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Abstract 
We developed an artificial neural network as an air quality model and estimated the scope of the climate 

change impact on future (until 2064) summertime trends of hourly ozone concentrations at an urban air 

quality station in Tehran, Iran. Our developed scenarios assume that present-time emissions conditions of 

ozone precursors will remain constant in the future. Therefore, only the climate change impact on future 

ozone concentrations is investigated in this study. General Circulation Model (GCM) projections indicate 

more favorable climate conditions for ozone formation over the study area in the future: the surface 

temperature increases over all months of the year, solar radiation increases, and precipitation decreases in 

future summers, and summertime daily maximum temperature increases about 1.2∘C to 3∘C until 2064. In the 

scenario based on present-time ozone conditions in the 2012 summer without any exceedances, the 

summertime exceedance days of the 8-hr ozone standard are projected to increase in the future by about 4.2 

days in the short term and about 12.3 days in the mid-term. Similarly, in the scenario based on present-time 

ozone conditions in the 2010 summer with 58 days of exceedance from the 8-hr ozone standard, exceedances 

are projected to increase by about 4.5 days in the short term and about 14.1 days in the mid-term. Moreover, 

the number of Unhealthy and Very Unhealthy days in the 8-hr Air Quality Index (AQI) is also projected to 

increase based on pollution scenarios of both summers. 
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1. Introduction 
Intergovernmental Panel on Climate Change 

(IPCC) projections indicate that climate 

change may influence future air quality, and 

the magnitude of the impact varies from one 

region to another (IPCC, 2007). One 

challenge associated with air quality studies 

is to quantify this influence on air pollutants 

such as ozone and particulate matter, which 

are sensitive to climate changes (Jacob and 

Winner, 2009). Surface ozone, which is one 

of the most important air pollutants, degrades 

public health by damaging the respiratory 

system. It is a secondary pollutant that means 

it is not emitted from a particular source but 

is produced through complex photochemical 

reactions among its biogenic and 

anthropogenic precursors such as Nitrogen 

Oxides (NOx), Non-Methane Volatile 

Organic Compounds (NMVOC), Carbon 

Monoxide (CO) and Methane (CH4) in the 

presence of high temperature and abundant 

sunlight (Jacob and Winner, 2009; Seinfeld 

and Pandis, 2006; Steiner et al., 2006). NOx 

and CO come from combustion sources, but 

NMVOC and CH4 have several natural and 

anthropogenic sources (Guenther et al., 2000; 

Sillman, 1999). Therefore, due to its 

photochemical nature, ozone concentrations 

generally peak during summer when 

meteorological conditions are often favorable 

for its formation. ozone has an atmospheric 

lifetime of about a few days in the boundary 

layer with global sinks of dry deposition and 

photolysis in the presence of water vapor 

(Jacob and Winner, 2009). This oxidant 

pollutant irritates the pulmonary system and 

decreases lung function. Ozone is believed to 

be associated with premature mortality and 

exposure to its elevated concentrations 

irritates people who have respiratory diseases 

such as asthma and pneumonia (Bell et al., 

2007; Ebi and McGregor, 2008; Gryparis et 
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al., 2004). 

Meteorological parameters play an important 

role in ozone production. Temperature, solar 

radiation, atmospheric moisture, wind, 

mixing height, precipitation and cloud cover 

are identified to be correlated with ozone 

(Camalier et al., 2007; Dawson et al., 2007; 

Leibensperger et al., 2008; Mott et al., 2005; 

Ordóñez et al., 2005). Among these 

variables, ozone is highly sensitive to 

temperature (Cox and Chu, 1996; Dawson et 

al., 2007; Sillman and Samson, 1995). The 

emission of biogenic Volatile Organic 

Compounds (VOCs), which is a temperature-

dependent process can produce a 

considerable amount of ozone in high 

temperatures (Fuentes et al., 2000; Lee and 

Wang, 2006; Narumi et al., 2009). However, 

in addition to temperature, solar radiation is 

also necessary for the photochemical process 

of ozone formation in the atmosphere. The 

correlation between these variables is 

significant especially in summers when high 

radiation and temperature result in summer 

high ozone concentrations (Ordóñez et al., 

2005). 

There are two major sources of uncertainty in 

projections of the impact of climate change 

on future ozone formation: estimating the 

future emissions of ozone precursors and 

projecting the meteorological factors that 

strongly influence air quality (Dawson et al., 

2007; Ebi and McGregor, 2008; Steiner et al., 

2006). Studies that have investigated the 

influence of projected changes in climate 

variables on future ozone concentrations by 

assuming no changes in the emissions of 

ozone precursors (Dawson et al., 2009; Liao 

et al., 2006; Murazaki and Hess, 2006; 

Racherla and Adams, 2006) indicate that the 

projected changes in climate variables are 

expected to increase future ozone 

concentration levels over and near polluted 

regions. The extent of this increase, although 

varying in different regions, highlights the 

role of future meteorological conditions in 

ozone production and suggests that future 

meteorological parameters will shift toward 

more favorable conditions for ozone 

formation (Murazaki and Hess, 2006). We 

can perform sensitivity studies to evaluate 

how much changes in future emissions and 

climate can affect future ozone production 

(Dawson et al., 2007; Millstein and Harley, 

2009; Orru et al., 2013; Steiner et al., 2006). 

Steiner et al. (2006) found that combined 

climate perturbations (such as increases in 

temperature and water vapor together with 

the temperature-induced increase in biogenic 

VOC emissions) yield increased peak ozone 

concentrations. Their results indicate that the 

sensitivity of ozone to climate change is 

regionally different and the sensitive regions 

may experience more exceedances despite 

the present emission reduction policies; 

therefore, additional control on pollution 

emission reductions will be needed. 

To study the impact of climate change on 

future ozone air quality both statistical and 

dynamical approaches can be used (Wise, 

2009). Dynamical models have distinct 

advantages over statistical approaches. 

However, some benefits of statistical models 

cannot be ignored. Statistical models are 

widely known for their computationally 

inexpensive cost and capability of rapid 

climate change impact assessment by 

employing various climate models and 

scenarios. For instance, Varotsos et al. (2013) 

developed a statistical model between daily 

maximum temperature and hourly ozone 

concentrations over Europe for the periods of 

2021–2050 and 2071–2100 to investigate the 

impact of climate change on the number of 

days with ozone exceedances of 60 ppb. 

They observed that higher daily temperatures 

due to the climate change will result in 

considerable increases in ozone exceedance 

days in the future. Also, one can use a 

statistical technique to downscale the General 

Circulation Model (GCM) data and model 

the relationship between observed ozone 

concentrations and meteorological variables 

to project the potential impact of future 

meteorology on ozone exceedances of 84 ppb 

(Holloway et al., 2008). Due to the coarse 

spatial resolution of GCM models, some of 

the small-scale but important processes are 

not captured in GCM simulations (Holloway 

et al., 2008). Also, dynamical models that are 

developed based on current physical 

parameterizations may not perfectly simulate 

future changes in climate variables. For 

instance, Lynn et al. (2004) showed that for 

climate change simulations to provide a 

realistic estimate of temperature changes, 

models should correctly simulate the diurnal 

precipitation over the study region. 

Climate change projections (IPCC, 2021) 

indicate that projected changes in climate 
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variables such as precipitation and 

temperature (Mosadegh and Babaeian, 

2022a) will impact different components of 

the climate system with different magnitude 

and confidence and in all regions of the 

world (Mejia et al., 2018; Mosadegh et al., 

2018; Mosadegh and Nolin, 2020; Mosadegh 

and Nolin, 2022). Several studies have 

addressed the issue of air quality in Tehran 

(Arhami et al., 2013; Atash, 2007; 

Hosseinpoor et al., 2005; Hoveidi et al., 

2013). However, a few studies have 

investigated the uncertainty of those climate 

projections over the 21
st
 century (Mosadegh 

and Babaeian, 2022b), and the extent that the 

projected climate variables can affect air 

pollution in Tehran (Mosadegh, 2013). The 

present study is the first attempt to evaluate 

the regional impact of climate change on air 

quality in Iran. This study aims to develop 

and apply a statistical approach to investigate 

the impact of climate change on future ozone 

air quality on a local scale in an urban 

environment. In this study, an artificial neural 

network was used as a predictive tool that is 

capable of capturing nonlinearities in 

atmospheric processes such as ozone 

formations (Comrie, 1997; Gardner and 

Dorling, 1998). The projected ozone 

concentrations were analyzed based on 

exceedances of ozone air quality standards 

and health-related air quality indices. To 

simplify the impact assessment process, only 

climate variables of solar radiation and 

temperature together with pollutants of 

Nitrogen Monoxide (NO) and Nitrogen 

Dioxide (NO2) were considered in the 

simulation process. In this study, the 

relationship between ozone and local 

meteorology was partially accounted for by 

considering hourly temperature and solar 

radiation values in the development process 

of the Artificial Neural Network as the air 

quality forecast model (AQFM). Emissions 

of ozone precursors were also taken into 

account but were considered constant based 

on current conditions. Therefore, only the 

impact of climate change was investigated on 

future ozone concentrations in Tehran. 

 

2. Methods 
This study comprises a few major steps: in 

the first step, we downscaled GCM data 

under different emission scenarios. In the 

second step, we downscaled the daily climate 

variables from the previous step from the 

daily scale to the sub-daily (hourly) scale. In 

the third step, we developed input scenarios 

and developed an artificial neural network as 

the AQFM, and in the final step, we assessed 

the impact of climate change on future ozone 

air quality. These steps are described in detail 

in the next sections. 

 

2-1. Case study and data 
With a population of over 10 million people 

and with an area of approximately 570 square 

kilometers, Tehran is the capital and the 

largest city of Iran. Tehran is surrounded by 

mountains to the north and the east, and the 

wind directions are from the west and the 

south. Tehran suffers from serious air 

pollution problems. Motor vehicles are 

considered one of the major sources of air 

pollution in the Tehran metropolitan area due 

to their high emission of major pollutants 

such as CO, PM10, and NO2 (Halek et al., 

2004). In Tehran, air pollution concentrations 

are monitored by the Air Quality Control 

Company (AQCC) and the Department of 

Environment (DOE) in several air quality 

stations. In this study, the air quality data 

were obtained from the AQCC Golbarg air 

quality monitoring station east of Tehran at 

35∘ 43′ N and 51∘ 30′ E. To develop and 

evaluate our AQFM, hourly monitored NO, 

NO2, ozone, solar radiation, and temperature 

collected at this station during 2009–2012 

were used. Meteorological data were 

obtained from the Dushan Tappeh station, the 

nearest synoptic station located at 35∘ 42′ N 

and 51∘ 20′ E with a height of 1209 m above 

sea level. From this station, daily minimum 

temperature, daily maximum temperature, 

total precipitation, and total sunshine hours 

during 1972–2009 (baseline period) were 

used to calibrate the Long Ashton Research 

Stochastic Weather Generator (LARS-WG) 

statistical downscaling model. 

 

2-2. Statistical downscaling with LARS-

WG 

Different dynamic and statistical models 

have been developed to downscale the GCM 

outputs (Wilby et al., 2004). Stochastic 

weather generators (WG) are one of the 

statistical downscaling tools, which generate 

daily time series of climate variables 

(Semenov, 2007; Wilks and Wilby, 1999). In 

this study, Long Ashton Research Stochastic 
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Weather Generator (LARS-WG) is employed 

to downscale the GCM projections and to 

estimate future changes in temperatures, solar 

radiation and precipitation over the study 

area. LARS-WG (Semenov and Barrow, 

2002) is a stochastic weather generator 

(WG). The model takes observed daily 

minimum temperature, maximum 

temperature, total precipitation and total 

sunshine hours as its inputs and generates 

synthetic daily time series at any local scale. 

LARS-WG generates local-scale climate 

change scenarios for a given site by adjusting 

baseline parameters, calculated from baseline 

observed weather at the site, with projected 

GCM 𝛥-changes, calculated based on an 

emission scenario called Special Report on 

Emissions Scenarios (SRES) and a future 

climate period, for each climatic variable 

(Semenov and Stratonovitch, 2010). More 

details about the application of the LARS-

WG model can be found in Mosadegh and 

Babaeian (2022a, 2022b). The ability of the 

LARS-WG to simulate the baseline climate 

variables at the given site was evaluated by 

calculating the Pierson correlation coefficient 

(R) and error indices such as mean bias error 

(MBE), mean absolute error (MAE) and root 

mean square error (RMSE). 

 

2-3. The AQFM 

With recent advances in deep learning for 

pattern recognition, the performance of these 

networks for the task of prediction in 

different fields of environmental science has 

progressed even with a small amount of 

training data (Alibak et al., 2022; 

Nejatishahidin et al., 2022). The application 

of artificial neural networks (ANN), 

especially multilayer perceptions (MLP) in 

the field of air quality has been evaluated in 

many studies (Chaloulakou et al., 2003; 

Comrie, 1997; Niska et al., 2004; Schlink et 

al., 2003; Sousa et al., 2007). Application of 

the neural networks in forecasting ozone 

concentrations has been compared with other 

statistical tools such as multivariate linear 

regression models, and the results indicate 

that the ANNs, especially the MLP neural 

network, has a better performance over other 

techniques in modeling the ozone nonlinear 

associations (Gardner and Dorling, 1998). 

Furthermore, it can model highly nonlinear 

processes by its activation and transfer 

functions in the hidden layers (Rahnama and 

Noury, 2008). These features make MLP a 

suitable tool for modeling complex, nonlinear 

phenomena such as ozone formation in the 

atmosphere. 

In this study, a four-layer MLP (ANN) with a 

4-10-10-1 (4 inputs with 1 output) network 

structure was developed and used as our 

AQFM. Tangent sigmoid transfer functions 

(tansig) were used in the hidden layers, but a 

linear transfer function (purlin) was used in 

the output layer. For training the network, the 

Levenberg-Marquardt back-propagation 

learning rule (trainlm) was used due to its 

fast speed and accuracy in training the 

system (Beale et al., 2012). 

To determine the model inputs, we 

considered effective variables in ozone 

production (Ordóñez et al., 2005) and the 

limited number of available monitored 

variables at the Golbarg air quality control 

station. Finally, we selected NO, NO2 and 

ozone as the air quality variables, and 

temperature and solar radiation as climate 

variables to develop the AQFM. It is 

noteworthy that the selected variables were 

monitored at 𝐺𝑜𝑙𝑏𝑎𝑟𝑔 air quality monitoring 

stations during the summers (June, July and 

August, hereafter JJA) of 2009–2012. 

To develop the training dataset for our ANN-

based model, we first performed quality 

control on the training dataset. To control the 

quality of the training data, we followed the 

following steps. For any missing values in a 

parameter within a day, we first checked 

whether the missing values spanned one hour 

or more than one hour. If the missing values 

were for one hour, we computed the average 

of the observations before and after that time 

and filled in the missing values with the 

average value. However, if the missing 

values spanned more than one hour, we 

removed the rows with missing data from the 

training dataset. If any data sample contained 

negative values, the entire data sample was 

removed from the training dataset. Moreover, 

we removed the whole data samples for a 

variable if it had constant values in a day. 

The selection of the data samples for 

developing the training dataset was limited to 

an interval of 8 am to 7 pm, which is the 

most effective period of ozone production 

during the day. Finally, about 4000 hourly 

data samples were obtained for the summers 

(JJA) of 2009 to 2012 to develop the forecast 

model. The training data set was shuffled 
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randomly to scatter maximum and minimum 

values evenly over the entire training data 

set. Then, data samples were divided into 

three subsets of training, test, and validation 

sets with 60-20-20 percent of the data set, 

respectively. Since the input and target 

variables did not have a uniform range of 

values, a normalization method was used to 

scale the input variables to have a certain 

range. In this study, normalization of the 

variables was performed by the 

𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥 function in MATLAB to scale 

the data to the range [-1, 1] before fitting data 

to the main network. To achieve the best 

relationship between input variables and 

output target (ozone), different network 

architectures were examined. Finally, the 

network structure with the smaller error and 

the higher correlation was selected as the 

optimal predictive model. 

To evaluate the performance of the AQFM, 

we calculated the correlation coefficient (R) 

and statistical parameters such as mean bias 

error (MBE), mean absolute error (MAE), 

and root mean square error (RMSE). After 

ensuring the accuracy of the simulations of 

the developed model to reproduce hourly 

ozone concentrations with high correlation 

coefficient and low error indices compared to 

similar studies (Arhami et al., 2013; Comrie, 

1997; Sousa et al., 2007), the performance of 

the forecast model was assessed based on 

two performance indices. In this study, the 

prediction of exceedances of desired ozone 

air quality concentration thresholds was more 

important than predicting the exact ozone 

concentration values. Therefore, we 

developed two metrics to define capturing the 

occasions in which the ozone concentrations 

exceed a desired ozone air quality threshold. 

The two performance indices of PI1 and PI2 

are described as follows: 

PI1: The percentage of correctly identified 

occasions in which ozone concentrations 

exceeded a desired threshold. 

PI2: The percentage of incorrectly identified 

occasions. 

PI1 indicates the forecasting accuracy of the 

predicting model at each concentration 

threshold. This index represents the 

percentage of the cases that both monitored 

values and corresponding simulated values 

that exceed a desired concentration threshold 

and consequently, the model is successful in 

predicting the exceedance. PI2 indicates the 

overestimation error of the model at each 

concentration threshold. This index 

represents the percentage of cases in that 

observations do not exceed the desired 

concentration threshold, but the model 

incorrectly indicates that the corresponding 

simulated values exceed the desired 

threshold. 

To assess the accuracy of the AQFM in 

simulating the exceedances, several 

important ozone concentration thresholds 

were considered from various EPA ozone air 

quality standards and indices. The test data 

set of the model was examined to assess the 

accuracy of the model in predicting the 

exceedances. The investigated EPA 

thresholds are significant levels of ozone 

concentrations in 1-hr ozone air quality 

standard and air quality index (AQI). 

Exceeding these threshold concentrations 

results in the occurrence of an Unhealthy day 

(ozone concentration above 125 ppb) and a 

Very Unhealthy day (ozone concentrations 

above 205 ppb) from an AQI perspective, 

and the occurrence of a polluted day (ozone 

concentrations above 120 ppb) from 1-hr 

ozone standard perspective. In addition to 

mentioned thresholds, the accuracy of the 

forecast model in predicting exceedances of 

other concentration thresholds (25 ppb and 

45 ppb) was also evaluated to enable us to 

compare the performance of the developed 

model with similar studies. 

 

2-4. Temporal (sub-daily) downscaling  

LARS-WG generates minimum and 

maximum temperature values every single 

day. Solar radiation is also generated in 

𝑀𝑗/𝑚2. 𝑑𝑎𝑦 and represents the total solar 

radiation reaching the earth's surface in a 

single day. However, the AQFM was 

developed based on hourly (sub-daily) 

variables and received hourly temperature 

and radiation values as its inputs. For the 

LARS-WG output to match the AQFM 

inputs on an hourly (sub-daily) scale, we 

developed the diurnal distribution equations 

of the temperature and solar radiation at the 

given site to calculate the diurnal distribution 

of these variables. Also, several papers 

indicate that the ozone exceedances in 

Tehran are due to the given synoptic systems 

(Khansalari et al., 2020). On the other hand, 

it is technically hard to downscale and use 

synoptic systems as a predictor for our ANN 
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model. Therefore, since synoptic systems are 

projected in GCM models (Gibson et al., 

2016), after downscaling temperature and 

solar radiation from GCMs by LARS-WG, 

these patterns are inherently included in 

temperature and solar radiation as dependent 

variables of those synoptic systems. Then, 

when we train our ANN model with the 

downscaled temperature and solar radiation 

as inputs to our ANN model, we inherently 

include some dependent variables of those 

synaptic systems in our trained model. 

 

2-4-1. Diurnal patterns of future 

temperature 

Estimating the diurnal patterns of 

temperature for future periods can be 

performed using mathematical modeling. 

This is important in assessing the impact of 

climate change on peak ozone concentration 

levels (Millstein and Harley, 2009). In our 

work, to model future hourly temperatures, 

the diurnal pattern of future temperature was 

modeled by developing a mathematical 

model including a sinusoidal equation as a 

function of the time of the day (Ephrath et 

al., 1996): 

𝑇𝑎 = 𝑇𝑚𝑖𝑛 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) ∗ 𝑆𝑡               (1) 

where 𝑇𝑎 is the air temperature during 

daytime, 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the minimum 

and maximum air temperature respectively, 

and 𝑆𝑡 is a function of time 𝑡, ranging 

between 0 and 1, which is defined as: 

𝑆𝑡 = 𝑠𝑖𝑛(𝜋
𝑡−𝐿𝑆𝐻+

𝐷𝐿

2

𝐷𝐿+2𝑃
)                                 (2) 

where 𝐷𝐿 is the day length, 𝐿𝑆𝐻 is the local 

time of maximum solar height during the day 

and 𝑃 is the delay in the maximum air 

temperature concerning the time of 

maximum solar height at the site. 

To estimate the air temperature at night, a 

declining exponential equation was used 

(Ephrath et al., 1996): 

𝑇𝑎 = 𝐴 + 𝐵𝑒𝑥𝑝(−
𝑡

𝜏
)                                  (3) 

which was developed to 
 

𝑇𝑎 =
𝑇𝑚𝑖𝑛(𝐽+1)−𝑇𝑠𝑒𝑥𝑝(−

𝛼

𝜏
+(𝑇𝑠−𝑇𝑚𝑖𝑛(𝐽+1)))𝑒𝑥𝑝(

𝑡𝑎−𝑡𝑠
𝜏

)

1−𝑒𝑥𝑝(−
𝛼

𝜏
)

     

  (4) 

 

where 𝜏 is a time coefficient considered 4; 𝑡𝑠 

and 𝑡𝑎 are the time of sunset and the current 

time, respectively, and 𝛼 is the night length 

(𝛼 = 24 - DL). Values of 𝐷𝐿, 𝐿𝑆𝐻 and 𝑃 

were extracted from temperature and solar 

radiation graphs, which were obtained by 

studying the variability of parameters during 

the observation period in the station under 

study. After inserting these parameters in the 

equations and by using the daily minimum 

and maximum temperature from LARS-WG 

outputs, hourly temperature values were 

calculated. 

 

2-4-2. Diurnal patterns of future radiation 

LARS-WG generates its solar radiation 

output in 𝑀𝑗/𝑚2. 𝑑𝑎𝑦 as the total daily 

radiation received by the earth's surface in a 

single day. However, the AQFM accepts 

hourly values in 𝑊/𝑚2 as its radiation input. 

To match the scale of LARS-WG radiation 

output to the scale of the inputs to the air 

quality model, some equations were 

developed to estimate the diurnal patterns of 

solar radiation. The diurnal radiation curve 

was calculated by obtaining parameters such 

as daily total radiation (𝑅𝑔), day length (𝐷𝐿) 

and solar elevation (𝑠𝑖𝑛𝛽), computed from 

the latitude of the site (𝐿, radians), the solar 

declination angle (𝛿, radians) and time of the 

day (𝑡𝑎). To compute the sine of the solar 

elevation (𝑠𝑖𝑛𝛽), some intermediate 

parameters were needed: 𝑆𝐷, the seasonal 

offset of the sine of the solar height 

𝑆𝐷 = 𝑠𝑖𝑛(𝐿) ∗ 𝑠𝑖𝑛(𝛿)                                (5) 

and 𝐶𝐷, the amplitude of the sine of the solar 

height 

𝐶𝐷 = 𝑐𝑜𝑠(𝐿) ∗ 𝑐𝑜𝑠(𝛿)                               (6) 

The sine of the solar elevation, 𝑠𝑖𝑛𝛽, is 

calculated as: 

𝑠𝑖𝑛𝛽 = 𝑆𝐷 + 𝐶𝐷 ∗ 𝑐𝑜𝑠(𝜋
𝑡𝑎−𝐿𝑆𝐻

12
)             (7) 

where 𝑡𝑎 is the current time and 𝐿𝑆𝐻 is the 

time of the maximum solar height. 

Instantaneous radiation (𝑅𝑔) is computed as: 

𝑅𝑔 = 𝑅𝑔(𝑡𝑜𝑡) ∗ 𝑠𝑖𝑛𝛽 ∗
1+𝐶∗𝑠𝑖𝑛𝛽

𝐷𝑆𝐵𝐸∗3600
              (8) 

where 𝐷𝑆𝐵𝐸 is the daily integral of 

𝑠𝑖𝑛𝛽(1 + 𝑠𝑖𝑛𝛽) from sunrise to sunset,  
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calculated as: 

𝐷𝑆𝐵𝐸 =  𝑎𝑟𝑐𝑐𝑜𝑠(−
𝑆𝐷

𝐶𝐷
)

24

𝜋
(𝑆𝐷 + 𝐶 ∗ 𝑆𝐷2 +

𝐶∗𝐶𝐷2

2
)   + 12 ∗ 𝐶𝐷 ∗ (2 + 3𝐶 ∗ 𝑆𝐷) ∗

√1−
𝑆𝐷

𝐶𝐷

2

𝜋
                                                         (9) 

The parameter 𝐶 (Equations (8) and (9)) is a 

constant meteorological variable and is 

considered equal to 0.4 (Spitters et al., 1986). 

To calculate 𝑆𝐷 and 𝐶𝐷, a parameter called 

𝛿 is used to represent the solar declination 

angle. For obtaining hourly values of solar 

declination angle, proposed equations by 

Jacobson (2005) were used: 

𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛휀𝑜𝑏 ∗ 𝑠𝑖𝑛𝜆𝑒𝑐)                   (10) 

where 𝜆𝑒𝑐 represents the ecliptic longitude of 

the Sun and 휀𝑜𝑏 represents the obliquity of 

the ecliptic. The ecliptic is the mean plane of 

the orbit of the Earth when it moves around 

the Sun. The obliquity of the ecliptic 

represents the angle between the plane of the 

Earth’s Equator and the plane of the ecliptic, 

which is approximated as: 

휀𝑜𝑏 = 23∘. 439 − 0∘. 0000004𝑁𝐽𝐷          (11) 

where 

𝑁𝐽𝐷 = 364.5 + (𝑌 − 2001) ∗ 365 + 𝐷𝐿 + 𝐷𝐽    

(12) 

𝐷𝐿 = {|
(𝑌−2001)

4
|   𝑌 ≥ 2001  𝑜𝑟 |

(𝑌−2000)

4
−

1|   𝑌 < 2001}                                          (13) 

where 𝑁𝐽𝐷 represents the number of days 

from the beginning of Julian year 2000. In 

Equations (12) and (13), 𝑌 is the current 

year, 𝐷𝐿 is the number of leap days since or 

before the year 2000, and 𝐷𝐽 is the Julian day 

of the year, which varies from 1 on 1𝑠𝑡 of 

January to 365 (for non-leap years) or 366 

(for leap years) on 31𝑠𝑡 of December. Leap 

years occur every year evenly divisible by 4. 

The ecliptic longitude of the Sun is 

approximately: 
 

𝜆𝑒𝑐 = 𝐿𝑀 + 1∘. 915𝑠𝑖𝑛(𝑔𝑀) + 0∘. 020𝑠𝑖𝑛(2𝑔𝑀)      
             (14) 

where 

𝐿𝑀 = 280∘. 460 + 0∘. 9856474𝑁𝐽𝐷              (15) 

𝑔𝑀 = 357∘. 528 + 0∘. 9856003𝑁𝐽𝐷              (16) 

𝐿𝑀 and 𝑔𝑀 are the mean longitude of the Sun 

and the mean anomaly of the Sun, 

respectively. The mean anomaly of the Sun is 

the angular distance, as seen by the Sun, of 

the Earth from its perihelion, which is the 

point in the Earth’s orbit at which the Earth is 

closest to the Sun by assuming that the 

Earth’s orbit is perfectly circular, and the 

Earth is moving at a constant speed. 

 

2-5. Development of input scenarios to the 

AQFM 

Estimating the future ozone concentrations 

under climate change required estimating  

the future pollution emissions together  

with climate conditions for the desired 

periods. These combinations served as inputs 

to our AQFM (ANN). Therefore, a 

combination of some pollution and climate 

conditions was developed as input scenarios 

to the AQFM to represent some probable 

future conditions. 

 

2-5-1. Air quality scenarios  

Estimating future ozone air quality 

conditions involve several assumptions and 

uncertainties (Ebi and McGregor, 2008). 

Future ozone production depends on 

emissions of its future biogenic and 

anthropogenic precursors such as NOx and 

VOCs. Estimating future emissions of these 

precursors depends on key factors such as 

population growth, energy consumption, 

technological advancement, and socio-

economic developments, which further 

involves considering limitations and 

uncertainties for the distant future (Webster 

et al., 2002). In this study, the AQFM (ANN) 

was trained by hourly data. Due to present 

limitations and uncertainties, we decided  

to limit our study to only the impact of 

climate change alone on future ozone  

air quality. Therefore, current pollution 

conditions were assumed to remain constant 

in the future based on hourly NO and NO2 

concentrations in the summers of 2010  

and 2012, which were considered pessimistic 

and optimistic ozone pollution scenarios, 

respectively. Furthermore, the main goal  

of this study was to get a general outlook  

of the future impact of climate change on 

future ozone extreme levels, so any year  

with high ozone pollution levels would be 

suitable for our purpose. Therefore, we 

selected data from two years from Golbarg 

air quality station as an example of upper and 

lower limits in ozone pollution data and as 
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our optimistic and pessimistic ozone 

pollution scenario so that the ANN model 

can see these example data in its training 

procedure. Then we trained our model with 

these pessimistic (high-2010) and optimistic 

(low-2012) ozone pollution scenarios to 

represent levels of ozone pollution in the 

historical period. 

 

2-5-2. Climate change scenarios 

Based on considered assumptions and 

limitations in the previous section we limited 

our study only to the effect of climate change 

on current pollution conditions. In this study, 

we used three IPCC greenhouse gas emission 

scenarios to simulate future climate: A1B, 

A2 and B1, the emissions of which are 

equivalent to IPCC’s Representative 

Concentration Pathway (RCP) greenhouse 

gas concentration trajectory scenarios, 

namely RCP4.5, RCP8.5 and RCP2.6, 

respectively. In this study, climate 

projections from HadCM3 AOGCM were 

used. This GCM is a coupled atmospheric-

oceanic model, which has been used and 

suggested in several previous studies 

(Hessami et al., 2008; Holloway et al., 2008; 

Lioubimtseva and Henebry, 2009; Zarghami 

et al., 2011). This model simulates the global 

climate with 19 levels in its atmospheric 

component with a horizontal resolution of 

2.5∘ by 3.75∘ degrees (latitude by longitude) 

and 20 levels in its oceanic component with a 

horizontal resolution of 1.25∘ by 1.25∘ 

degrees. 
 

3. Results and discussion  

3-1. Verification of LARS-WG  

To verify the downscaled results, the ability 

of LARS-WG to simulate the baseline 

climate (1972–2009) was evaluated by 

coefficient of determination (R
2
), statistical 

tests such as t-test and K-S test, and 

statistical parameters such as RMSE, MAE 

and MBE. Table 1 indicates the calculated 

statistical parameters for the simulated 

monthly means of the climatic variables by 

LARS-WG in the baseline period. Except for 

precipitation, which has the highest 

simulation error, other error indices are 

relatively low for all variables which 

demonstrates the acceptable agreement 

between the observed and simulated monthly 

means in the baseline period in the study 

area. 

 

3-2. Regional changes in climate 

Figure 1 illustrates the HadCM3 projected 

absolute changes in surface minimum and 

maximum temperature for Dushan Tappeh 

station under A2, A1B and B1 emission 

scenarios. Projections were obtained for the 

future periods of 2015–2039 (short-term) and 

2040–2064 (mid-term) relative to the 

baseline period (1972–2009). Long-term 

monthly means of observed minimum and 

maximum temperatures in the baseline period 

are also illustrated in this figure to provide an 

estimate of the future annual temperature 

patterns in the study area under climate 

change. 

Table 1. Calculated statistical parameters for the simulated monthly means of the variables by LARS-WG in the baseline 

period at the Dushan Tappeh station (1972–2009). 

Climatic variables 
Error Indices 

MBE MAE RMSE 

Minimum Temperature -0.03 0.12 0.15 

Maximum Temperature 0.08 0.19 0.23 

Solar Radiation 0.12 0.28 0.33 

Precipitation 2.9 20.2 24.5 
 

 
Figure 1. The HadCM3 projected changes in minimum (T-min) and maximum (T-max) temperature for Tehran for the 

short-term (2015–2039) and mid-term (2040–2064) periods concerning the baseline (1972–2009). 
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HadCM3 projections indicate that the 

monthly mean surface temperatures are 

expected to increase under climate change in 

the study area. Projections show higher 

average surface temperatures for all months 

of the year, but the increase is not uniform 

throughout the year. Temperature rise is 

projected to be higher in the warm months 

(JJA), which is an indication of hotter 

summers in the future. The average surface 

temperature of the study area is projected to 

increase by approximately 0.75 ∘C in the 

short-term and about 2.5 ∘C in the middle of 

this century. This temperature rise is 

expected to exceed 1 ∘C and 3 ∘C in the 

warm month of the year in the short-term and 

mid-term periods, respectively. This trend is 

noticeable in both short-term and mid-term 

climate periods. In the mid-term period 

changes in the projections become more 

distinctive among emission scenarios. 

Projected changes under A2 and then A1B 

emission scenarios are expected to be greater 

than changes under the B1 scenario, 

especially in summers where the difference is 

about 0.5 ∘C.  

Figure 2 shows the projected relative changes 

in precipitation and radiation for the 2015–

2039 and 2040–2064 climate periods 

concerning the baseline period under the 

three emission scenarios at Dushan Tappeh 

station. Projections illustrate explicit reverse 

variations in annual patterns of precipitation 

and radiation under climate change in the 

future. Projections show that precipitation 

will decrease in springs and summers, while 

it will increase in falls and winters 

concerning its baseline values. Radiation, in 

contrast to the precipitation, is projected to 

increase in springs and summers, and 

decrease in falls and winters concerning its 

baseline values. The results suggest that a 

maximum decrease in precipitation is 

expected in summers, about 15% and 30% 

concerning the baseline period in short term 

and mid-term, respectively. Unlike the 

precipitation, the greatest increase in solar 

radiation is projected in summers, about 1% 

and 2% in short term and mid-term, 

respectively. These reverse patterns suggest 

that the decrease in precipitation and cloud 

cover in summers affects the amount of solar 

radiation received by the earth's surface in 

the study area. Climate simulations for future 

periods over the study area exhibit behaviors 

favorable to surface ozone formation. In 

general, HadCM3 GCM model projections 

show an increase in temperature with the 

greatest changes in summers under all three 

emission scenarios. Moreover, solar radiation 

is projected to increase in summers in all 

simulations, due to the decreases in 

precipitation and cloud cover over the study 

area. These patterns expect to influence 

ozone production over the study area in the 

future.
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. The projected relative changes in precipitation (a and b) and solar radiation (c and d) at Dushan Tappeh station 

for the short term (2015–2039) (left) and mid-term (2040–2064) (right). 
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3-3. Statistics of air quality levels in the 

study area 

Figure 3 illustrates the observed monthly 

means of the air quality variables used in this 

study that are averaged over the 2009–2012 

period. The mean monthly variations of 

temperature and solar radiation indicate that 

the solar radiation in June, and after a month 

delay, the temperature in July reached their 

highest values. Therefore, having the highest 

temperatures and relatively the highest 

radiation, June, July and August were 

considered the warm months of the study 

area. 

Moreover, Figure 3 indicates that the 

observed monthly mean ozone concentrations 

at the Golbarg air quality station have their 

highest values in the warm months of JJA. 

Ozone production in the atmosphere is highly 

dependent on high temperatures, which 

usually occur in the warm months with 

abundant solar radiation. Also, considering 

the climate projections over the study area 

indicate that temperature and radiation will 

be higher in the warm months in the future, 

we decided to limit the evaluation of climate 

change impacts on future ozone 

concentrations to only the warm months in 

the study area, i.e., JJA. 

Figure 4 clearly shows the difference 

between the pollution conditions in the two 

summers of 2010 (a) and 2012 (b) in the 

context of the mean diurnal variations of the 

variables in the JJA at the Golbarg air quality 

station. Among the four summers of 2009 to 

2012, the summers of 2010 and 2012 had the 

most and the least number of days with 

exceedance of ozone air quality standards, 

respectively. The number of exceedance days 

was much higher in 2010 than in 2012 due to 

the more favorable meteorological conditions 

in the summer of 2010, in which, in terms  

of the one-hour (1-hr) ozone standard, a total 

of 22 days and in terms of the eight-hour (8-

hr) ozone standard, a total of 58 days 

exceeded the 120 and 75 ppb concentration 

threshold, respectively. However, in the 

summer of 2012, no polluted day occurred in 

terms of any ozone air quality standard. 

Table 2 also shows the statistical 

characteristics of the variables for the two 

summers. The summer of 2010 experienced 

higher ozone concentrations in JJAs 

compared to the summer of 2012 in terms of 

both seasonal means and mean diurnal 

concentrations.
 

 
Figure 3. Mean annual cycles of NO, NO2, ozone (O3), solar radiation (SR) and temperature (T) at the Golbarg air 

quality monitoring station for the period 2009–2012. 
 

 
(a) 

 
(b) 

Figure 4. Mean diurnal cycles of nitrogen monoxide (NO), nitrogen dioxide (NO2), ozone (O3), solar radiation (SR) and 

temperature (T) at the Golbarg air quality monitoring station for the summers of 2010 (a) and 2012 (b). 
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Table 2. Statistical review of the pollution and meteorological variables for the summers of 2010 and 2012. Variables are 

like those in Figure 4.  

Summer 2010 

Variables Minimum Maximum Average Standard deviation 

NO (ppb) 3.5 106 9.3 13.9 

NO2 (ppb) 4 149 26.6 17 

ozone (ppb) 4 280.4 71.2 51.8 

T (C) 23.58 42.67 32.6 3.1 

SR (w/m
2
) 0 939 506.1 270.3 

Summer 2012 

Variables Minimum Maximum Average Standard deviation 

NO (ppb) 6.5 82.14 11.7 9.8 

NO2 (ppb) 7.2 50.17 17.5 7.26 

ozone (ppb) 6.5 96.53 33.45 17.56 

T (C) 20.54 43.1 35 3.66 

SR (w/m
2
) 0 902 493 272.3 

 

3-4. Development and validation of the 

AQFM  

To find the optimal architecture for the 

AQFM, several structures with different 

numbers of hidden layers and nodes were 

evaluated. Two out of several various 

examined architectures with the calculated 

statistical parameters from the test data sets 

are shown in Table 3. Statistical parameters 

indicate that the network with two hidden 

layers, which has a higher correlation 

coefficient (R) and lower MBE, MAE and 

RMSE, can better capture the complex and 

nonlinear relationships among variables of 

the model. Consequently, the architecture 

with two hidden layers was selected for the 

AQFM. 

Figure 5 shows the scatter plot of simulated 

and observed ozone concentrations for the 

test data set, illustrates the degree of 

correlation between the two variables, and 

presents the corresponding correlation 

coefficient on the plot. The correlation 

coefficient is 0.84, which indicates an 

acceptable agreement between observed and 

simulated ozone concentrations at the 

Golbarg air quality monitoring station. The 

MBE index is about −0.9 ppb. The negative 

value indicates that the forecast model 

underestimates the hourly ozone 

concentrations about 0.9 ppb under the actual 

observed values. This can be due to the 

absence of VOC concentrations in the 

simulation process (Liu et al., 1987). The 

evaluation criteria of the forecast model are 

in the acceptable range compared to other 

similar studies (Arhami et al., 2013; Comrie, 

1997; Sousa et al., 2007). In comparison with 

similar studies, the MAE and RMSE, about 

13.8 and 20.43 ppb, respectively, are also in 

the acceptable range that indicates the 

acceptable performance of the AQFM in 

predicting hourly ozone concentrations with 

the least number of input variables. 

 
Table 3. Calculated statistical parameters for our two developed models. 

 No. of neurons R MBE MAE RMSE 

1 hidden layer 10 0.82 -1.77 14.5 21.38 

2 hidden layers 10 0.84 -0.9 13.8 20.43 
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Figure 5. Scatter plot illustrating the correlation 

between simulated (horizontal axis) and 

observed ozone concentrations (vertical axis) 

for the test data set, together with the 

correlation coefficient. 
 

Table 4 shows the ability of the AQFM to 

capture the exceedances of selected 

concentration thresholds with their 

corresponding references. As this table 

indicates, the developed model gives an 

acceptable prediction performance compared 

to a similar study (Nunnari et al., 1998). In 

detecting exceedances of 25 ppb and 45 ppb 

thresholds, the model can identify 95.7% and 

85.9% of exceedances with the 

overestimation error of 19% and 15.7%, 

respectively. Moreover, in higher 

concentrations (exceedances of 120 ppb) the 

developed model can detect about 40% of 

exceedances with an overestimation error of 

about 1%. Therefore, regarding the high 

concentration thresholds and the number of 

model inputs, the AQFM represents a 

relatively acceptable performance in 

predicting the violations. 

 

3-5. Extracting necessary parameters for 

future diurnal patterns of temperature 

and radiation 

In the methodology section, some equations 

were developed to estimate the diurnal 

distribution of temperature in the study area. 

To develop these sets of equations, 𝐷𝐿, 𝐿𝑆𝐻 

and 𝑃 parameters were needed. We extracted 

these parameters from Figure 4 at the  
 

Golbarg air quality station. 𝐿𝑆𝐻, the 

maximum solar height, was set to 12 

according to Figure 4. The time lag between 

the occurrence of maximum temperature and 

maximum solar height in a day, P, was set to 

3.5 hours according to Figure 4. The day 

length, DL, was obtained from the U.S. Navy 

website (http://www.us.navy.com) according 

to the location of the station and the study 

period. To obtain hourly temperature values 

during the day, the parameters were replaced 

in the developed temperature equations. 

Then, the downscaled minimum and 

maximum temperatures from LARS-WG for 

each day were replaced in the equations and 

hourly temperatures were obtained for each 

day. Solar radiation output from LARS-WG 

represents the daily total radiation received 

by the earth's surface in 𝑀𝑗/𝑚2. 𝑑𝑎𝑦. 

Downscaled radiation values were distributed 

during the day according to the discussed 

approach in methodology to obtain hourly 

values in 𝑤/𝑚2. In these sets of equations, 

𝐿𝑆𝐻 was considered 12 for the Golbarg air 

quality station in the study area. 

 

3-6. Climate change impacts on Ozone air 

quality 

In this study, we investigated the impact of 

climate change on future ozone 

concentrations. We investigated A1B 

(moderate), A2 (warm), and B1 (cool) SRES 

emission scenarios, and summers of 2010 

and 2012 as two pollution scenarios. The 

pollution scenarios were considered constant 

based on current conditions, and therefore, 

only the impact of climate change on future 

ozone air quality was investigated by 

assuming that NO and NO2 levels stay 

constant based on hourly monitored 

concentrations in the summers of 2010 and 

2012. Finally, six different input scenarios to 

the AQFM were obtained and analyzed for 

the climate periods of 2015–2039 (short-

term) and 2040–2064 (mid-term). 

Table 4. Performance of the forecast model at selected concentration thresholds with their corresponding references 

(results from a similar study are shown in parentheses). 

Reference Time period ozone threshold (ppb) PI 1 (%) PI 2 (%) 

Ozone Standard 1 hr 125 13.8 0.48 

Ozone AQI 1 hr 120 39.4 0.9 

Ozone Information 

Level (EPA) 
1 hr 90 54.5 5.4 

Nunnari et al. (1998) 1 hr 45 85.9 (64.57) 15.7 (4.25) 

  25 95.7 (97.75) 19 (18.03) 
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3-6-1. Projected trends in future ozone 

exceedance days  

The USEPA considers the 120 and 75 ppb 

ozone concentrations as the thresholds for 

violating 1-hr and 8-hr ozone air quality 

standards, respectively. In this study, we used 

the number of days that hourly ozone 

concentrations exceeded each of these 

thresholds, so multiple exceedances within a 

single day were not counted for the study 

area. 

Figure 6a compares the changes in the 

number of days that exceed the 1-hr ozone 

standard in both present pollution conditions 

(2010 and 2012). In the summer of 2010, 22 

days exceeded the 1-hr ozone standard, and 

no exceedances occurred in the summer of 

2012. The projections indicate that the 

number of polluted days will increase under 

future climate in both emission scenarios. 

The number of polluted days in terms of the 

number of exceedances from the 1-hr 

standard is projected to grow, even based on 

the violation-free summer of 2012. Figure 6b 

compares the changes in the number of days 

that exceed the 8-hr ozone standard in both 

emission scenarios because of changes in 

future climate. Similar to 1-hr exceedances 

(Figure 6a), the projections show an increase 

in the number of 8-hr exceedances under the 

future climate by assuming no changes in the 

present pollution conditions. Although the 

summer of 2010 was highly polluted, climate 

change still has an increasing influence on 

the number of projected polluted days. In the 

mid-term, due to projected higher ozone 

concentrations, exceedances of the 8-hr 

standard will increase, and the controlling 

standard will shift from 1-hr to 8-hr standard. 

Regardless of existing uncertainties in 

different parts of the climate change impact 

assessment such as uncertainties in climate 

sensitivity and future greenhouse gasses 

emission pathways, projections indicate  

that because of occurring more favorable 

ozone formation conditions in the future  

due to the climate change, the number  

of ozone polluted days will increase overall 

emission scenarios and climate periods,  

even based on the violation-free pollution 

scenario of the summer of 2012. The summer 

of 2010 was a year with the highest 

monitored ozone concentrations in the 

observations probably due to meteorological 

conditions favorable to ozone formation. 

About 58 out of 92 days of the 2010 summer 

violated the 8-hr ozone standard while 2012 

experienced a violation-free summer. These 

two scenarios can serve as a suitable example 

for analyzing the sensitivity of ozone air 

quality under future climate changes while 

emissions are held constant over future 

decades. 

Furthermore, comparing changes in the 

projected ozone exceedances in the two 

climate periods, short-term changes based on 

each pollution scenario are almost 

overlapped, and no noticeable distinction 

exists among different emission scenarios. 

However, due to the inertia in the climate 

system, inter-scenario differences among 

SRES emission scenarios will emerge after 

2030 and the differences among projections 

are more pronounced in mid-term and long-

term projections (Stott and Kettleborough, 

2002).

 

 
(a) 

 
(b) 

Figure 6. Projected days per summer (JJA) with exceedances of 1-hr (a) and 8-hr (b) ozone standard based on summers 

of 2010 and 2012 scenarios. 
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3-6-2. The projected average number of 

ozone polluted days in each climate period  

Due to the stochastic nature of the 

downscaling techniques, it is more 

reasonable to consider only the changes in 

the number of exceedances in each climate 

period instead of a specific year in the future. 

Figure 7 illustrates the projected average 

number of exceedances of the 8-hr ozone 

standard in each climate period for each 

emission scenario. The number of polluted 

days in both emission scenarios rises in the 

future. In the short term, the largest increase 

in the number of polluted days is anticipated 

for the B1 emission scenario and in the mid-

term, the largest increase is projected for the 

A2 simulations. In the short term and based 

on the summer of 2010 scenario, the largest 

increase is expected to be about 8.3% for the 

B1 scenario from 58 exceedance days in 

2010 to 62.8 exceedance days in the short 

term. In the mid-term, the largest increase is 

expected to be about 26% for the A2 scenario 

from 58 exceedance days in 2010 to 73 

exceedance days in the mid-term. Likewise, 

based on the summer of 2012 scenario, all 

scenarios show an increase in the number of 

exceedance days. In the short term, the 

largest increase in the number of exceedance 

days is anticipated for the B1 scenario, and 

this number grows from zero in 2012 to 4.4 

days in the short term. In the mid-term, the 

largest increase in the number of exceedance 

days is projected for the A2 scenario, and this 

number grows from zero in 2012 to 13.8 days 

in the mid-term. 

 

3-6-3. Projected trends in future ozone Air 

Quality Index exceedances (AQI)  

The projected ozone concentrations were also 

analyzed from health-related metrics such as 

1-hr and 8-hr ozone Air Quality Indices 

(AQI). In this section, only the 8-hr 

projections for the A1B emission scenario are 

presented. Figure 8 shows the change in the 

number of days with exceedance of the 8-hr 

ozone AQI concentration thresholds under 

the A1B emission scenario for the summers 

of 2010 (a) and 2012 (b). Projections indicate 

an increase in the number of ozone 

Unhealthy and Very Unhealthy days under 

the impact of climate change, which reflects 

the degradation of ozone air quality in the 

future.
 

 
(a) 

 
(b) 

Figure 7. The projected average number of summer days (JJA) with exceedance of 8-hr ozone standard based on 

summers of 2010 (a) and 2012 (b). 
 

 
(a) 

 
(b) 

Figure 8. The projected days per summer (JJA) with exceedances of 8-hr ozone AQI based on summers of 2010 (a) and 

2012 (b). 
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Figure 8a shows that based on the summer of 

2010 scenario, the number of Unhealthy days 

increases over both climate periods, while the 

number of Very Unhealthy days decreases 

over the first period and then increases in the 

second period. Figure 8b shows that based on 

the summer 2010 scenario, the number of 

Unhealthy days grows over the two future 

climate periods. The occurrence of Very 

Unhealthy days is not expected over the first 

climate period, but due to the projected 

higher temperature and radiation, the number 

of Very Unhealthy days starts to grow over 

the second climate period. 

The average number of polluted days was 

calculated for each climate period. In this 

section, only the projections for the 8-hr 

ozone AQI under the A1B emission scenario 

are demonstrated. Figure 9 shows the average 

number of polluted days in the 8-hr ozone 

AQI for the pollution conditions in the 

summers of 2010 (a) and 2012 (b). As Figure 

9a shows, the average number of Unhealthy 

days is expected to grow over the two future 

climate periods. The number of Unhealthy 

days was 38 days in the summer of 2010, 

which is projected to increase by about 55% 

over the first period, averaging about 59 days 

in the short term, and about 80% over the 

second period, averaging about 68.5 days in 

the mid-term. The number of Very Unhealthy 

days is projected to fall about 65% from 18 

days in the summer of 2010 to 6.2 days in the 

first period but is projected to double in the 

second period by increasing from 6.2 days to 

12.8 days in the mid-term period. 

Figure 9b shows an increase in the average 

number of polluted days based on the 

summer 2012 scenario. No Unhealthy day 

was observed in the summer 2012. However, 

projections estimate about 4 Unhealthy days 

without any Very Unhealthy days in the 

short-term period. In the mid-term period, the 

average number of Unhealthy days is 

expected to increase to 12 days with one 

Very Unhealthy day. 

 

4. Summary and conclusion 
In this study, we investigated the impact of 

climate change on future summer ozone 

concentrations in Tehran, Iran. We used three 

IPCC greenhouse gas emission scenarios to 

simulate future climate: A1B, A2 and B1, the 

emissions of which are equivalent to RCP4.5, 

RCP8.5 and RCP2.6, respectively. These 

climate projections were obtained from 

HACM3 GCM and were downscaled by the 

LARS-WG5 model over the periods of 2015–

2039 and 2040–2064. The main goal of this 

study was to get a general outlook of ozone 

levels in the future impacted by climate 

change. A model trained with average ozone 

levels can only simulate average 

exceedances, but we wanted to include 

extreme pollution exceedances in our training 

data and simulate optimistic and pessimistic 

scenarios in the training procedure of our 

ANN model. Therefore, we included the two 

high and low ozone levels as the upper and 

lower range of pollution levels in our training 

data. 
The projected increases in temperature and 

solar radiation along with the decreases in 

precipitation and cloud cover for the future 

summers over the study area are indications 

of more favorable conditions for 

photochemical pollution formation, which 

could consequently result in degraded air 

quality conditions in future summers. To 

quantify the impact of projected climate 

change on future ozone levels, we developed 

a neural network as our AQFM. We used 

hourly temperature, solar radiation, NO and 

NO2 as inputs to our AQFM. The projections 

were performed by assuming that the current 

emission conditions of ozone precursors 

remain constant in the future. Therefore, 

pollution conditions of the summers of 2010 

and 2012 were considered as two different 

pollution scenarios, and only the impact of 

climate change alone was accounted for in 

the projections. The simulations project that 

the number of ozone-polluted days would 

increase based on both summer emission 

scenarios. The increase based on the 

exceedance-free summer 2012 would be 

more noticeable compared to the highly 

polluted summer of 2010. Moreover, the 

growing number of polluted days in terms of 

8-hr indices compared to 1-hr indices could 

be an indication of more exposure to higher 

ozone concentrations in the future. 
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(a) 

 
(b) 

Figure 9. The projected average number of summer days (JJA) with exceedance of 8-hr ozone AQI based on summers 

2010 (a) and 2012 (b). 

 

Since this study is considered one of the first 

studies in Iran that address the influence of 

future climate on air quality, it was subject to 

various limitations. One of the major 

limitations was that NMVOC concentrations 

were not included in the simulations due to 

the unavailability of this data. Ozone 

simulations without considering NMVOCs in 

the calculation process tend to underestimate 

ozone concentrations (Liu et al., 1987). 

Ozone production is sensitive to other 

climate variables such as wind speed, water 

vapor, cloud cover, or precipitation (Dawson 

et al., 2007). However, due to the 

simplification in the modeling process, only 

temperature and solar radiation were selected 

in this study. Another limitation of this study 

is the assumption that emissions of ozone 

precursors and their relationship with ozone 

formation remain constant in the future, and 

therefore, the role of future emission 

reductions cannot be considered in the 

simulations. To reduce the scope of this 

limitation in our simulations, two different 

summertime pollution conditions with the 

highest and the lowest number of monitored 

polluted days were considered in this 

modeling endeavor to demonstrate the 

probable range of future changes in ozone 

pollution. 

Future research should therefore consider the 

limitations of this study. Since the absence of 

NMVOC concentrations as one of the main 

precursors of ozone production reduces the 

accuracy of the simulations, future studies 

could benefit from including NMVOC 

concentrations in simulations. Moreover, 

regarding existing uncertainties in GCM 

projections, future studies should also 

consider ensemble projection approaches by 

incorporating several GCMs in climate 

change impact assessments to improve the 

level of confidence in air quality projections. 

Furthermore, using dynamical downscaling 

results from Regional Climate Models 

(RCMs), including other climate variables in 

projections, and comparing projections of 

statistical approaches with projections of 

Chemistry Transport Models (CTMs) could 

be other useful measures to consider for 

improving the accuracy and confidence in the 

climate change impact assessments. 
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