تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,094,957 |
تعداد دریافت فایل اصل مقاله | 97,200,803 |
A Hybrid Fuzzy Ordered Weighted Averaging Method in Mineral Prospectivity Mapping: a case for Porphyry Cu Exploration in Chahargonbad District, Iran | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 3، دوره 57، شماره 4، اسفند 2023، صفحه 373-380 اصل مقاله (1.83 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2023.357315.595050 | ||
نویسندگان | ||
Shokouh Riahi* ؛ Maysam Abedi؛ Abbas Bahroudi | ||
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran. | ||
چکیده | ||
This research presents a case study that employs the Fuzzy Ordered Weighted Averaging (FOWA) method to develop mineral prospectivity/potential maps (MPM) for the Chahargonbad district in southeastern Iran. The primary objective of the study is to uncover intricate and concealed relationships between various evidence layers and known ore occurrences through a comprehensive analysis of multi-disciplinary geospatial data. Consequently, thirteen evidence layers were meticulously derived from existing databases, encompassing geological, geochemical, geophysical, and remote sensing data, which were then integrated using the FOWA multi-criteria decision-making approach to delineate favorable zones for porphyry Cu mineralization. The FOWA methodology employs a diverse array of decision strategies to synthesize input geospatial evidence by incorporating multiple values for an alpha parameter. This parameter serves as the cornerstone of the algorithm, influencing experts' perspectives on MPM risk. The methodology generates seven mineral potential maps to identify the most suitable one(s). By considering a prediction-area plot for data-driven weight assignment to each evidence map, the hybrid FOWA outputs were scrutinized to pinpoint the most appropriate map for targeting significant Cu occurrences. The resulting synthesized evidence map indicates an ore prediction rate of 77%, with known Cu deposits primarily located within favorable zones occupying 23% of the entire district area. | ||
کلیدواژهها | ||
Fuzzy ordered weighted averaging؛ Mineral potential/prospectivity mapping؛ Evidence layers؛ Porphyry Copper؛ Chahargonbad | ||
مراجع | ||
[1] McCuaig, T.C., & Hronsky, J. M. A. (2014). The mineral system concept: The key to exploration targeting, Applied Earth Science IMM Transactions section B 18(2):153-175.
[2] Wyman, D.A., Cassidy, K., & Hollings, P. (2016). Orogenic gold and the mineral systems approach: Resolving fact, fiction and fantasy, Ore Geol. Rev. 78, 322-335.
[3] Groves, D.I., Santosh, M., & Zhang, L. (2020). A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach, Geoscience Frontiers, 11(3), 719-738.
[4] Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geol. Rev. 71, 777–787.
[5] Agterberg, F.P. (1992). Combining indicator patterns in weights of evidence modeling for resource evaluation. Nat. Resour. Res. 1, 39–50.
[6] Bonham-Carter, G.F. (1994). Geographic Information Systems for Geoscientists, Modelling with GIS. Pergamon, New York, 398 p.
[7] Abedi, M., & Norouzi, G.H. (2012). Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. J. Appl. Geophys. 83, 35–45.
[8] Parsa, M., & Maghsoudi, A. (2021). Assessing the effects of mineral systems-derived exploration targeting criteria for Random Forests-based predictive mapping of mineral prospectivity in Ahar-Arasbaran area, Iran. Ore Geol. Rev. 104399
[9] Chen, Y., & Wu, W. (2015). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geol. Rev. 74, 26–38.
[10] Parsa, M., Maghsoudi, A., & Yousefi, M. (2017). An improved data-driven fuzzy mineral prospectivity mapping procedure; cosine amplitude-based similarity approach to delineate exploration targets. Int. J. Appl. Earth Obs. 58, 157–167.
[11] Parsa, M., Maghsoudi, A., & Yousefi, M. (2017). A Receiver Operating Characteristics-Based Geochemical Data Fusion Technique for Targeting Undiscovered Mineral Deposits. Nat. Resour. Res. 27, 15-28.
[12] Porwal, A., Carranza, E.J.M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Nat. Resourc. Res. 15, 1–14.
[13] Pazand, K., & Hezarkhani, A. (2015). Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: a case study in Siahrud area (NW, Iran). Earth Sci. Inf. 8, 207–220.
[14] Yousefi, M., & Carranza, E.J.M. (2015). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput. Geosci. 79, 69–81.
[15] Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral potential mapping. Journal of Geochemical Exploration 164, 94–106.
[16] Bahrami, Y., Hassani, H., & Maghsoudi, A. (2019). BWM-ARAS: A new hybrid MCDM method for Cu prospectivity mapping in the Abhar area, NW Iran. Spatial Statistics, 33, https://doi.org/10.1016/j.spasta.2019.100382
[17] Yousefi, M., & Carranza, E.J.M. (2016). Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values. J. Afr. Earth Sci. 128, 47–60.
[18] Bahrami, Y., Hassani, H., & Maghsoudi, A. (2022). Spatial modeling for mineral prospectivity using BWM and COPRAS as a new HMCDM method. Arab J Geosci 15, 394. https://doi.org/10.1007/s12517-022-09630-1
[19] Riahi, Sh., Bahroudi, A., Abedi, M., & Aslani, S. (2022). A comparative analysis of multi-index overlay and fuzzy ordered weighted averaging methods for porphyry Cu prospectivity mapping using remote sensing data: The case study of Chahargonbad area, SE of Iran, Geocarto International 38(1), 10.1080/10106049.2022.2159068
[20] Abedi, M., Norouzi, G.H., & Fathianpour, N. (2015). Mineral potential mapping in Central Iran using fuzzy ordered weighted averaging method, Geophysical Prospecting, 63, 461–477.
[21] Malczewski, J. (2006). Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis, International Journal of Applied Earth Observation and Geoinformation 8, 270–277.
[22] Cheng, Q., Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor. 51, 109–130.
[23] Yousefi, M., & Carranza, E.J.M. (2015). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Comput. Geosci. 74, 97–109.
[24] Yousefi, M., & Carranza, E.J.M. (2015). Geometric average of spatial evidence data layers: a GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Comput. Geosci. 83, 72–79.
[25] Alavi M. (1991). Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geological Society of America Bulletin 103, 983-992.
[26] Berberian, F., Muir, I.D., Pankhurst, R.J. & Berberian, M. (1982). Late cretaceous and early miocene andean-type plutonic activity in northern Makran and central Iran. Journal of the Geological Society 139, 605−614.
[27] Khan-Nazer, N.H., Emami, M.H., & Ghaforie, M. (1995). Geological Map of Chahargonbad. Geological Survey of Iran publication, Tehran, Iran (1: 100,000).
[28] Kianpourian, S., Farhamandian, M., Karimi, M., & Bahroudi, A. (2013). Preparation of mineral potential map for copper deposits using mixed neuroFuzzy model: a case study of 1:100,000 sheet of Chahargonbad in Kerman province. Journal of Earth Sciences, (Rocks and Minerals), 277-286 https://sid.ir/paper/31354/fa
[29] Riahi, Sh., Bahroudi, A., Abedi, M., & Aslani, S. (2022). Hybrid Outranking of Geospatial Data: Multi Attributive Ideal-Real Comparative Analysis and Combined Compromise Solution, Chemie der Erde - Geochemistry 82(6), 10.1016/j.chemer. 2022.125898 [30] Riahi, Sh., Bahroudi, A., Abedi, M., Aslani, S., & Elyasi, G. (2021). Integration of airborne geophysics and satellite imagery data for exploration targeting in porphyry Cu systems: Chahargonbad district, Iran. Geophysical Prospecting 69(5), 1116–1137. doi:10.1111/1365-2478.13092
[31] Riahi, Sh., Bahroudi, A., Abedi, M., Aslani, S., & Lentz, D.R. (2021). Evidential data integration to produce porphyry Cu prospectivity map, using a combination of knowledge and data driven methods, Geophysical Prospecting 70(2), 421-437. https://doi.org/10.1111/1365-2478.13169 [32] Yager, R. R., & Filev, D. (1998). Operations for granular computing: mixing words and numbers, in Proceedings of the IEEE International Conference on Fuzzy Systems, 123–128, Anchorage, Alaska, USA.
[33] Malczewski, J. (1999). GIS and multicriteria decision analysis: John Wiley & Sons.
[34] Zadeh L.A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications 9, 149–184.
[35] Fuller R. (1996). OWA operators in decision making. In: Exploring the Limits of Support Systems, Vol. 3 (ed C. Carlsoon), pp. 85–104. TUCS General Publications, Turku Centre for Computer Science, Abo Akademi University, Turkey.
[36] Nadi, S., & Delavar, M.R. (2011). Multi-criteria, personalized route planning using quantifier-guided ordered weighted averaging operators. International Journal of Applied Earth Observation and Geoinformation 13, 322–335.
[37] Elyasi, Gh.R., Bahroudi, A., & Abedi, M. (2019). Risk-Based Analysis in Mineral Potential Mapping: Application of Quantifier-Guided Ordered Weighted Averaging Method. Natural Resources Research, 28, 931-951.
[38] Mohebi, A., Mirnejad, H., Lentz, D., Behzadi, M., Dolati, A., Kani, A., & Taghizadeh, H. (2015). Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data. Ore Geology Reviews, 69, 187-198.
[39] Yousefi, M., Kreuzer, O. P., Nykänen, V., & Hronsky, J. M. (2019). Exploration information systems-a proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 5, 103005. | ||
آمار تعداد مشاهده مقاله: 274 تعداد دریافت فایل اصل مقاله: 292 |