تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,231 |
تعداد دریافت فایل اصل مقاله | 97,224,103 |
Polymethacrylate coated electrospun chitosan/PEO nanofibers loaded with thyme essential oil: a newfound potential for antimicrobial food packaging | ||
Journal of Food and Bioprocess Engineering | ||
مقاله 2، دوره 6، شماره 2، بهمن 2023، صفحه 8-16 اصل مقاله (2.97 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2023.356018.1138 | ||
نویسندگان | ||
Elham Farahmand؛ Zahra Emam-Djomeh؛ Mohammad Ekrami؛ Sayed Hadi Razavi* | ||
Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering & Technology, Faculty of Agricultural Engineering & Technology, University of Tehran, P.O. Box 4111, Karaj, 31587-77871, Iran | ||
چکیده | ||
Development of antimicrobial nanofibers by the electrospinning process is one of the most emerging trends in food bio-packaging systems. In this study, the blend of chitosan (CS) and polyethylene oxide (PEO) was employed to fabricate electrospun nanofibrous mats. Thyme essential oil (TEO) was embedded into the electrospun CS/PEO mats at concentrations of 0.5%, 1%, and 1.5% to create nanofibers with antibacterial properties. Adding functional groups to the surface of the CS/PEO/TEO electrospun mat was achieved by dip-coating the mat into a poly (MMA-co-MAA) solution with two different compositions to enhance bacteria immobilization. The morphology and diameter of CS/PEO/TEO nanofibers before and after coating were investigated by field emission scanning electron microscopy (FE-SEM). Atomic force microscopy (AFM) and water contact angle (WCA) measurements demonstrated the physical properties of coated and uncoated electrospun mats. Fourier transform infrared spectroscopy (FTIR) was further utilized to reveal the chemical structure of nanofibrous mats. The inhibition zone diameter was employed as an indicator of antibacterial activity through the disk diffusion test. The study results showed that the TEO-loaded nanofibrous mats, fabricated by an electrospinning system and coated by poly (MMA-co-MAA) at a 7:3 ratio of MMA: MAA can effectively inhibit the growth of bacteria. This novel biopolymer-based electrospun mat proved to be a promising candidate for antimicrobial packaging material due to the remarkable properties of biocompatibility, biodegradability, and excellent antibacterial performance. | ||
کلیدواژهها | ||
Electrospinning؛ Chitosan؛ Polyethylene oxide (PEO)؛ Antimicrobial activity؛ Food packaging | ||
مراجع | ||
Ahmed, J. (2021). Electrospinning for the manufacture of biosensor components: A mini‐review. Medical Devices & Sensors, 4(1), e10136. Amna, T., Yang, J., Ryu, K.-S., & Hwang, I. (2015). Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products. Journal of food science and technology, 52(7), 4600-4606. Arkoun, M., Daigle, F., Heuzey, M. C., & Ajji, A. (2017). Antibacterial electrospun chitosan‐based nanofibers: A bacterial membrane perforator. Food Science & Nutrition, 5(4), 865-874. Celikel, N., & Kavas, G. (2008). Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech journal of food sciences, 26(3), 174. Choukourov, A., Kylián, O., Petr, M., Vaidulych, M., Nikitin, D., Hanuš, J., ... & Biederman, H. (2017). RMS roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer. Nanoscale, 9(7), 2616-2625. Deng, L., Taxipalati, M., Zhang, A., Que, F., Wei, H., Feng, F., & Zhang, H. (2018). Electrospun chitosan/poly (ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity. Journal of Agricultural and Food Chemistry, 66(24), 6219-6226. Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2017). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying technology, 35(2), 139-162. Duan, B., Dong, C., Yuan, X., & Yao, K. (2004). Electrospinning of chitosan solutions in acetic acid with poly (ethylene oxide). Journal of Biomaterials Science, Polymer Edition, 15(6), 797-811. Esmaeili, Y., Paidari, S., Baghbaderani, S. A., Nateghi, L., Al-Hassan, A., & Ariffin, F. (2021). Essential oils as natural antimicrobial agents in postharvest treatments of fruits and vegetables: a review. Journal of Food Measurement and Characterization, 1-16. Farahmand, E., Ibrahim, F., Hosseini, S., Rothan, H. A., Yusof, R., Koole, L. H., & Djordjevic, I. (2015). A novel approach for application of nylon membranes in the biosensing domain. Applied Surface Science, 353, 1310-1319. Fleming, I. (2011). Molecular orbitals and organic chemical reactions. John Wiley & Sons. Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64-75. Göksen, G., Fabra, M. J., Pérez-Cataluña, A., Ekiz, H. I., Sanchez, G., & López-Rubio, A. (2021). Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packaging and Shelf Life, 27, 100613. Guan, X., Li, L., Li, S., Liu, J., & Huang, K. (2020). A food-grade continuous electrospun fiber of hordein/chitosan with water resistance. Food Bioscience, 37, 100687. Hajikhani, M., Lin, M. (2022). A review on designing nanofibers with high porous and rough surface via electrospinning technology for rapid detection of food quality and safety attributes. Trends in Food Science & Technology, 128, 118-128. Hosseini, S., Azari, P., Farahmand, E., Gan, S. N., Rothan, H. A., Yusof, R., Koole, L. H., Djordjevic, I., & Ibrahim, F. (2015). Polymethacrylate coated electrospun PHB fibers: An exquisite outlook for fabrication of paper-based biosensors. Biosensors and Bioelectronics, 69, 257-264. Humphries, R., Bobenchik, A. M., Hindler, J. A., & Schuetz, A. N. (2021). Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. Journal of clinical microbiology, 59(12), e00213- 00221. Karabagias, I., Badeka, A., & Kontominas, M. (2011). Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat science, 88(1), 109-116. Kayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food chemistry, 133(3), 641-649. Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packaging and Shelf Life, 33, 100892. Koushki, P., Bahrami, S. H., & Ranjbar-Mohammadi, M. (2018). Coaxial nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties. Journal of industrial textiles, 47(5), 834-852. Kumar, T. S. M., Kumar, K. S., Rajini, N., Siengchin, S., Ayrilmis, N., & Rajulu, A. V. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175, 107074. Lamarra, J., Calienni, M. N., Rivero, S., & Pinotti, A. (2020). Electrospun nanofibers of poly (vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. International Journal of Biological Macromolecules, 160, 307-318. Lin, L., Xue, L., Duraiarasan, S., & Haiying, C. (2018). Preparation of εpolylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food packaging and shelf life, 17, 134- 141. Liu, L., Liu, Z., Yang, Y., Geng, M., Zou, Y., Shahzad, M. B., ... & Qi, Y. (2018). Photocatalytic properties of Fe-doped ZnO electrospun nanofibers. Ceramics International, 44(16), 19998-20005. López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M. (2012). Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids, 28(1), 159-167. Luraghi, A., Peri, F., & Moroni, L. (2021). Electrospinning for drug delivery applications: A review. Journal of Controlled release, 334, 463- 484. Majumder, S., Sagor, M. M. H., & Arafat, M. T. (2022). Functional Electrospun Polymeric Materials for Bioelectronic Devices: A Review. Materials Advances. Mehdizadeh, T., Tajik, H., Rohani, S. M. R., & Oromiehie, A. R. (2012). Antibacterial, antioxidant and optical properties of edible starchchitosan composite film containing Thymus kotschyanus essential oil. Veterinary Research Forum, Farahmand et al. JFBE 6(2): 8-16,2023 16 Nychas, G. (1995). Natural antimicrobials from plants. In New methods of food preservation (pp. 58-89). Springer. Pecarski, D., Knežević-Jugović, Z., Dimitrijević-Branković, S., Mihajilovski, K., & Janković, S. (2014). Preparation, characterization and antimicrobial activity of chitosan microparticles with thyme essential oil. Hemijska industrija, 68(6), 721-729. Peranidze, K., Safronova, T. V., & Kildeeva, N. R. (2021). Fibrous polymerbased composites obtained by electrospinning for bone tissue engineering. Polymers, 14(1), 96. Pranoto, Y., Rakshit, S., & Salokhe, V. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Science and Technology, 38(8), 859-865. Rahmati, M., Mills, D. K., Urbanska, A. M., Saeb, M. R., Venugopal, J. R., Ramakrishna, S., & Mozafari, M. (2021). Electrospinning for tissue engineering applications. Progress in Materials Science, 117, 100721. Rakkapao, N., Vao-soongnern, V., Masubuchi, Y., & Watanabe, H. (2011). Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 52(12), 2618-2627. Ramesh, S., Leen, K. H., Kumutha, K., & Arof, A. (2007). FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(4-5), 1237-1242. Rostamabadi, H., Assadpour, E., Tabarestani, H. S., Falsafi, S. R., & Jafari, S. M. (2020). Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science & Technology, 100, 190-209. Rupiasih, N. N., Aher, A., Gosavi, S., & Vidyasagar, P. (2015). Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. In Recent Trends in Physics of Material Science and Technology (pp. 1-10). Springer. Sadri, M., & Arab Sorkhi, S. (2017). Preparation and characterization of CS/PEO/cefazolin nanofibers with in vitro and in vivo testing. Nanomedicine Research Journal, 2(2), 100-110. Sadri, M., Karimi-Nazari, E., Hosseini, H., & Emamgholi, A. (2016). New chitosan/poly (ethylene oxide)/thyme nanofiber prepared by electrospinning method for antimicrobial wound dressing. Journal of Nanostructures, 6(4), 322-328. Sameen, D. E., Ahmed, S., Lu, R., Li, R., Dai, J., Qin, W., Zhang, Q., Li, S., & Liu, Y. (2022). Electrospun nanofibers food packaging: Trends and applications in food systems. Critical Reviews in Food Science and Nutrition, 62(22), 6238-6251. Sharma, S., Barkauskaite, S., Duffy, B., Jaiswal, A. K., & Jaiswal, S. (2020). Characterization and antimicrobial activity of biodegradable active packaging enriched with clove and thyme essential oil for food packaging application. Foods, 9(8), 1117. Sharma, S., Barkauskaite, S., Jaiswal, A. K., & Jaiswal, S. (2021). Essential oils as additives in active food packaging. Food chemistry, 343, 128403. Shenoy, S. L., Bates, W. D., Frisch, H. L., & Wnek, G. E. (2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer, 46(10), 3372-3384. Stie, M. B., Gätke, J. R., Wan, F., Chronakis, I. S., Jacobsen, J., & Nielsen, H. M. (2020). Swelling of mucoadhesive electrospun chitosan/polyethylene oxide nanofibers facilitates adhesion to the sublingual mucosa. Carbohydrate Polymers, 242, 116428. Surendhiran, D., Li, C., Cui, H., & Lin, L. (2020). Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packaging and Shelf Life, 23, 100439. Varghese, S. A., Siengchin, S., & Parameswaranpillai, J. (2020). Essential oils as antimicrobial agents in biopolymer-based food packagingA comprehensive review. Food Bioscience, 38, 100785. Wen, Y., Liu, J., Jiang, L., Zhu, Z., He, S., He, S., & Shao, W. (2021). Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packaging and Shelf Life, 29, 100709. Wu, J.-h., Hu, T.-g., Wang, H., Zong, M.-h., Wu, H., & Wen, P. (2022). Electrospinning of PLA Nanofibers: Recent Advances and Its Potential Application for Food Packaging. Journal of Agricultural and Food Chemistry, 70(27), 8207-8221. Yao, Z.-C., Chang, M.-W., Ahmad, Z., & Li, J.-S. (2016). Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. Journal of food engineering, 191, 115-123. Zamani, M., Prabhakaran, M. P., & Ramakrishna, S. (2013). Advances in drug delivery via electrospun and electrosprayed nanomaterials. International journal of nanomedicine, 8, 2997. Zelkó, R., Lamprou, D. A., & Sebe, I. (2019). Recent development of electrospinning for drug delivery. In (Vol. 12, pp. 5): MDPI. Zhang, C., Li, Y., Wang, P., & Zhang, H. (2020). Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 19(2), 479-502. Zhao, L., Duan, G., Zhang, G., Yang, H., He, S., & Jiang, S. (2020). Electrospun functional materials toward food packaging applications: A review. Nanomaterials, 10(1), 150. Zhu, Z., Zhang, Y., Shang, Y., & Wen, Y. (2019). Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas. Food and Bioprocess Technology, 12(2), 281-287. | ||
آمار تعداد مشاهده مقاله: 440 تعداد دریافت فایل اصل مقاله: 163 |