تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,925 |
تعداد دریافت فایل اصل مقاله | 97,233,468 |
Low-Cost Fluoride Adsorbent Prepared from Renewable Bio-Waste: Synthesis, Characterization and Optimization Studies | ||
Pollution | ||
دوره 9، شماره 3، مهر 2023، صفحه 1251-1272 اصل مقاله (1.73 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.351595.1699 | ||
نویسندگان | ||
Naba Kumar Mondal* ؛ Prateeti Roy؛ Kamalesh Sen؛ Arghadip Mondal؛ Priyanka Debnath | ||
Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West, Bengal, India | ||
چکیده | ||
Elevated level of fluoride (> 1.0 mg/L) in drinking water leads to both dental and skeletal fluorides. Present research is dedicated to check the efficacy of duck shell dust towards removal of fluoride. Various analytical tools (XRF, XRD, SEM-EDAX and zero point charge) were used to characterize the present adsorbent. The entire batch mode study results were further optimized by Response Surface Methodology (RSM). The results revealed that Langmuire isotherm is best fitted (R2 = 0.819) with adsorption capacity 4.894 mg/g. However, kinetic study suggest that the fluoride adsorption followed pseudo-second-order kinetic equation (R2 = 0.956). Similarly, thermodynamic study revealed that the fluoride adsorption by duck shell dust is endothermic and entropy driven process. Finally, optimization study demonstrated the optimized condition such as initial concentration, adsorbent dose, contact time and pH are 89.29 mg/L, 1.112 g/100 mL, 42.5 min and 9.91, respectively. Therefore, it may be concluded that duck shell dust could be a promising adsorbent for decontamination of fluoride from contaminated body. | ||
کلیدواژهها | ||
Dental and skeletal fluorosis؛ Egg shell؛ Batch study؛ Optimization؛ Regeneration | ||
مراجع | ||
Al Mesfer, M.K., Danish, M., & Shah, M. (2021). Optimization of fluoride adsorption from aqueous solution over mesoporous titania-alumina composites using Taguchi method. Water Environ. Res. 94, e1663. https://doi.org/10.1002/wer.1663 Akuno, M.H., Nocella, G, Milia, E.P., & Gutierrez, L. (2019). Factors influencing the relationship between fluoride in drinking water & dental fluorosis: a ten-year systematic review & meta-analysis. J. Water Health 17(6), 845-862. https://doi.org/10.2166/wh.2019.300. Alkhatib, M.F., Mamun, A.A., & Akbar, I. (2015). Application of response surface methodology for optimization of colour removal from POME by granular activated carbon. Inter. J. Environ. Sci. Technol. 12, 1295-1302. https://doi.org/10.1007/s13762-014-0504-4 Adamson, A., & Gast, A. (1997). Physical Chemistry of Surface, Wiley N. Y, 368. Baker, J.R., & Balch, D.A. (1962). A study of the organic material of hen’s eggshell. Biochem. J. 82, 352–361. https://doi.org/10.1042/bj0820352 Bashir, A.S.M., & Manusamy, Y. (2015). Characterization of Raw Egg Shell Powder (ESP) as A Good Bio-filler. J. Eng. Res. Technol. 2(1), 56-60. Bhaumik, R., & Mondal, N.K. (2014). Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Appl.Water Sci. http://dx.doi.org/ 10.1007/s13201-014-0211-9. Bhaumik, R., & Mondal, N.K. (2016). Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach. Appl. Water Sci. 6, 115–135. http://dx.doi.org/10.1007/s13201-014-0211-9 Bhaumik, R., Mondal, N.K., Das, B., Roy, P., Pal, K.C., Das, C., Banerjee, A., & Dutta, JK (2012). Eggshell powder as an adsorbent for removal offuoride from aqueous solution: equilibrium, kinetic & thermodynamic studies. Eur. J. Chem. 9(3), 1457–1480. http://dx.doi.org/10.1155/2012/790401 Bhaumik, R., Mondal, N.K., Chattoraj, S., & Datta, J.K. (2013). Application of response surface methodology for optimization of fluoride removal mechanism by newely developed biomaterial. Am. J. Anal. Chem. 4, 404–419. http://dx.doi.org/10.4236/ajac.2013.48051 Bhaumik, R, Mondal, N.K., & Chattoraj, S. (2017). An optimization study for defluoridation from synthetic fluoride solution using scale of Indian major carp Catla (Catla catla): An Unconventional Biosorbent. J. Fluorine Chem. 195, 57-69. https://doi.org/10.1016/j.jfluchem.2017.01.015 Bhaumik, R., & Mondal, N.K. (2015). Adsorption of fluoride from aqueous solution by a new low-cost adsorbent: thermally & chemically activated coconut fibre dust. Clean Technol. Environ. Policy. 17, 2157–2172. doi:10. 1007/s10098-015-0937-6 Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489. https://doi.org/10.1016/0003-2697(73)90377-1 Box, G.E.P., & Wilson, K.B. (1951). On the experimental attainment of optimum conditions. J. R. Stat. Soc. 13(1), 1-45. Chattoraj, S. Mondal, N.K., Das, B., Roy, P., & Sadhukhan, B. (2013). Biosorption of carbaryl from aqueous solution onto Pistiastratiotes biomass. Appl. Water Sci. 4, 79-88. http://doi.org/10.1007/s13201-013-0132-z. Chaudhary, M., & Maiti A. (2019). Defluoridation by highly efficient calcium hydroxide nanorods from synthetic & industrial wastewater. Colloids Surf, A Physicochem. Eng. Asp. https://doi.org/10.1016/j.colsurfa.2018.10.052 Chen, N., Feng, C., & Li, M. (2014). Fluoride removal on Fe-Alimpregnated granular ceramic adsorbent from aqueous solution. Clean Technol. Environ. Policy 16, 609–617. https://doi.org/10.1007/s10098-013-0659-6 Chen, N., Zhang, Z., Feng, C., Li, M., Zhu, D., Chen, R., & Sugiura N. (2010.) An excellent fluoride sorption behaviour of ceramic adsorbent. J. Hazard. Mater. 183, 460–465. https://doi.org/10.1016/j.jhazmat.2010.07.046 Chiavola, A., D’Amato, E., & Di Marcantonio, C. (2022). Comparison of Adsorptive Removal of Fluoride from Water by Different Adsorbents under Laboratory & Real Conditions. Water 14, 1423. https://doi.org/10.3390/w14091423 Dehghani, M.H., Sanaei, D., Ali, I., & Bhatnagar, A. (2016). Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling & isotherm studies. J. Mol. Liq. 215, 671-679. https://doi.org/10.1016/j.molliq.2015.12.057 El-Din Mohamed, W.S., Hamad, M.T.M.H., & Kamel, M.Z. (2020). Application of statistical response surface methodology for optimization of fluoride removal efficiency by Padina sp. alga. Water Environ. Res. 92, 1080–1088. Fan, X., Parker, D.J., & Smith, M.D. (2003). Adsorption kinetics of fluorideon low cost materials. Water Res. 37, 4929–4937. https://doi.org/10.1016/j.watres.2003.08.014 Freire, M.N., & Holanda, J.N.F. (2006). Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste‖. Cerâmica 52, 240-244. https://doi.org/10.1590/S0366- 69132006000400004 Ghalhari, M.R., Kalteh, S., Tarazooj, F.A., Zeraatkar, A.and Mahvi, A.H. (2021). Health risk assessment of nitrate & fuoride in bottled water: A case study of Iran. Environ. Sci. Pollut. Res. 28, 1–12. https://doi.org/10.1007/s11356-021-14027-w Ghosh, S.B., Bhaumik, R., & Mondal, N.K. (2016). Optimization study of adsorption parameters for removal of fluoride using aluminium-impregnated potato plant ash by response surface methodology. Clean Technol. Environ. Policy 18(4), 1069-1083. https://doi.org/10.1007/s10098-016-1097-z Ghosh, S.B., & Mondal, N.K. (2019). Application of Taguchi method for optimizing the process parameters for the removal of fluoride by Al-impregnated Eucalyptus bark ash. Environ. Nanotechnol. Monitor. Manage. 11, 100206. https://doi.org/10.1016/j.enmm.2018.100206 Gidi, L.D., Amare, E.Z., & Murthy, H.C.A., & Abebe, B. (2019). Application of Novel Clay Composite Adsorbent for Fluoride Removal. Mater. Sci. Res. Ind. 16(2). doi.org/10.13005/msri/160209 Grzegorzek, M., Majewska-Nowak, K., & Ahmed, A.E. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Sci. Total Environ. 722, 137681. doi.org/10.1016/j.scitotenv.2020.137681 Hamidi, A.A., Salimi, M.N., & Yusoff, A.H.M. (2017). Synthesis & characterization of eggshell-derived hydroxyapatite via mechanochemical method: A comparative study. AIP Conference Proceedings 1835; 020045. https://doi.org/10.1063/1.4981867 Handa, B.K. (1975). Geochemistry & genesis of fluoride- containing ground waters in India. Groundwater 13, 275-281. https://doi.org/10.1111/j.1745-6584.1975.tb03086.x Hashemkhani, M., Ghalhari, M.R., Bashardoust, P., Hosseini, S.S., Mesdaghinia, A., & Mahvi, A.H. (2022). Fluoride removal from aqueous solution via environmentally friendly adsorbent derived from seashell. Sci. Reports 12, 9655 https://doi.org/10.1038/s41598-022-13756-3 Iriel, A., Bruneel, S.P., Schenone, N., & Cirelli, A.F. (2018). The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic & equilibrium studies. Ecotoxicol. Environ. Safety 149, 166-172. https://doi.org/10.1016/j.ecoenv.2017.11.016 Khataee, A.R., Kaisiri, M.B., Alidokht, L. (2011). Application of response surface methodology in the optimization of photocatalytic removal of environmental pollutants using nanocatalysts. Environ. Technol. 32(15), 1669-1684. https://doi.org/10.1080/09593330.2011.597432. Liu, J., Li, W-Yi., Liu, Y., Zeng, Q., Hong, S. (2014). Titanium (V) hydrate based on chitosan template for defluoridation from aqueous solution. Appl. Surface Sci. 213, 46-54. https://doi.org/10.1016/j.apsusc.2013.12.050 Iizuka, A., Ho, H-J., & Yamasaki, A. (2022). Removal of fluoride ions from aqueous solution by metaettringite. PLoS ONE 17(3), e0265451. https:// doi.org/10.1371/journal.pone.0265451 Mondal, N.K., & Kundu, M. (2016). Biosorption of Fluoride from Aqueous Solution Using Lichen And Its Ca-Pretreated Biomass. Water Conserv. Sci. Eng. 1(3), 143-160. https://doi.org/10.1007/s41101-016-0009-8 Mondal, N.K., Bhaumik, R., Roy, P., Das, B., & Datta, J.K. (2013). Investigation on fixed bed column performance of fluorideadsorption by sugarcane charcoal. J. Environ .Biol. 34, 1059-1064 Mondal, M.K. (2010). Removal of Pb (II) from aqueous solution by adsorption using activated tea waste. Korean J. Chem. Eng. 27(1), 144–151. https://doi.org/10.1007/s11814-009-0304-6 Mondal, N.K. (2017). Effect of fluoride on photosynthesis, growth & accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India. Ecotoxicol. Environ. Safety 144, 36-44. https://doi.org/10.1016/j.ecoenv.2017.06.009. Mondal, N.K. (2017). Natural Banana (Musa acuminate) Peel: an Unconventional Adsorbent for Removal of Fluoride from Aqueous Solution through Batch Study. Water Conserv. Sci. Eng. 1(4), 223-232. https://doi.org/10.1007/s41101-016-0015-x Mondal, N.K., Samanta, A., Dutta, S., & Chattaraj, S. (2017). Optimization of Cr (VI) biosorption onto Aspergillus niger using 3-level Box-Behnken design: equilibrium, kinetic, thermodynamic & regeneration studies. J. Genetic Eng. Biotechnol 15, 151-160. https://doi.org/10.1016/j.jgeb.2017.01.006 Mondal, N.K., & Roy, S. (2016). Optimization study of adsorption parameters for removal of phenol on gastropod shell dust using response surface methodology. Clean Technol. Environ. policy 18(2), 429-447. https://doi.org/10.1007/s10098-015-1026-6 Mondal, N.K., Bhaumik, R., Banerjee, A., Datta, J.K., & Baur, T. (2012). A comparative study on the batch performance of fluoride adsorption by activated silica gel & activated rice husk ash. Int. J. Environ. Sci. 2(3), 1643–1661. https://doi.org/10.6088/ijes.00202030049 Mondal, N.K., Bhaumik, R., & Datta, J.K. (2015). Removal of fluoride by aluminum impregnated coconutfiber from synthetic fluoride solution & natural water. Alexandria Eng. J. 54, 1273-1284. https://doi.org/10.1016/j.aej.2015.08.006 Mondal, N.K., Pal, K.C., & Kabi, S. (2012). Prevalence & severity of dental fluorosis in relation to fluoridein ground water in the villages of Birbhum district, West Bengal,India. Environmentalist 32, 70–84. https://doi.org/10.1007/s10669-011-9374-1 Mondal, N.K., Bhaumik, R., Baur, T., Das, B., Roy, P., & Datta, J.K. (2012b). Studies on defluoridation of water by tea ash: an unconventional biosorbent. Chem. Sci. Trans. 1(2), 239–256. https://doi.org/10.7598/cst2012.134 Mondal, N.K., Kundu, M., Das, K., Bhaumik, R., & Datta, J.K. (2013). Biosorption of fluoride from aqueous phase onto Aspergillus & its calcium-impregnated biomass & evaluation of adsorption kinetics. Fluoride 46(4), 239–245 Mondal, N.K., Bhaumik, R., Sen, K., & Debnath, P. (2022). Adsorption of fuoride in aqueous solutions using saline water algae (Rhodophyta sp.): an insight into isotherm, kinetics, thermodynamics and optimization studies. Model. Earth Syst. Environ. 8, 3507–3521 https://doi.org/10.1007/s40808-021-01320-3 Montgomery, D.C. (2005). Design & analysis of experiments: Response surface method & Design. John Wiley & Sons, Inc New York. Munagapati, V.S., & Kim, D-Su. (2017). Equilibrium isotherms, kinetics, & thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano- goethite. Ecotoxicol. Environ. Safety 141, 226-234. https://doi.org/10.1016/j.ecoenv.2017.03.036 Nakano, T, Ikawa, N.I & Ozimek,L. (2003). Chemical Composition of Chicken Eggshell & Shell Membranes. Poultry Sci. 82, 510–514. https://doi.org/10.1093/ps/82.3.510 Nasar, A.B., Walha, K., Charcosset, C., & Amar, R.B. (2011). Removal of fluoride ions using Cuttle fish bones. J. Fluoride Chem. 132, 57–62. https://doi.org/10.1016/j.jfluchem.2010.11.006 Nur, T., Loganathan, P., Nguyen, T.C., Vigneswaran, S., Singh, G., & Kandasamy, J. (2014). Batch & column adsorption & desorption of fluoride using hydrous ferric oxide: Solution chemistry & modelling. Chem. Eng. J. 247, 93-102. http://dx.doi.org/10.1016/j.cej.2014.03.009 Ok, Y.S., Lee, S.S., Jeon, W-T., Oh, S-E., Usman Adel, R.A., & Moon, D.H. (2011). Application of eggshell waste for the immobilization of cadmium & lead in a contaminated soil. Environ. Geochem. Health 33, 31–39. https:// doi.org/0.1007/s10653-010-9362-2 Pandey, J., & Pandey, U. (2011). Fluoride contamination & fluorosis in rural community in the vicinity of phosphate fertilizer factory in India. Bulletin Environ. Conta. Toxicol. 87(3), 245-249. https://doi.org/10.1007/s00128-011-0344-6 Panneerselvam, P., Morad, N., & Tan, K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160-168. https://doi.org/10.1016/j.jhazmat.2010.10.102 Paradelo, R., Conde-Cid, M., Arias-Estevez, M., Nóvoa-Muñoz, J.C., Álvarez-Rodríguez, E., Fernández-Sanjurjo, M.J., & Núñez-Del, A. (2017). Removal of anionic pollutants by pine bark is influenced by the mechanism of retention. Chemosphere 167, 139-145. https://doi.org/10.1016/j.chemosphere.2016.09.158 Roy, P., Mondal, N.K., & Das, K. (2014). Modeling of the adsorptive removal of arsenic: a statistical approach. J. Environ. Chem. Eng. 2, 585–597. https://doi.org/10.1016/j.jece.2013.10.014 Sadhukhan, B., Mondal, N.K., & Chattoraj, S. (2014). Biosorptive removal of cationic dye from aqueous system: a response surface methodological approach. Clean Technol. Environ. Policy 16, 1015–1025. https://doi.org/10.1007/s10098-013-0701-8 Shao, S., Ma, B., Chen, Y., Zhang, W., & Wang, C. (2021). Behavior & mechanism of fluoride removal from aqueous solutions by using synthesized CaSO4⋅2H2O nanorods. Chem. Eng. J. 426, 131364. https://doi.org/10.1016/j.cej.2021.131364 Sugashini, S., & Meera, S.B.K.M. (2013). Optimization using central composite design (CCD) for the biosorption of Cr(VI) ions by cross linked chitosan carbonized rice husk (CCACR). Clean Technol. Environ. Policy 15, 293–302. https://doi.org/10.1007/s10098-012-0512-3 Suneetha, M., Sundar, B.S. & Ravindhranath, K. (2015). Removal of fluoride from polluted waters using active carbon derived from barks of Vitex negundo plant. J. Anal. Sci. Technol. 6, 15 https://doi.org /0.1186/s40543-014-0042-1 Tomar, V., Prasad, S., & Kumar, D. (2013). Adsorptive removal of fluoride from water samples Using Zr-Mn composite material. Microchem. J. 111, 116-124. https://doi.org/10.1016/j.microc.2013.04.007 Tomar, V., Prasad, S., Kumar, D. (2014). Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchem. J. 112, 97-103. https://doi.org/10.1016/j.microc.2013.09.010 Tchmgui_Kamga E, Ngameni E, Darchen A (2010). Evaluation of removal efficiency of fluoride from aqueous solution using new charcoals that contain calcium compounds. J. Colloid Interface Sci. 346, 494-499. https://doi.org/10.1016/j.jcis.2010.01.088 Tahaikt, M., El Habbani, R., Ait Haddou, A., Achary, I., Amor, Z., Taky, M., Alami, A., Boughriba, A., Hafsi, M., & Elmidaoui, A. (2007.) Fluoride Removal from Groundwater by Nanofiltration. Desalin. 212(1-3), 46-53. https:// doi.org/10.1016/j.desal.2006.10.003 Wang, T., Yan, L., He, Y., Alhassan, S.I., Gang, H., Wu, B., Jin, L., & Wang, H. (2022). Application of polypyrrole-based adsorbents in the removal of fluoride: a review. RSC Adv. 12, 3505-3517 https:// doi.org/10.1039/D1RA08496H Wang, X., Pfeiffer, H., Wei, J., Wang, J., Hang, J. (2022). Fluoride ions adsorption from water by CaCO3 enhanced Mn-Fe mixed metal oxides. Front. Chem. Sci. Eng. https://doi.org/10.1007/s11705-022-2193-8 WHO (2011). Guideline for drinking-water quality, 4th edn. WorldHealth Organization, Geneva Zaman, T., Mostari Mst, S., Al Mahmood, Md. A., & Rahman, Md. S. (2018). Evolution & characterization of eggshell as a potential candidate of raw material. Cerâmica 64, 236-241. doi.org/10.1590/0366-69132018643702349 Zhao, Y., Li, X., Liu, L., & Chen, F. (2018). Fluoride removal by Fe() loaded exchange cotton cellulose adsorbent from drinking water. Carbohydr. Polym. 72, 144-150. https://doi.org/10.1016/j.carbpol.2007.07.038 | ||
آمار تعداد مشاهده مقاله: 356 تعداد دریافت فایل اصل مقاله: 593 |