تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,095,509 |
تعداد دریافت فایل اصل مقاله | 97,201,872 |
اثر ترکیبات یونی مختلف آب شور در انتقال کادمیوم در دو خاک با کربنات کلسیم متفاوت | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 11، بهمن 1401، صفحه 2583-2595 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.350368.669383 | ||
نویسندگان | ||
سامان ملک نیا1؛ علی خانمیرزایی* 2؛ محبوبه مظهری1؛ شکوفه رضایی3؛ مسعود سلطانی4 | ||
1گروه خاکشناسی، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران | ||
2گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، دانشگاه ازاد اسلامی واحد کرج، کرج، ایران. | ||
3گروه خاکشناسی-دانشگاه ازاد اسلامی واحد کرج-کرج-ایران | ||
4گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی(ره)، قزوین، ایران. | ||
چکیده | ||
پژوهشهای اخیر، تأثیر شوری منابع آب و خاک بر فراهمی زیستی کادمیوم را نشان داده است. در این پژوهش اثر منابع مختلف شوری شامل کلریدسدیم، سولفاتسدیم و کلریدکلسیم بر انتقال کادمیوم در دو خاک متفاوت مورد بررسی قرار گرفت. ستونهای خاک با ارتفاع 50 و قطر درونی 10 سانتیمتر در مدت 10 روز تحت آبشویی محلول کادمیوم با غلظت 100 میلیگرم در لیتر به همراه نمک-های مختلف کلریدسدیم، سولفاتسدیم و کلریدکلسیم با غلظت 100 میلیاکیوالنت در لیتر قرار گرفت. غلظت کادمیوم در زهآب بیرون آمده از ستون در سه عمق 3، 7 و 50 سانتیمتر اندازهگیری و نتایج مورد بررسی قرار گرفت. شبیهسازی گونههای شیمیایی کادمیوم محلول توسط نرم افزار Visual MINTEQ انجام گرفت. بودن نمکها به همراه محلول کادمیوم باعث تحرک بیشتر و خروج مقادیر بیشتر کادمیوم نسبت به خاک شاهد گردید. در بین تیمارهای شوری، تیمار کلریدکلسیم با میانگین 6/19 میلیگرم در لیتر بیشترین و تیمار سولفات سدیم با 1/6 میلیگرم در لیتر کمترین مقادیر کادمیوم خروجی را داشتند. تیمارهای دارای کلر بهدلیل تشکیل کمپلکس-های کلر-کادمیوم تأثیر بارزتری در خروج کادمیوم در ستون خاک داشتند. شبیهسازی کادمیوم محلول در تیمارهای دارای کلر نشان داد که گونههای CdCl+ و CdCl2(aq) بیش از 80 درصد گونههای موجود در زهآب را تشکیل میداد در صورتیکه در تیمار دارای سولفاتسدیم این نسبت در اختیار دو گونه Cd(SO4)2-2 و Cd(SO4)(aq) بود. بهطورکلی شرایط شوری متأثر از یون کلر در اراضی آلوده به کادمیوم میتواند پتانسیل ورود این فلز سمی به منابع آب و زنجیره غذایی را افزایش دهد. | ||
کلیدواژهها | ||
شوری؛ کادمیوم؛ گونهبندی شیمیایی؛ همدمای جذب سطحی | ||
مراجع | ||
Afonne, O. J., & Ifediba, E. C. (2020). Heavy metals risks in plant foods–need to step up precautionary measures. Current Opinion in Toxicology, 22, 1-6. https://doi.org/10.1016/j.cotox.2019.12.006 Allison J.D., Brown, D.S., & Novo-Gradac, K.J. (1991). MINTEQA2/ PRODEFA2, A geochemical assessment model for environmental systems: Ver. 3.0. User’s manual. Environ. Res. Lab., USEPA, Athens, GE. Barregard, L., Sallsten, G., Lundh, T., & Mölne, J. (2022). Low-level exposure to lead, cadmium and mercury, and histopathological findings in kidney biopsies. Environmental Research, 211, 113119. https://doi.org/10.1016/j.envres.2022.113119 Beygi, M., & Jalali, M. (2019). Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma, 337, 1009-1020. https://doi.org/10.1016/j.geoderma.2018.11.009 Blake, G.R., & Hartge K. H. )1986(. Bulk density. In: Klute, A. (ed.) Methods of soil analysis. Part 1 – Physical and mineralogical methods. Agronomy Monograph, vol. 9. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin, pp 363-382. Cavallaro, N., & McBride, M.B. (1978) Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Science Society American Journal, 42, 550-556. https://doi.org/10.2136/sssaj1978.03615995004200040003x Chi, W., Yang, Y., Liu, T., Sun, Y., Du, Y., Qin, H., & Li, X. (2022). Effects of water salinity on cadmium availability at soil–water interface: implication for salt water intrusion. Environmental Science and Pollution Research, 1-12. https://doi.org/10.1007/s11356-022-20606-2 Deng, P., Ma, Q., Xi, Y., Yang, L., Lin, M., Yu, Z., & Zhou, Z. (2020). Transcriptomic insight into cadmium-induced neurotoxicity in embryonic neural stem/progenitor cells. Toxicology in Vitro, 62, 104686. https://doi.org/10.1016/j.tiv.2019.104686 Fajana, H. O., Jegede, O. O., James, K., Hogan, N. S., & Siciliano, S. D. (2020). Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite, Oppia nitens: Implication in the risk assessment of cadmium to soil invertebrates. Environmental Pollution, 259, 113912. https://doi.org/10.1016/j.envpol.2020.113912 FAO (2016). Salt-affected soil. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ August, 2016). Feng, S.Y., Zhang, Y.F. & Shen, R.K. )1995(. Experimental study and numerical modeling of N-fertilizer transformation and transportation in saturated soil under the condition of drainage. Journal of Hydraulic Engineering, 95, 16-22. https://doi.org/10.1016/S1002-0160(12)60014-9 Filipović, L., Romić, M., Romić, D., Filipović, V., & Ondrašek, G. (2018). Organic matter and salinity modify cadmium soil (phyto) availability. Ecotoxicology and Environmental Safety, 147, 824-831. https://doi.org/10.1016/j.ecoenv.2017.09.041 Frankenberger Jr., W. T., Tabatabai, M. A., Adriano, D. C., & Doner, H. E. (1996). Bromine, Chlorine, & Fluorine. In: Sparks, D.L., (Eds.), Methods of soil analysis, Part 3- Chemical Methods. Agronomy Monograph, vol. 9. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin, pp 833-867. Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: In: Klute A. (ed.) Methods of Soil Analysis: Part I-Physical and mineralogy methods. Agron. Monogr. 9. 2nd ed. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin. pp. 383-412. Ghallab, A., & Usman, A. R. A. (2007). Effect of sodium chloride-induced salinity on phyto-availability and speciation of Cd in soil solution. Water, Air, and Soil Pollution, 185(1), 43-51. https://doi.org/10.1007/s11270-007-9424-y Habib, M. R., Hoque, M. M., Kabir, J., Akhter, S., Rahman, M. S., Moore, J., & Jolly, Y. N. (2022). A comparative study of heavy metal exposure risk from the consumption of some common species of cultured and captured fishes of Bangladesh. Journal of Food Composition and Analysis, 108, 104455. https://doi.org/10.1016/j.jfca.2022.104455 Helmke, P.A., & D.L. Sparks. )1996(. Lithium, sodium, potassium, rubidium, and cesium. In: Sparks, D.L. (Eds.), Methods of soil analysis. Part 3. Chemical methods. Agronomy Monograph, vol. 5. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin, pp 551-574. Karimian, N., & Cox, F. R. (1978). Adsorption and extractability of molybdenum in relation to some chemical properties of soil. Soil Science Society of America Journal, 42(5), 757-761. https://doi.org/10.2136/sssaj1978.03615995004200050021x Khanmirzaei, A., Bazargan, K., Amir Moezzi, A., Richards, B. K., & Shahbazi, K. (2013). Single and sequential extraction of cadmium in some highly calcareous soils of southwestern Iran. Journal of Soil Science and Plant Nutrition, 13(1), 153-164. https://doi.org/10.4067/S0718-95162013005000014 Khoshgoftar, A. H., Shariatmadari, H., Karimian, N., Kalbasi, M., Van der Zee, S. E. A. T. M., & Parker, D. R. (2004). Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Science Society of America Journal, 68(6), 1885-1889. https://doi.org/10.2136/sssaj2004.1885 Li, Z., Liang, Y., Hu, H., Shaheen, S. M., Zhong, H., Tack, F. M., ... & Zhao, J. (2021). Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. Environment International, 156, 106749. https://doi.org/10.1016/j.envint.2021.106749 Lindsay, W. L., & Norvell, W. A. (1978) Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Science Society American Journal, 42: 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum In: Sparks D.L. (ed.) Chemical Methods of Soil Analysis. Soil Science Society of America. Madison pp. 437-447. Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium sorption and desorption in soils: a review. Critical Reviews in Environmental Science and Technology, 42(5), 489-533. https://doi.org/10.1080/10643389.2010.520234 Machender, G., Dhakate, R., Prasanna, L. & Govi, P.K. (2011) Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabad, India. Environmental Earth Sciences, 63(5), 945-953. https://doi.org/10.1007/s12665-010-0763-4 Maftoun, M., Rassooli, F., Ali Nejad, Z., & Karimian, N. (2004). Cadmium sorption behavior in some highly calcareous soils of Iran. Communications in Soil Science and Plant Analysis, 35(9-10), 1271-1282. https://doi.org/10.1081/CSS-120037545 Mallongi, A., Birawida, A. B., Astuti, R. D. P., & Saleh, M. (2020). Effect of lead and cadmium to blood pressure on communities along coastal areas of Makassar, Indonesia. Enfermería Clínica, 30, 313-317. https://doi.org/10.1016/j.enfcli.2020.03.001 McLaughlin, M.J., Tiller, K.G., Naidu, R. & Stevens, D.P. )1996(. Review: the behavior and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research 34, 1–54. https://doi.org/10.1071/SR9960001 Nelson, D. W., & Sommers, L. E. (1996). Carbon, organic carbon, and organic matter. In: Sparks D.L. (ed) Methods of Soil Analysis. Soil Science Society of America, Madison. pp. 961-1010. Park, H. J., Kim, S. U., Jung, K. Y., Lee, S., Choi, Y. D., Owens, V. N., & Hong, C. O. (2021). Cadmium phytoavailability from 1976 through 2016: Changes in soil amended with phosphate fertilizer and compost. Science of The Total Environment, 762, 143132. https://doi.org/10.1016/j.scitotenv.2020.143132 Pouillot, R., Farakos, S. S., & Van Doren, J. M. (2022). Modeling the risk of low bone mass and osteoporosis as a function of urinary cadmium in US adults aged 50–79 years. Environmental Research, 212, 113315. https://doi.org/10.1016/j.envres.2022.113315 Rajaie, M., Karimian, N., Maftoun, M., Yasrebi, J., & Assad, M. T. (2006). Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time. Geoderma, 136(3-4), 533-541. https://doi.org/10.1016/j.geoderma.2006.04.007 Ramteke, D., Chakraborty, P., Chennuri, K., & Sarkar, A. (2021). Geochemical fractionation study in combination with equilibrium based chemical speciation modelling of Cd in finer sediments provide a better description of Cd bioavailability in tropical estuarine systems. Science of The Total Environment, 764, 143798. https://doi.org/10.1016/j.scitotenv.2020.143798 Rezaei, M. J., Farahbakhsh, M., Shahbazi, K., & Marzi, M. (2021). Study of cadmium distribution coefficient in acidic and calcareous soils of Iran: comparison between low and high concentrations. Environmental Technology & Innovation, 22, 101516. https://doi.org/10.1016/j.eti.2021.101516 Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Sparks, D.L., (Eds.), Methods of soil analysis, Part 3- Chemical Methods. Agronomy Monograph, vol. 9. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin, pp 417-435. Smolders, E., Lambrechts, R.M., McLaughlin, M.J., & Tiller K.G. (1997). Effect of soil solution chloride on Cd availability to Swiss chard. Journal of Environmental Quality, 27:426–431. https://doi.org/10.2134/jeq1998.00472425002700020025x Sruthi, P., Shackira, A. M., & Puthur, J. T. (2017). Heavy metal detoxification mechanisms in halophytes: an overview. Wetlands Ecology and Management, 25(2), 129-148. https://doi.org/10.1007/s11273-016-9513-z Suarez, D. L. (1996). Beryllium, Magnesium, Calcium, Strontium, and Barium. In: Sparks, D.L., (Eds.), Methods of soil analysis, Part 3- Chemical Methods. Agronomy Monograph, vol. 9. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin, pp 575-601. Tahervand, S., & Jalali, M. (2016). Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environmental Monitoring and Assessment, 188(6), 1-12. https://doi.org/10.1007/s10661-016-5313-4 Thomas, G.W. (1996). Soil pH and soil activity. In. Sparks, D.L., (Eds), Methods of soil analysis, Part 3- Chemical Methods. Agronomy Monograph, vol. 9. American Society Agronomy and Soil Science Society of America, Madison, Wisconsin, pp 475-490. Valipour, M., Shahbazi, K., & Khanmirzaei, A. (2016). Chemical immobilization of lead, cadmium, copper, and nickel in contaminated soils by phosphate amendments. CLEAN–Soil, Air, Water, 44(5), 572-578. https://doi.org/10.1002/clen.201300827 Wang, M., Chen, S., Chen, L., & Wang, D. (2019). Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution, 252, 1609-1621. https://doi.org/10.1016/j.envpol.2019.06.082 Weggler-Beaton, K., McLaughlin, M. J., & Graham, R. D. (2000). Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids. Soil Research, 38(1), 37-46. https://doi.org/10.1071/SR99028 Yang, X., Li, J., Zheng, Y., Li, H., & Qiu, R. (2023). Salinity elevates Cd bioaccumulation of sea rice cultured under co-exposure of cadmium and salt. Journal of Environmental Sciences, 126, 602-611. https://doi.org/10.1016/j.jes.2022.05.053 Zahedifar, M., & Moosavi, A. A. (2020). Assessing cadmium availability of contaminated saline-sodic soils as influenced by biochar using the adsorption isotherm models. Archives of Agronomy and Soil Science, 66(12), 1735-1752. https://doi.org/10.1080/03650340.2019.1694145 | ||
آمار تعداد مشاهده مقاله: 195 تعداد دریافت فایل اصل مقاله: 168 |