

### Journal of Algorithms and Computation



journal homepage: http://jac.ut.ac.ir

# 4-total mean cordial labeling of spider graph

R. Ponraj<sup>\*1</sup>, S.Subbulakshmi<sup>†2</sup>, and M. Sivakumar<sup>‡3</sup>

#### ABSTRACT

Let G be a graph. Let  $f:V(G) \to \{0,1,2,\ldots,k-1\}$  be a function where  $k \in \mathbb{N}$  and k > 1. For each edge uv, assign the label  $f(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$ . f is called a k-total mean cordial labeling of G if  $|t_{mf}(i) - t_{mf}(j)| \le 1$ , for all  $i, j \in \{0, 1, 2, \ldots, k-1\}$ , where  $t_{mf}(x)$  denotes the total number of vertices and edges labelled with  $x, x \in \{0, 1, 2, \ldots, k-1\}$ . A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. In this paper we investigate the 4-total mean cordial labeling behaviour of some spider graph.

#### ARTICLE INFO

Article history:
Received 12, January 2023
Received in revised form 09
March 2023
Accepted 15, May 2023
Available online 01, June 2023

Keyword: tree, spider graph.

AMS subject Classification: 05C78.

### 1 Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was introduced by Cahit [1]. The notion of k-total mean cordial labeling has been introduced in [5]. The 4-total mean cordial labeling behaviour of several graphs like cycle, complete

<sup>&</sup>lt;sup>1</sup>Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412, Tamil Nadu, India.

<sup>&</sup>lt;sup>2</sup>Research Scholor, Reg.No:20124012092023, Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli–627 012, India.

<sup>&</sup>lt;sup>3</sup>Department of Mathematics, Government Arts and Science College, Tittagudi – 606 106, India.

<sup>\*</sup>Corresponding author: R. Ponraj. Email: ponrajmaths@gmail.com

<sup>†</sup>ssubbulakshmis@gmail.com

<sup>&</sup>lt;sup>‡</sup>sivamaths1975@gmail.com

graph, star, bistar, comb and crown have been studied in [5, 6, 7, 8, 9, 10, 11, 12, 13]. In this paper we investigate the 4- total mean cordial labeling of spider graph. Let x be any real number. Then  $\lceil x \rceil$  stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[3] and Gallian[2].

# 2 k-total mean cordial graph

**Definition 1.** Let G be a graph. Let  $f: V(G) \to \{0, 1, 2, \dots, k-1\}$  be a function where  $k \in \mathbb{N}$  and k > 1. For each edge uv, assign the label  $f(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$ . f is called a k-total mean cordial labeling of G if  $|t_{mf}(i) - t_{mf}(j)| \leq 1$ , for all  $i, j \in \{0, 1, 2, \dots, k-1\}$ , where  $t_{mf}(x)$  denotes the total number of vertices and edges labelled with  $x, x \in \{0, 1, 2, \dots, k-1\}$ . A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

### 3 Preliminaries

**Definition 2.** [3] A connected acyclic graph is called a *tree*.

**Definition 3.** [4] A tree is called a *spider graph* if it has a centre vertex u of degree > 1 and all the other vertex is either degree 1 or degree 2. Thus the spider is an amalgamation of k paths with various lengths. If it has  $x'_1$  of length  $a_1, x'_2$  of length  $a_2, \ldots, x'_m$  of length  $a_m$ , then it is denoted by  $SP(a_1^{x_1}, a_2^{x_2}, \ldots, a_m^{x_m})$  where  $a_1 < a_2 < \ldots a_m$ .

## 4 MAIN RESULTS

**Theorem 4.** The spider graph  $SP(1^m, 2^n)$  is 4-total mean cordial for all values of  $m, n \ge 1$ .

```
Proof. Let V(SP(1^m, 2^n)) = \{u, u_i, v_j, w_j : 1 \le i \le m, 1 \le j \le n\} and E(SP(1^m, 2^n)) = \{uu_i : 1 \le i \le m\} \cup \{uv_j, v_j w_j : 1 \le j \le n\}.
Note that |V(SP(1^m, 2^n))| + |E(SP(1^m, 2^n))| = 2m + 4n + 1.
Assign the label 2 to the vertex u. Now we assign the label 0 to the n vertices v_1, v_2, \ldots
```

Assign the label 2 to the vertex u. Now we assign the label 0 to the n vertices  $v_1, v_2, \ldots v_n$ . Next we assign the label 3 to the n vertices  $w_1, w_2, \ldots, w_n$ .

```
Case 1. m \equiv 0 \pmod{4}.
```

Let m = 4r,  $r \ge 1$ . Assign the label 0 to the 2r vertices  $u_1, u_2, ..., u_{2r}$ . Now we assign the label 2 to the r vertices  $u_{2r+1}, u_{2r+2}, ..., u_{3r}$ . Next we assign the label 3 to the r

vertices  $u_{3r+1}, u_{3r+2}, ..., u_{4r}$ .

Case 2.  $m \equiv 1 \pmod{4}$ .

Let m = 4r + 1,  $r \ge 0$ . Assign the label to the vertices  $u_i$   $(1 \le i \le 4r)$  as in case 1. Next we assign the label 0 to the vertex  $u_{4r+1}$ .

Case 3.  $m \equiv 2 \pmod{4}$ .

Let m = 4r + 2,  $r \ge 0$ . Label the vertices  $u_i$   $(1 \le i \le 4r + 1)$  as in Case 2. Now we assign the labels 3 to the vertex  $u_{4r+2}$ .

Case 4.  $m \equiv 3 \pmod{4}$ .

Let m = 4r + 3,  $r \ge 0$ . As in case 3, we assign the label to the vertices  $u_i$   $(1 \le i \le 4r + 2)$ . Finally we assign the label 0 to the vertex  $u_{4r+3}$ .

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 1.

| m          | $t_{mf}(0)$ | $t_{mf}(1)$ | $t_{mf}(2)$ | $t_{mf}(3)$ |
|------------|-------------|-------------|-------------|-------------|
| m=4r       | 2r+n        | 2r+n        | 2r+n+1      | 2r+n        |
| m = 4r + 1 | 2r+n+1      | 2r+n+1      | 2r+n+1      | 2r+n        |
| m = 4r + 2 | 2r+n+1      | 2r+n+1      | 2r+n+1      | 2r+n+2      |
| m = 4r + 3 | 2r+n+2      | 2r+n+2      | 2r+n+1      | 2r+n+2      |

Table 1:

**Theorem 5.** The spider graph  $SP\left(1^{m},3^{n}\right)$  is 4-total mean cordial for all values of  $m,n\geq 1$ .

Proof. Let  $V\left(SP\left(1^{m},3^{n}\right)\right)=\{u,u_{i},x_{j},y_{j},z_{j}:1\leq i\leq m,1\leq j\leq n\}$  and  $E\left(SP\left(1^{m},3^{n}\right)\right)=\{uu_{i}:1\leq i\leq m\}\cup\{ux_{j},x_{j}y_{j},y_{j}z_{j}:1\leq j\leq n\}.$  Clearly  $|V\left(SP\left(1^{m},3^{n}\right)\right)|+|E\left(SP\left(1^{m},3^{n}\right)\right)|=2m+6n+1.$ 

Assign the label 1 to the vertex u.

Case 1.  $m \equiv 1 \pmod{2}$ .

Let m = 2t + 1,  $t \ge 0$ . Now we assign the label 3 to the t + 1 vertices  $u_1, u_2, \ldots, u_{t+1}$ . Next we assign the label 0 to the t vertices  $u_{t+2}, u_{t+3}, \ldots, u_{2t+1}$ .

Subcase 1.  $n \equiv 0 \pmod{4}$ .

Let n = 4r,  $r \ge 1$ . Assign the label 0 to the 2r vertices  $x_1, x_2, \ldots, x_{2r}$ . Now we assign the label 3 to the 2r vertices  $x_{2r+1}, x_{2r+2}, \ldots, x_{4r}$ . Next we assign the label 0 to the r vertices  $y_1, y_2, \ldots, y_r$ . We now assign the label 1 to the r vertices  $y_{r+1}, y_{r+2}, \ldots, y_{2r}$ . Next we assign the label 2 to the 2r vertices  $y_{2r+1}, y_{2r+2}, \ldots, y_{4r}$ . Now we assign the label

0 to the r vertices  $z_1, z_2, \ldots, z_r$ . We now assign the label 1 to the r vertices  $z_{r+1}, z_{r+2}, \ldots, z_{2r}$ . Now we assign the label 1 to the r vertices  $z_{2r+1}, z_{2r+2}, \ldots, z_{3r}$ . Next we assign the label 3 to the r vertices  $z_{3r+1}, z_{3r+2}, \ldots, z_{4r}$ .

#### Subcase 2. $n \equiv 1 \pmod{4}$ .

Let n = 4r + 1,  $r \ge 0$ . Assign the label to the vertices  $x_j, y_j, z_j$   $(1 \le j \le 4r)$  as in Subcase 1. Next we assign the labels 0, 0, 3 to the vertices  $x_{4r+1}, y_{4r+1}, z_{4r+1}$ .

#### Subcase 3. $n \equiv 2 \pmod{4}$ .

Let n = 4r + 2,  $r \ge 0$ . Label the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r + 1)$  as in Subcase 2. Now we assign the labels 3, 2, 0 to the vertices  $x_{4r+2}$ ,  $y_{4r+2}$ ,  $z_{4r+2}$ .

#### Subcase 4. $n \equiv 3 \pmod{4}$ .

Let n = 4r + 3,  $r \ge 0$ . As in Subcase 3, we assign the label to the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r + 1)$ . Finally we assign the labels 0, 2, 3 to the vertices  $x_{4r+3}$ ,  $y_{4r+3}$ ,  $z_{4r+3}$ .

#### Case 2. $m \equiv 0 \pmod{2}$ .

Let m = 2t,  $t \ge 1$ . Assign the label 3 to the t vertices  $u_1, u_2, \ldots, u_t$ . Now we assign the label 0 to the t vertices  $u_{t+1}, u_{t+2}, \ldots, u_{2t}$ .

#### Subcase 1. $n \equiv 0 \pmod{4}$ .

Let  $n = 4r, r \ge 1$ . Label the vertices as in Subcase 1 of Case 1.

#### Subcase 2. $n \equiv 1 \pmod{4}$ .

Let m = 4r + 1,  $r \ge 0$ . Assign the label to the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r)$  as in Subcase 1 of Case 2. Now we assign the labels 0, 3, 0 to the vertices  $x_{4r+1}$ ,  $y_{4r+1}$ ,  $z_{4r+1}$ .

#### Subcase 3. $n \equiv 2 \pmod{4}$ .

Let n = 4r + 2,  $r \ge 0$ . Label the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r + 1)$  as in Subcase 2 of Case 2. Next we assign the labels 3, 2, 0 to the vertices  $x_{4r+2}$ ,  $y_{4r+2}$ ,  $z_{4r+2}$ .

#### Subcase 4. $n \equiv 3 \pmod{4}$ .

Let n = 4r+3,  $r \ge 0$ . Now we assign the label to the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r+1)$  as in Subcase 3 of Case 2. Finally we assign the label 0, 2, 3 to the vertices  $x_{4r+3}$ ,  $y_{4r+3}$ ,  $z_{4r+3}$ .

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 2.

**Theorem 6.** The Spider graph  $SP(1^m, 4^n)$  is a 4-total mean cordial for all values of  $m, n \ge 1$ .

| m          | n          | $t_{mf}(0)$ | $t_{mf}(1)$ | $t_{mf}(2)$ | $t_{mf}(3)$ |
|------------|------------|-------------|-------------|-------------|-------------|
| m = 2t + 1 | n=4r       | t+6r        | t + 6r + 1  | t + 6r + 1  | t + 6r + 1  |
| m = 2t + 1 | n = 4r + 1 | t+6r+3      | t+6r+2      | t + 6r + 2  | t+6r+2      |
| m = 2t + 1 | n = 4r + 2 | t+6r+4      | t + 6r + 3  | t + 6r + 4  | t+6r+4      |
| m = 2t + 1 | n = 4r + 3 | t+6r+5      | t+6r+5      | t+6r+5      | t+6r+6      |
| m=2t       | n=4r       | t+6r        | t+6r+1      | t + 6r      | t + 6r      |
| m=2t       | n = 4r + 1 | t+6r+2      | t+6r+2      | t + 6r + 2  | t+6r+1      |
| m=2t       | n = 4r + 2 | t+6r+3      | t+6r+3      | t + 6r + 4  | t + 6r + 3  |
| m=2t       | n = 4r + 3 | t+6r+4      | t+6r+5      | t+6r+5      | t+6r+5      |

Table 2:

Proof. Let  $V(SP(1^m, 4^n)) = \{u, u_i, w_j, x_j, y_j, z_j : 1 \le i \le m, 1 \le j \le n\}$  and  $E(SP(1^m, 4^n)) = \{uu_i : 1 \le i \le m\} \cup \{uw_j, w_j x_j, x_j y_j, y_j z_j : 1 \le j \le n\}.$ Obviously  $|V(SP(1^m, 4^n))| + |E(SP(1^m, 4^n))| = 2m + 8n + 1.$ 

Assign the label 2 to the vertex u. Now we assign the label 3 to the n vertices  $w_1, w_2, \ldots, w_n$ . Next we assign the label 0 to the n vertices  $x_1, x_2, \ldots, x_n$ . We now assign the label 2 to the n vertices  $y_1, y_2, \ldots, y_n$ . Next we assign the label 0 to the n vertices  $z_1, z_2, \ldots, z_n$ .

#### Case 1. $m \equiv 0 \pmod{4}$ .

Let m = 4r,  $r \ge 1$ . Assign the label 0 to the 2r vertices  $u_1, u_2, \ldots, u_{2r}$ . Next we assign the label 2 to the r vertices  $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}$ . Now we assign the label 3 to the r vertices  $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}$ .

#### Case 2. $m \equiv 1 \pmod{4}$ .

Let m = 4r + 1,  $r \ge 0$ . Now we assign the label to the vertices  $u_i$   $(1 \le i \le 4r)$  as in case 1. Next we assign the label 0 to the vertex  $u_{4r+1}$ .

#### Case 3. $m \equiv 2 \pmod{4}$ .

Let m = 4r + 2,  $r \ge 0$ . Label the vertices  $u_i$   $(1 \le i \le 4r + 1)$  as in Case 2. Now we assign the labels 3 to the vertex  $u_{4r+2}$ .

#### Case 4. $m \equiv 3 \pmod{4}$ .

Let m = 4r + 3,  $r \ge 0$ . As in case 3, we assign the label to the vertices  $u_i$   $(1 \le i \le 4r + 2)$ . Finally we assign the label 0 to the vertex  $u_{4r+3}$ .

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 3.

**Theorem 7.** The Spider graph  $SP(2^m, 3^n)$  is a 4-total mean cordial for all values of

| m          | $t_{mf}(0)$ | $t_{mf}(1)$ | $t_{mf}(2)$ | $t_{mf}(3)$ |
|------------|-------------|-------------|-------------|-------------|
| m = 4r     | 2r + 2n     | 2r+2n       | 2r + 2n + 1 | 2r + 2n     |
| m = 4r + 1 | 2r + 2n     |
| m = 4r + 2 | 2r + 2n + 1 | 2r + 2n + 1 | 2r + 2n + 1 | 2r + 2n + 2 |
| m = 4r + 3 | 2r + 2n + 2 | 2r + 2n + 2 | 2r + 2n + 1 | 2r + 2n + 2 |

Table 3:

 $m, n \ge 1$ .

Proof. Let  $V(SP(2^m, 3^n)) = \{u, u_i, v_i, x_j, y_j, z_j : 1 \le i \le m, 1 \le j \le n\}$  and  $E(SP(2^m, 3^n)) = \{uu_i, u_iv_i : 1 \le i \le m\} \cup \{ux_j, x_jy_j, y_jz_j : 1 \le j \le n\}$ . Clearly  $|V(SP(2^m, 3^n))| + |E(SP(2^m, 3^n))| = 4m + 6n + 1$ .

Assign the label 1 to the vertex u. Next we assign the label 0 to the m vertices  $u_1, u_2, \ldots, u_m$ . Now we assign the label 3 to the m vertices  $v_1, v_2, \ldots, v_m$ .

#### Case 1. $n \equiv 0 \pmod{4}$ .

Let  $n=4r, r \geq 1$ . Assign the label 0 to the 2r vertices  $x_1, x_2, \ldots, x_{2r}$ . Now we assign the label 3 to the 2r vertices  $x_{2r+1}, x_{2r+2}, \ldots, x_{4r}$ . Next we assign the label 0 to the r vertices  $y_1, y_2, \ldots, y_r$ . We now assign the label 1 to the r vertices  $y_{r+1}, y_{r+2}, \ldots, y_{2r}$ . Next we assign the label 2 to the 2r vertices  $y_{2r+1}, y_{2r+2}, \ldots, y_{4r}$ . Now we assign the label 0 to the r vertices  $z_1, z_2, \ldots, z_r$ . We now assign the label 1 to the r vertices  $z_{r+1}, z_{r+2}, \ldots, z_{2r}$ . Now weaksign the label 1 to the r vertices  $z_{2r+1}, z_{2r+2}, \ldots, z_{3r}$ . Next we assign the label 3 to the r vertices  $z_{3r+1}, z_{3r+2}, \ldots, z_{4r}$ .

#### Case 2. $n \equiv 1 \pmod{4}$ .

Let n = 4r + 1,  $r \ge 0$ . Assign the label to the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r)$  as in Case 1. Next we assign the labels 3, 2, 0 to the vertices  $x_{4r+1}$ ,  $y_{4r+1}$ ,  $z_{4r+1}$ .

#### Case 3. $n \equiv 2 \pmod{4}$ .

Let n = 4r + 2,  $r \ge 0$ . Label the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r + 1)$  as in Case 2. Now we assign the labels 0, 3, 0 to the vertices  $x_{4r+2}$ ,  $y_{4r+2}$ ,  $z_{4r+2}$ .

#### Case 4. $n \equiv 3 \pmod{4}$ .

Let n = 4r + 3,  $r \ge 0$ . As in Case 2, we assign the label to the vertices  $x_j$ ,  $y_j$ ,  $z_j$   $(1 \le j \le 4r + 1)$ . Finally we assign the labels 0, 0, 3, 3, 2, 0 to the vertices  $x_{4r+2}$ ,  $y_{4r+2}$ ,  $z_{4r+3}$ ,  $y_{4r+3}$ ,  $z_{4r+3}$ .

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 4.

| n          | $t_{mf}(0)$ | $t_{mf}(1)$ | $t_{mf}(2)$ | $t_{mf}(3)$ |
|------------|-------------|-------------|-------------|-------------|
| n=4r       | m+6r        | m + 6r + 1  | m + 6r      | m+6r        |
| n = 4r + 1 | m + 6r + 1  | m + 6r + 2  | m + 6r + 2  | m + 6r + 2  |
| n = 4r + 2 | m + 6r + 3  | m + 6r + 3  | m + 6r + 4  | m + 6r + 3  |
| n = 4r + 3 | m + 6r + 5  | m + 6r + 4  | m + 6r + 5  | m + 6r + 5  |

Table 4:

**Theorem 8.** The Spider graph  $SP(2^m, 4^n)$  is a 4-total mean cordial for all values of  $m, n \ge 1$ .

```
Proof. Let V(SP(2^m, 4^n)) = \{u, u_i, v_i, w_j, x_j, y_j, z_j : 1 \le i \le m, 1 \le j \le n\} and E(SP(2^m, 4^n)) = \{uu_i, u_iv_i : 1 \le i \le m\} \cup \{uw_j, w_jx_j, x_jy_j, y_jz_j : 1 \le j \le n\}. Note that |V(SP(2^m, 4^n))| + |E(SP(2^m, 4^n))| = 4m + 8n + 1.
```

Assign the label 2 to the vertex u. Next we assign the label 0 to the m vertices  $u_1, u_2, \ldots, u_m$ . Now we assign the label 3 to the m vertices  $v_1, v_2, \ldots, v_n$ . We now assign the label 3 to the n vertices  $w_1, w_2, \ldots, w_n$ . Next  $x_1, x_2, \ldots, x_n$ . We now assign the label 2 to the n vertices  $y_1, y_2, \ldots, y_n$ . Finally we assign the label 3 to the n vertices  $z_1, z_2, \ldots, z_n$ . Obviously  $t_{mf}(0) = t_{mf}(1) = t_{mf}(3) = m + 2n$ ;  $t_{mf}(3) = m + 2n + 1$ .

**Theorem 9.** The Spider graph  $SP(1^n, 2^n, 3^n)$  is 4-total mean cordial for all values of  $n \ge 1$ .

```
Proof. Let V(SP(1^n, 2^n, 3^n)) = \{u, u_i, v_i, w_i, x_i, y_i, z_i : 1 \le i \le n\} and E(SP(1^n, 2^n, 3^n)) = \{uu_i, uv_i, v_iw_i, ux_i, x_iy_i, y_iz_i : 1 \le i \le n\}.
Obviously |V(SP(1^n, 2^n, 3^n))| + |E(SP(1^n, 2^n, 3^n))| = 12n + 1.
```

Assign the label 1 to the vertex u. We now assign the label 0 to the n vertices  $u_1, u_2, \ldots, u_n$ . Now we assign the label 0 to the n vertices  $v_1, v_2, \ldots, v_n$ . Next we assign the label 3 to the n vertices  $w_1, w_2, \ldots, w_n$ . Now we assign the label 0 to the n vertices  $x_1, x_2, \ldots, x_n$ . We now assign the label 3 to the n vertices  $y_1, y_2, \ldots, y_n$ . Finally we assign the label 2 to the n vertices  $z_1, z_2, \ldots, z_n$ .

Clearly 
$$t_{mf}(0) = t_{mf}(2) = t_{mf}(3) = 3n$$
;  $t_{mf}(1) = 3n + 1$ .

**Theorem 10.** The Spider graph  $SP(1^n, 2^n, 3^n, 4^n)$  is 4-total mean cordial for all values of  $n \ge 1$ .

Proof. Let  $V\left(SP\left(1^{n},2^{n},3^{n},4^{n}\right)\right)=\{u,u_{i},v_{i},w_{i},x_{i},y_{i},z_{i},p_{i},q_{i},r_{i},s_{i}:1\leq i\leq n\}$  and  $E\left(SP\left(1^{n},2^{n},3^{n},4_{n}\right)\right)=\{uu_{i},uv_{i},v_{i}w_{i},ux_{i},x_{i}y_{i},y_{i}z_{i},up_{i},p_{i}q_{i},q_{i}r_{i},r_{i}s_{i}:1\leq i\leq n\}$ . Obviously  $|V\left(SP\left(1^{n},2^{n},3^{n},4^{n}\right)\right)|+|E\left(SP\left(1^{n},2^{n},3^{n},4^{n}\right)\right)|=20n+1$ .

Assign the label 1 to the vertex u. We now assign the label 0 to the 4n vertices  $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n, w_1, w_2, \ldots, w_n, p_1, p_2, \ldots, p_n$ . Next we assign the label 1 to the n vertices  $x_1, x_2, \ldots, x_n$ . Now we assign the label 2 to the 2n vertices  $y_1, y_2, \ldots, y_n, z_1, z_2, \ldots, z_n$ . Finally we assign the label 3 to the 3n vertices  $q_1, q_2, \ldots, q_n, r_1, r_2, \ldots, r_n, s_1, s_2, \ldots, s_n$ .

Clearly  $t_{mf}(0) = t_{mf}(2) = t_{mf}(3) = 5n$ ;  $t_{mf}(1) = 5n + 1$ .

## References

- [1] Cahit.I., Cordial Graphs: A weaker version of Graceful and Harmonious graphs, *Ars combin.*, **23** (1987) 201-207.
- [2] Gallian.J.A., A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, **19** (2016) #Ds6.
- [3] Harary, Graph theory, Addision wesley, New Delhi (1969).
- [4] Ponraj.R., Gayathri.A., Somasundaram.S., Pair difference cordiality of some special graphs, *J.Appl. and Pure Math.* Vol 3 (2021), No.5-6, pp 263-274.
- [5] Ponraj.R., Subbulakshmi.S., Somasundaram.S., k-total mean cordial graphs, J.Math.Comput.Sci. 10(2020), No.5, 1697-1711.
- [6] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial graphs derived from paths, *J.Appl and Pure Math.* Vol 2(2020), 319-329.
- [7] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling in subdivision graphs, *Journal of Algorithms and Computation* 52(2020), 1-11.
- [8] Ponraj.R., Subbulakshmi.S., Somasundaram.S., Some 4-total mean cordial graphs derived from wheel, *J. Math. Comput. Sci.* 11(2021), 467-476.
- [9] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial graphs with star and bistar, *Turkish Journal of Computer and Mathematics Education*. 12(2021), 951-956.
- [10] Ponraj.R., Subbulakshmi.S., Somasundaram.S., On 4-total mean cordial graphs, *J. Appl. Math and Informatics*, Vol 39(2021), 497-506.

- [11] Ponraj.R, Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling of special graphs, *Journal of Algorithms and Computation*, 53(2021), 13-22.
- [12] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling of union of some graphs with the complete bipartite graph  $K_{2,n}$ , Journal of Algorithms and Computation, 54(2022), 35-46.
- [13] Ponraj.R, Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling of some graphs derived from H-graph and star, *International J. Math. Combin*, Vol 3(2022), 99-106.