.16599
at x∗ = [−2.903534]n.
In Table 11, all the test functions have a global minimum at x∗ = 0 with f(x∗) = 0.

Name Function Initial Interval

Ackley g1(x) = −20 exp(−0.20
√

1
n

∑n
i=1 x

2
i )− exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + ϵ [−32, 32]n

Deb 1 g2(x) = − 1
n

∑n
i=1 sin

6(5πxi) [−1, 1]n

Drop wave g3(x) = −
1+cos(12

√∑n
i=1 x2

i )

2+0.5
∑n

i=1 x2
i

[−5.12, 5.12]n

Griewank g4(x) = 1 + ( 1
4000

)
∑n

i=1 x
2
i −Πn

i=1 cos(
xi√
i
) [−100, 100]n

Levy
g5(x) = sin2(πw1) +

∑n
i=1(wi − 1)2[1 + 10 sin2(πwi + 1)] + (wn − 1)2

wi = 1 + xi−1
4

[−10, 10]n

Pathological g6(x) =
∑n

i=1(0.5 +
sin2(

√
100x2

i+x2
i+1)−0.5

1+0.001(xi−xi+1)4
)

Penalty2

g7(x) = 0.1{sin2(3πx1 +
∑n

i=1[(xi − 1)2(1 + sin2(3πxi+1))])}
+(xn − 1)2[1 + sin2(2πxn)] +

∑n
i=1 u(xi, 5, 100.4)

u(xi, a, k,m) =


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m

[−50.50]n

Pinter
g8(x) =

∑n
i=1 ix

2
i +

∑n
i=1 20i sin

2(xi−1 sin(xi) + sin(xi+1))
+

∑n
i=1 i log10(1 + i(x2

i−1 − 2xi+ 3xi+1 − cos(xi) + 1)2), x0 = xn, xn+1 = xi
[−10, 10]n

Quintic g9(x) =
∑n

i=1 |x5
i − 3x4

i + 4x3
i + 2x2

i − 10xi − 4| [−10, 10]n

Salomon g10(x) = 1− cos(2π
√∑n

i=1) + 0.1
√∑n

i=1 [−100, 100]n

sargan g11(x) =
∑n

i=1 n(x
2
i + 0.4

∑
i ̸=j xixj) [−100, 100]n

Sinusoidal g12(x) = −[2.5Πn
i=1 sin(xi − 30) + Πn

i=1 sin(5(xi − 30))] [0, 180]n

Styblinski - Tang g13(x) = (− 1
2
n)

∑n
i=1(x

4
i − 16x2

i + 5xi) [−5, 5]n

Table 10: MULTIMODAL TEST FUNCTIONS USED IN THE EXPERIMENTAL
STUDY
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Name Function Interval
Alpine 1 h1(x) =

∑n
i=1 |xi sin(xi + 0.1xi)| [−10, 10]n

Bent Cigar h2(x) = x2
1 + 106

∑n
i=2 x

2
i [−100, 100]n

Bohachevsky h3(x) =
∑n−1

i=1 [x2
i + 2x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7] [−50, 50]n

Chung Reynold g4(x) = (
∑n

i=1 x
2
i )

2 [−100, 100]n

Csendes h5(x) =
∑n

i=1 x
6
i (2 + sin( 1

xi
)) [−1, 1]n

Ellipsoid h6(x) =
∑n

i=1(100
i−1
n−1 xi)

2 [−100, 100]n

Rastrigin h7(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] [−5.12, 5.12]n

Sum of different powers h8(x) =
∑n

i=1 |xi|i+1 [−1, 1]n

Trigonometric 1 h9 =
∑n

i=1[n−
∑n

j=1 cos(xj) + i(1− cos(xi)− sin(xi))]
2 [0, π]n

Wavy h10(x) = 1− {( 1
n
)
∑n

i=1[cos(10xi) exp
−x2

i
2

]} [−π, π]n

zakharov h11(x) =
∑n

i=1 x
2
i + (0.5

∑n
i=1 ixi)

2 + (0.5
∑n

i=1 ixi)
4 [−5, 10]n

Table 11: BASIC FUNCTIONS WHOSE SHIFTED VERSIONS HAVE BEEN USED IN
THE EXPERIMENTAL STUDY
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