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Abstract 

The important objective of a building must be to provide a comfortable environment for people. Heating 

ventilation and air conditioning systems provide a comfortable environment but they have high energy 

consumption. Therefore, designing an energy-efficient building that balances energy performance and thermal 

comfort is necessary. Choosing effective parameters for energy performance is an important factor in achieving 

this goal. This research aims to produce a methodology for multi-objective optimization of daylight and thermal 

comfort in order to study the effect of wall material and shading of an office building (Tehran a basic-location). 

The building simulation was developed and validated by comparing predicted daylight and thermal comfort 

hours based on tests and training in Jupiter Notebook. The sensitivity analysis uses a multiple linear regression 

method. Secondly, optimization is based on a genetic algorithm with effective parameters to optimize daylight 

and thermal comfort performance. For this, we developed a parametric model using the Grasshopper plugin for 

Rhino and then used Honeybee and Ladybug plugins to simulate thermal comfort and daylight, and finally used 

Octopus engine to find an optimization solution. The result of this paper is essential as a preliminary analysis for 

building optimization in the open-plan office. 

Keywords: Thermal comfort, designedly approach to daylighting, Multi objective optimization, Daylight, 

Sensitivity analysis 
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1. Introduction 

Considering the increased environmental 

challenges due to global warming, the energy 

efficiency of buildings has an effective role in 

architectural design. Today global approaches aim to 

reduce energy consumption to achieve a sustainable 

environment [1]. Solar radiation has a crucial role in 

hot climate regions that can lead to excessive energy 

consumption. Sustainable building attends to increase 

the quality of the environment [2],[3]. Good buildings 

incorporate thermal and lighting comfort conditions 

as they have a fundamental impact on building 

performance [4]. Although many researchers focus 

on thermal comfort and daylight, many have 

proposed theoretical results that are not practical [5], 

[6]. A place that has thermal comfort is a condition 

that people in place are satisfied with. The Predicted 

Mean Vote (PMV) and Percentage of Persons 

Dissatisfied (PPD) are the popular indices for thermal 

comfort [7], [8]. These indices are calculated based 

on environmental parameters, such as relative 

humidity, air velocity, air temperature and mean 

radiant temperature, and occupant-related parameters 

such as metabolic rate and clothing insulation [9], [8]. 

The main purpose of good design is to improve 

energy consumption and daylight access. On the other 

hand, building optimization is one of the cost-

effective solutions to increase building performance 

[10]. The overall heat transfer of windows is usually 

about five times greater than other building 

components, but designers usually use a high 

window-to-wall ratio in their projects [11]. Research 

shows that measures of U-value, Solar Heat Gain 

Coeficient (SHGC), visible transmit (VT), glass, 

double-layer glass and window size could increase 

thermal comfort [12], [13]. Solar shading devices 

have a considerable advantage in the regulating solar 

radiation [14], [15]. 

Due to relatively little knowledge about 

optimization and uncertainties of design parameters, 

the designer’s default values should be confident 

about the parameters, significantly affecting the 

simulation result. This effect will be small if the 

purpose is to compare several design options. If these 

parameters are examined for the optimization 

process, the effect will be longer; therefore, if these 

parameters are not selected correctly, simulation time 

and design cost will be increased. Also, due to the 

time-consuming optimization process and the 

uncertainty of the desired parameters, it is necessary 

to carry out sensitivity analysis (SA) before 

optimization [16]. 

Sensitivity analysis (SA) is the statistical method 

that can calculate the relationship between input and 

output parameters [17]. Statistical methods examine 

the effect of these parameters by examining many 

output parameters relative to the input parameter [18]. 

SA has a significant effect on understanding building 

simulation. SA’s purpose is to predict the 

performance of design parameters, also research on 

these parameters is useful to achieve the optimal 

building  [19], [20]. 

In recent years optimization algorithms have 

focused on solving the optimization problems in 

building design. Optimization is the process of 

finding the best solution or solutions between 

different alternatives.  Building optimization is 

performed automatically by simulation and stochastic 

population-based optimization algorithms, including 

genetics and particle swarm [21], [22]. 

This research aims to address the knowledge gaps 

about the effect of sensitivity analysis in building 

simulation. The SA objective is to find the most 

influential design parameters with multiple linear 

regression and the optimization objective is to find 

the most optimum solutions which is usually a simple 

approach proposed by ranking the solutions on the 

Pareto frontiers. The optimization process is 

performed based on a genetic algorithm with the 

octopus plugin [23] Fig1. 

 This paper established a method for the office 

building, this method considered the effect of 

building design for thermal comfort and daylight with 

Honeybee and Ladybug plugins taking advantage of 

python’s ability. The variable parameter in this study 

is wall construction Thermal resistance (R-Value), 

window to wall ratio (WWR), Window frame 

thickness, SHGC, Shading Reflectance and Shading 

Depth. The parameters have been proposed by many 

researchers, but these parameters are not always fully 

https://en.wikipedia.org/wiki/Thermal_resistance
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accounted for in the SA and optimization process; 

these parameters can interact with each other. 

 

2.  Material & Method 

 This research is modeled in the Grasshopper 

plugin parametric environment that has been 

developed in Rhinoceros software. Honeybee and 

Ladybug plugins have been developed to simulate 

building performance; The present study, using the 

parametric potential of these plugins, has completed 

the optimization solution process more quickly and 

flexibly [23].  

 The building is located in Tehran. The office is 

occupied daily from 8 AM to 6 PM. The base case 

building represents the typology of the Reinhart 

office [24]. The selected office is located on the 

ground floor with a total area of 29.52m2 Fig2. 

 

 

 Table 1. The detailed building construction 

information 

 

Figure 1. Strategy of research aim 

 

Figure 2. Case study design process 

The shading system position is above the 

window located on the south façade. More details 

about the building construction are given in 

Table1. 

Component Description 

Exterior wall (W/m2・K) Concrete brick 

Roof (W/m2・K) Concrete - 0.10 

Exterior window (W/m2・K) Double glazing 

Window 

Floor (W/m2・K) Concrete - 11.76 

ŷ = 𝑏0 + 𝑏1 𝑥1 +  𝑏1 𝑥1 +   . . .  +  𝑏𝑘 𝑥𝑘 

Multi-objective Optimization Genetic 

Algorithm 

Investigate the effect of the Variable 

Parameter on objective function then 

Simplified Variable Parameter 

Sensitivity analysis 

Variable parameter 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 𝑥 ∈ 𝑋 

x1: Wall Construction(R-Value) 

x2: WWR 

x3: window frame thickness 

x4: SHGC 

x5: shading Reflectance 

x6: shading Depth 

Parametric model 

Design alternative based on literature review 

Objective Function 

f(x): Useful Daylight Illuminance 

f(x): Predict Mean vote (PMV)  𝑓ሺ𝑥ሻ ∈  𝑅𝑛 

Finding the optimum value of the design 

parameter and objective functions 

 Describe a new Methodology of 

Sensitivity Analysis to determine the 

effective parameters. 

 Predict Building performance to 

simplified the sustainable design. 

 Modeling Climate Conditions to reduce 

energy consumption and refine daylight 

performance. 

 Improving daylight and thermal comfort 

performance. 

 Methodology of Optimization based on 

Sensitivity Analysis to reduce the 

Optimization time and cost and simplified 

the Optimization process. 

 Usual Optimization methods can’t predict 

building performance before optimization 

and simulation and they waste time and cost 

 Window and shading device may cause 

overheating in building 

 knowledge gaps about the effect of 

sensitivity analysis in building simulation 

Building Simulation 
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 The number of people per area (occupant density) 

is 0.06 (people/m2). The Lighting density is 2.235 

(W/m2). Daylight sensors are placed on a grid 0.8 cm 

above the floor and the grid size is 0.40*0.40 cm. 

Lighting measurement IES LM-82-12 promotes 

climate-based daylighting metric [25]. 

It is generally considered that if the indoor 

illuminance were above 500 lx the indoor lighting 

requirements can provide. The present method has 

follows [26]’s studies, which are based on the SRC 

method. The range of design parameters have been 

selected by testing and training. This research uses 

the Monte Carlo method for Sensitivity analysis. This 

is a random sampling method [27]. Table2 shows this 

information for the building performance. 

Table 2. Design variables parameters for sensitivity 

analysis 

 Response variables are the average yearly, UDI, 

PMV, and PPD values. PMV index based on 

environmental parameters. Table3 reports the 

considered parameters and their corresponding levels. 

Table 3. Investigated factors and their corresponding 

levels for thermal comfort simulation 

Considering the objective of this research is the 

Multi-Objective Optimization (MOO) of daylight and 

thermal comfort so this objective can maximize the 

PMV and Useful Daylight Illuminance (UDI) and 

optimize the energy and daylight performance. The 

research framework is performed in three main steps 

shown in Fig3. 

First, the geometry model is designed based on the 

variable parameter. Then SA is carried out. Finally, 

optimization is carried out based on a simplified 

variable parameter. Sample size is based on testing 

and training in Jupiter notebook using Python 

language. According to the range of each parameter 

that is between 0-1 the sample size is selected. In this 

research, all parameter ranges are between 0-1, and 

therefore there was no need data range 

standardization.  The SA is generally related to the 

design parameters of building components which are 

wall (material, insulation) window- to-wall-ratio, 

Variable Parameter 

0.09, 0.14, 0.19 Wall Construction(R-

Value) 

14, 26, 32, 43, 52, 56 WWR (%) 

0.06, 0.07 window frame 

thickness(m) 

0.35, 0.39, 0.46, 0.50 SHGC (%) 

30, 40, 50 shading Reflectance 

0.05, 0.09, 0.15 shading Depth(m) 

Factor Unit Level 

Clothing level Clo 0.8-1.5 

Metabolic rate   W.m-2 58-125 

 

Figure 3. Overall methodology process 

Start 

Step 3 

Step 2 

Step 1 

Input parameter 

(Test and Train) 

Open studio 

Jupyter  

Multiple Linear 

Regression 

Method  

 

Simulation Models 

Grasshopper  

Honeybee Ladybug 

Radiance  

Colibri 

Excel 

Octopus 

Output 

Optimizer 

 

Energy 

plus 

PMV 

& UDI 

Importing 

weather 

file 

Rhinoceros 

Python 

Conclusion 
Honeybee 

Sensitivity analysis 

 

Finish 

Analyzing 

Pareto 

optimal 

solution 

Validate 

the result 

of the SA 

and then 

rank input 

parameter 



Najafi et al./Journal of Solar Energy Research Volume 8 Number 2 Spring (2023) 1446-1458 

1450 

 

windows (window frame thickness and SHGC) and 

shading (reflectance, depth). 

After designing the model, the model was 

simulated based on the input parameters of honeybee. 

The daylight index in this research is UDI, which was 

proposed by [28]. This factor is a dynamic daylight 

performance. The purpose of it is to determine when 

daylight levels are useful for the occupant. The 

suggested range of this index is 2000 lx and 100 lx. it 

means (<100) lx is too dark and (>2000lx) is too 

bright [28], [29]. 

The thermal comfort index in this research is 

PMV and PPD [30]. The PMV index is the 

quantitative prediction for the average vote of 

individuals on a thermal sensation scale that ranges 

from −3 to +3; where −3 is very cold, 0 is neutral and 

+3 is very hot. The recommendations range for 

maintaining a PMV between −0.5 and +0.5. The 

discomfort hours were not assessed when PPD was 

higher than 20%. The PMV index is calculated using 

Eq1 and each component of this index is calculated 

using Eq(2-6), [31]. 

 

 

( 0.36 )0.303 0.028e m

c rec rec

PMV

M W H E C E

 

      

                
(1) 

 33.05 10 256 3373tsk a swE P E       (2) 

 

 

 

3
5733 6.9 9

3.05 10

0.42 58.15

a

M W
E

P

M W


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   
  
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(3) 

 0.0014 34rec aC M T                                     (4)   

 51.72 10 5867rec aE M P                         (5) 

 cl sk cl clH K t t I                                             (6) 

Also the PPD index calculates based on (Eq7) 

[31].  

4

2

0.03353
100 95

0.2179

PMV
PPD e

PMV

  
      

     (7) 

This research performed SA using a sampling-

based method. SA was used in different fields and 

performed in different methods. This research is 

based on Multiple linear regression (MLR) method Eq8 

shows that MLR, is about the best-fitting model [27]. 

0 1 1 2 2 ... k ky b b x b x b x


                           
(8) 

To calculate the variability of the data, the 

measure of distance from the mean or description of 

the data range is often used. Total variability Sum of 

Squared Total (SST) is a summation of an unexplained 

variability explained variability. SST is a measure of 

total variability of a dataset. Sum of Squared Regression 

(SSR) is a measure explained by variability by your 

line. Sum of Squared Error (SSE) is a measure of 

unexplained variability by the regression. The 

division of SSR on SST is equal to R2 Eq (9-13) [27]. 

 

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅                                               (9) 

2

1

n

i

i

SST y y




 
  

 
                                       

(10) 

2

1

n

i

i

SSR y y
 



 
  

 
                                           

(11) 

 
2

1

n

i

i

SSR e


                                                          

(12) 

2 SSR
R

SST
                                                        

(13) 

Given that the R2 always increases with increasing 

the dependent parameter, this is while the new 

parameter may not have a significant impact, 

therefore, it is necessary to use the Adjusted R2, and 

increasing it means increasing the efficiency of the 

model. In the other word Adjusted R2 increases only 

when the new parameter has a significant impact on 

the model Eq14, [32]. 
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2

2R R


                                                            

(14) 

Low R2 indicates a poor fit of the regression model 

with the outcome of the building model. The value 

range of R2 is between -1.0 and +1.0 [32], [33].  

SA was carried out in Jupiter notebook based on 

MLR. Jupiter notebook. The SA was carried out by 

coupling python language and honeybee and ladybug. 

The First simulation result (PPD and UDI 100-2000) 

is stored in a CSV file by TT Toolbox. Then each set 

of input variables and simulation results was read 

from the CSV file and written to the Jupiter notebook 

in turn by means of python language. The SA consists 

of two loops: the honeybee plugin performed a full-

year simulation in time step and the python performed 

MLR. At the first, we need to standardize the input 

parameter to be able to rank them. Then the accuracy 

of the method was evaluated with F-statistic. The 

closer F-statistic is to 0, the accuracy of the model is 

lower and our model is not good Eq15, [32]. 

0 1 2 ... 0kH b b b                                   (15) 

In the next step, the effective parameter is 

determined by comparing the R2 range. Also, due to 

the time-consuming optimization process and the 

uncertainty of the desired parameters, it is necessary 

to perform SA before optimization. While Using SA, 

the effective parameters can be set in optimization. 

After all the parameters are obtained from the RSA, 

the next step is the optimization phase. The parameter 

obtained from the previous step is plugged into a 

Multi-Objective Optimization. 

Building optimization is a process that is 

performed by using simulation and based on a 

stochastic algorithm such as genetic algorithms (GA), 

particle swarm, and evolutionary [34]. The GA is 

inspired by the selection process that is based on 

search. This algorithm can solve non-linear 

optimization problems and also, they follow global 

optimum and do not get stuck in local optimum. The 

most important limitation of GA is the need for many 

cost functions to achieve the optimum solutions. 

Building simulation often uses the honeybee plugin 

and Galapagos engine, Energy Plus, TRNSYS, etc. 

[35] Fig4. 

 

The evolutionary solver determines the optimum 

genome that is based on GA. Populations with several 

individuals create a new generation and when new 

generations were created the best population is kept 

until the children get closer to the best value. An 

individual is a genome [36].  

The multi-objective optimization (MOO) is a 

method to identify a series of thesolution ,not a single 

solution. The best solution cannot be found based on 

just one parameter such as energy performance, 

daylight, or thermal comfort; the best solution should 

consider all conditions [37]. The optimization process 

used Octopus and Grasshopper plugin. The design 

input parameters are connected to GA for the Octopus 

engine, and the results of daylight and thermal 

comfort is connected to the fitness input parameter. 

Building geometry is connected to Grasshopper, and 

material connected to Honeybee and Ladybug plugin 

to perform the analysis. The result of each solution in 

the optimization automatically exports to an Excel 

file using TT Toolbox [38]. This file is used to create 

 

Figure 4. Genetic algorithm process 
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a data plot and find the best solution. In the octopus, 

Pareto plot can click on each solution and reinstate 

the solution to find the best solution. 

3. Results and Discussion 

As mentioned in the methodology the simulation 

procedure is divided into two parts: the SA and 

optimization. The result was reported as three sub-

subjects. The PMV, PPD (thermal comfort index), 

and daylighting are considered as objective functions 

in the one zone. The SA is a process to investigate the 

objective function through comprehensive research. 

The simulation is run 11296 times and is generated 

and executed until it obtains valid values. 

The response variables are the average yearly, 

maximum, and minimum of PMV and PPD. The 

reason for using the average yearly value is that it 

changes during the day; in addition, the average value 

can replace the hourly values. However, checking the 

average value alone is not enough to check the 

occupants feeling. Fig5 the range of simulation 

results. 

 

Figure 5. Comparison of the results range of UDI, 

PPD and PMV for SA 

The best fitting model of linear regression 

equations that describe the PMV, PPD, and UDI 

values are given by Eq (16-18) respectively. 

 

 

 

Based on the six selected design parameter the R2, 

Adjusted R2 coefficients and F-statistic of the UDI 

(100-2000 Lux), PMV and PPD for each parameter 

was reported. Table 4 shows this information for the 

SA. 

Table 4. Result comparison of sensitivity 

analysis between the design parameters 
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14
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tan 2.309
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avePPD shadedepth
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(18)                                                                        

 PMV 
Design 

Parameter  F-statistic Adjusted 

R2 

R2 

 6.128 1*10-3 5*10-

3 

Wall R-

Value  

 661.8 1*10-3 0.33 South 

WWR 

 2.28e-13 1*10-3 0 window 

frame 

thickness 

 2.28e-13 1*10-3 0 SHGC 

 0.077 1*10-3 0 Shading 

reflectance 

 16.5 0.56 0.56 Shading 

depth 
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The result of the model indicates good 

performance with F-statistic for all parameters, so it 

means that the predicted model is correct and the data 

is standard. The Predicted R² is in reasonable 

agreement with the Adjusted-R². The value of 

adjusted R2 for UDI indicates that more than 98% of 

the total factor is associated with the south WWR.  

The value of adjusted R2 for PPD indicates that more 

than 94% of the total factor is associated with wall 

construction. The value of adjusted R2 for PMV 

indicates that more than 56% of the total factor is 

associated with the shading Depth Fig6.  

 

Finally, optimization is carried out by using the 

obtained MLR. The objective is to maintain these 

values within the best range. The acceptable range for 

thermal comfort (PPD index) is less than 20%. The 

results show that the WWR has the potential to 

greatly improve building daylight and thermal 

comfort (PMV index) efficiency, the shading depth 

has the potential to greatly improve thermal comfort 

(PMV index) efficiency, and the wall construction R-

value has the potential to greatly improve thermal 

comfort (PPD index) efficiency in the Tehran Table 

(5 – 7). 

Table 5. UDI, PMV, and PPD between different 

WWRs 

 

Table 6. UDI, PMV and PPD between different 

Shading depths 

 

 

 UDI 100-2000(%) Design 

Paramete

r 

 F-

statistic 

Adjuste

d R2 

R2 

 -1.74e-13 1*10-3 0 Wall R-

Value  

 8.11e+04 0.98 0.

98 

South 

WWR 

 -3.48e-13 1*10-3 0 window 

frame 

thickness 

 0 1*10-3 0 SHGC 

 -1.74e-13 1*10-3 0 Shading 

reflectan

ce 

 -1.74e-13 1*10-3 0 Shading 

depth 

 PPD 
Design 

Parameter  
F-

statistic 

Adjusted 

R2 
R2 

 2.17e+04 0.94 0.94 
Wall R-

Value  

 0.65 0 
1*10-

3 

South 

WWR 

 0 1*10-3 0 

window 

frame 

thickness 

 0 1*10-3 0 SHGC 

 3*10-3 1*10-3 0 
Shading 

reflectance 

 40.47 0.03 0.03 
Shading 

depth 

 

Figure 6. Sensitivity analysis for design parameter 

on PMV, UDI and PPD 

Shading 

depths 

 UDI  PMV  PPD 

0.05  66.18  0.25  18.77 

0.09  66.18  0.23  18.28 

0.15  66.18  0.21  17.79 

WWR  UDI  PMV  PPD 

14  48.24  0.25  18.26 

26  54.93  0.24  18.28 

32  57.05  0.23  17.75 

43  60.06  0.23  17.77 

52  66.18  0.23  17.75 

56  68.86  0.24  18.10 
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Table 7. UDI, PMV, and PPD between different 

wall R-values 

Pareto plots were developed based on the 600 

simulations. Each point shows one design option. 

Since the best UDI 100-2000 lux is not when the 

WWR is very large. Fig7 shows that the highest UDI 

value is achieved when the WWR is more than 50%.  

The best solution demonstrated the opposite trend of 

UDI and PPD so the best solution appeared in 

minimum PPD and maximum UDI. There are 4 

variable parameters in this study and the relationship 

between them may be complicated so interpreting 

them using Pareto plots lonely is difficult. 

For showing the best solution for MOO, the region 

was selected based on maximum UDI and minimum 

PPD.  Each optimal solution is visually compared to 

the other candidate solution. Finally, 6 best solution 

candidates for the optimal solution. The Pareto plot is 

based on UDI and PPD values in the 6 examples, most 

UDI values are about 63 to 66, most PPD value 

are18.50 to 18.70 most PMV values are about 0.24 to 

0.25 Fig 8 and 9. 

We used an office as our simulation space in order 

to limit our focus to thermal comfort and run 

simulation based on wide variety of architectural 

design parameters. Despite some limitation such 

simulation time, the present study assessed the impact 

of sensitivity analysis on optimization time. 

However, we focus on some parameters, but they are 

important design parameters. Future research could 

look into more parameters such as sill height, window 

construction and etc. We also chose to focus our study 

on thermal comfort, future studies can research visual 

comfort. 

4. Conclusion  

In this study, we proposed a comprehensive 

methodology that can use in different locations. The 

proposed method is the coupling between a GA 

optimization tool and SA. A genetic algorithm is used 

to search the time-to-time output to find the optimal 

strategy. SA can find the effective parameter. The 

method for Sais the Multiple Linear Regression. By 

comparing the magnitude of Adjusted R2 the most 

significant parameter can be defined. Based on the 

result of MLR the variable parameters are determined 

and then simplified for optimization. 

The methodology of this research is applied to a 

simple case to improve the occupant’s thermal 

comfort and daylight. For this purpose, we consider a 

shading device that is one of the best techniques to 

reduce the overheating of the building caused by solar 

heat gain. 

From this study the crucial conclusions that can be 

obtained are as follow: 

 The result of SA indicates that the SHGC, 

shading reflectance, and window frame have no 

significant effect on the UDI, PPD, and PMV. So, the 

parameters didn’t need to consider as the variable 

parameters for the optimization process. 

 South WWR has a significant effect on the 

UDI, Wall R-value has significant effect on the PPD 

and Shading depth, and then south WWR has a 

significant effect on the PMV. 

 Wall R-Value and shading depth for the best 

solutions of PPD and UDI are not different and that is 

0.09 m2k/w 

 Using F-Statistics proves that the accuracy 

of the model is acceptable and leads to the use of 

standard data and the appropriate percentage range 

for testing and training. 

The standard data for SA help to increase the 

proposed finally, developing a tool that allows the 

combined use of, python and honeybee for 

optimization and SA, would make the application of 

the proposed method very useful for designers and 

decision-makers of building. This method can 

wall R-

value 

 UDI  PMV  PPD 

0.09  66.18  0.25  18.77 

0.14  66.18  0.29  19.54 

0.19  66.18  0.29  19.09 

 
Figure 7. Pareto plot based on UDI and PPD 

UDI 

Maximum 

 UDI 

Minimum  

PPD 

PPD 

1 
3 

5 2 4 
6 



Najafi et al./Journal of Solar Energy Research Volume 8 Number 2 Spring (2023) 1446-1458 

1455 

 

develop for other propose such as optimizing Energy 

Useful Intensity (EUI), view, etc. 
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Figure 8. The UDI 100-2000 lux of optimum design solutions in terms of Best UDI and PMV at each 

solution 
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Figure 9. The PMV over heat and under heat of optimum design solutions in terms of Best UDI and 

PMV at each solution 
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Nomenclature 
WWR Window to Wall Ratio 

VT Visible Transmittance 

SHGC Solar Heat Gain Coeeficient  

MLR Multiple linear regression  

SST Sum of Squared Total 

SSE Sum of Squared Error 

SSR Sum of Squared Regression  

PMV Predicted Mean Vote 

PPD Percentage of Persons Dissatisfied  

SA Sensitivity analysis 

GA Genetic Algorithms 

UDI Useful Daylight Illuminance 

EUI Energy Useful Intensity 

MOO Multi Objective Optimization 

R-Value Thermal resistance  

 

References  

 
1. Raturi, A.K., Renewables 2019 global status 

report. 2019. 

2. Chiazor, M., The effects of energy efficient 

design and indoor envirnomental quality in new 

office buildings. 2009. 

3. Amleh, D., A. Halawani, and M.H. Hussein, 

Simulation-Based Study for Healing environment in 

intensive care units: enhancing daylight and access to 

view, optimizing an ICU room in temperate climate, 

the case study of Palestine. Ain Shams Engineering 

Journal, 2023. 14(2): p. 101868. 

4. EIA, U., Annual energy review 2011. 

DOE/EIA, 2011. 384. 

5. Moon, J.W. and S.K. Jung, Development of 

a thermal control algorithm using artificial neural 

network models for improved thermal comfort and 

energy efficiency in accommodation buildings. 

Applied Thermal Engineering, 2016. 103: p. 1135-

1144. 

6. Lodi, C., et al., Improvement of thermal 

comfort and energy efficiency in historical and 

monumental buildings by means of localized heating 

based on non-invasive electric radiant panels. 

Applied Thermal Engineering, 2017. 126: p. 276-289. 

7. Hawila, A.A.W. and A. Merabtine, A 

statistical-based optimization method to integrate 

thermal comfort in the design of low energy 

consumption building. Journal of Building 

Engineering, 2021. 33: p. 101661. 

8. Enescu, D., A review of thermal comfort 

models and indicators for indoor environments. 

Renewable and Sustainable Energy Reviews, 2017. 

79: p. 1353-1379. 

9. ISO, I., 7730: Ergonomics of the thermal 

environment Analytical determination and 

interpretation of thermal comfort using calculation of 

the PMV and PPD indices and local thermal comfort 

criteria. Management, 2005. 3(605): p. e615. 

10. Nasrollahzadeh, N., Comprehensive 

building envelope optimization: Improving energy, 

daylight, and thermal comfort performance of the 

dwelling unit. Journal of Building Engineering, 2021. 

44: p. 103418. 

11. Ziaee, N. and R. Vakilinezhad, Multi-

objective optimization of daylight performance and 

thermal comfort in classrooms with light-shelves: 

Case studies in Tehran and Sari, Iran. Energy and 

Buildings, 2022. 254: p. 111590. 

12. Zhao, J. and Y. Du, Multi-objective 

optimization design for windows and shading 

configuration considering energy consumption and 

thermal comfort: A case study for office building in 

different climatic regions of China. Solar Energy, 

2020. 206: p. 997-1017. 

13. Pagliolico, S.L., et al., Preliminary results on 

a novel photo-bio-screen as a shading system in a 

kindergarten: Visible transmittance, visual comfort 

and energy demand for lighting. Solar Energy, 2019. 

185: p. 41-58. 

14. Marzouk, M., M. ElSharkawy, and A. 

Mahmoud, Optimizing daylight utilization of flat 

skylights in heritage buildings. Journal of Advanced 

Research, 2022. 37: p. 133-145. 

15. De Luca, F., A. Sepúlveda, and T. Varjas, 

Multi-performance optimization of static shading 

devices for glare, daylight, view and energy 

consideration. Building and Environment, 2022. 217: 

p. 109110. 

16. Hensen, J.L. and R. Lamberts, Building 

performance simulation for sustainable building 

design and operation. Proceedings of the 60th 

Anniversary Environmental Engineering 

Department, Czech Technical University, Prague, 

2011: p. 1-8. 

17. Mangkuto, R.A., M. Rohmah, and A.D. 

Asri, Design optimisation for window size, 

orientation, and wall reflectance with regard to 

various daylight metrics and lighting energy demand: 

A case study of buildings in the tropics. Applied 

energy, 2016. 164: p. 211-219. 

18. Frey, H.C., A. Mokhtari, and T. Danish, 

Evaluation of selected sensitivity analysis methods 

based upon applications to two food safety process 

risk models. Prepared by North Carolina State 

University for Office of Risk Assessment and Cost-

Benefit Analysis, US Department of Agriculture, 

Washington, DC, 2003. 

https://en.wikipedia.org/wiki/Thermal_resistance


Najafi et al./Journal of Solar Energy Research Volume 8 Number 2 Spring (2023) 1446-1458 

1458 

 

19. Gagnon, R., L. Gosselin, and S. Decker, 

Sensitivity analysis of energy performance and 

thermal comfort throughout building design process. 

Energy and Buildings, 2018. 164: p. 278-294. 

20. Sanchez, D.G., et al., Application of 

sensitivity analysis in building energy simulations: 

Combining first-and second-order elementary effects 

methods. Energy and Buildings, 2014. 68: p. 741-

750. 

21. Kheiri, F., A review on optimization 

methods applied in energy-efficient building 

geometry and envelope design. Renewable and 

Sustainable Energy Reviews, 2018. 92: p. 897-920. 

22. Nguyen, A.T., Sustainable housing in 

Vietnam: Climate responsive design strategies to 

optimize thermal comfort. 2013. 

23. Roudsari, M.S., M. Pak, and A. Smith. 

Ladybug: a parametric environmental plugin for 

grasshopper to help designers create an 

environmentally-conscious design. in Proceedings of 

the 13th international IBPSA conference held in 

Lyon, France Aug. 2013. 

24. Reinhart, C.F., J.A. Jakubiec, and D. Ibarra. 

Definition of a reference office for standardized 

evaluations of dynamic façade and lighting 

technologies. in Proceedings of BS2013: 13th 

Conference of International Building Performance 

Simulation Association, Chambéry, France, August 

26. 2013. 

25. Iesna, I., LM-83-12 IES Spatial Daylight 

Autonomy (sDA) and Annual Sunlight Exposure 

(ASE). New York, NY, USA: IESNA Lighting 

Measurement, 2012. 

26. Shahsavari, F., W. Yan, and R. Koosha. A 

case study for sensitivity-based building energy 

optimization. in ARCC Conference Repository. 2019. 

27. Saltelli, A., et al., Variance based sensitivity 

analysis of model output. Design and estimator for the 

total sensitivity index. Computer physics 

communications, 2010. 181(2): p. 259-270. 

28. Nabil, A. and J. Mardaljevic, Useful 

daylight illuminance: a new paradigm for assessing 

daylight in buildings. Lighting Research & 

Technology, 2005. 37(1): p. 41-57. 

29. Reinhart, M., Rogers.(September 2006). 

Dynamic Daylight Performance Metrics for 

Sustainable Building Design. LEUKOS The Journal 

of the Illuminating Engineering Society of North 

America. 3(1). 

30. Fanger, P.O., Thermal comfort. Analysis 

and applications in environmental engineering. 

Thermal comfort. Analysis and applications in 

environmental engineering., 1970. 

31. Matzarakis, A., Climate, thermal comfort 

and tourism. Climate change and tourism-assessment 

and coping strategies, 2007: p. 139-154. 

32. Menberg, K., Y. Heo, and R. Choudhary, 

Sensitivity analysis methods for building energy 

models: Comparing computational costs and 

extractable information. Energy and Buildings, 2016. 

133: p. 433-445. 

33. Allam, A.S., et al., Estimating the 

standardized regression coefficients of design 

variables in daylighting and energy performance of 

buildings in the face of multicollinearity. Solar 

Energy, 2020. 211: p. 1184-1193. 

34. Fang, Y. and S. Cho, Design optimization of 

building geometry and fenestration for daylighting 

and energy performance. Solar Energy, 2019. 191: p. 

7-18. 

35. Magnier, L. and F. Haghighat, 

Multiobjective optimization of building design using 

TRNSYS simulations, genetic algorithm, and 

Artificial Neural Network. Building and 

Environment, 2010. 45(3): p. 739-746. 

36. Rutten, D. Evolutionary principles applied 

to problem solving. in AAG10 conference, Vienna. 

2010. 

37. De Angelis, E., et al., A Tool for the 

Optimization of Building Envelope Technologies–

Basic Performances against Construction Costs of 

Exterior Walls. Proceedings of CISBAT 2013, 2013. 

38. Deb, K. and M.-o.O.U.E. Algorithms, a n 

Introduction, Multi-objective evolutionary 

Optimisation for Product Design an d Manufacturing. 

2011, Springer London. 

 

 


