تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,021 |
تعداد مشاهده مقاله | 125,497,869 |
تعداد دریافت فایل اصل مقاله | 98,759,525 |
پهنهبندی خطر کاویتاسیون در تنداب سرریز سد سورک با الگوریتم طبقهبندی نزدیکترین همسایه | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 10، دی 1401، صفحه 2445-2462 اصل مقاله (1.77 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.344417.669312 | ||
نویسندگان | ||
امیرحسین اسدیان1؛ سید شهاب امامزاده* 2 | ||
1دانشآموخته کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه خوازمی، تهران، ایران | ||
2استادیار، گروه عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی، تهران، ایران | ||
چکیده | ||
کاویتاسیون یکی از عوامل خرابی تنداب سرریزها است که جهت کنترل این پدیده پهنهبندی خطر آن ضرورت دارد. در این تحقیق برای دستیابی به روشی جهت پهنهبندی خطر کاویتاسیون، از اطلاعات سرریز سد سورک در استان چهارمحال بختیاری استفاده شد. در روند مدلسازی ابتدا مدل هندسی سرریز ساخته شد و پس از شبکهبندی و اعمال شرایط مرزی، تحلیل جریان انجام شد. شاخص کاویتاسیون با توجه به مقادیر پارامترهای سرعت، ارتفاع جریان، شیب شوت و دیگر پارامترهای لازم، در 18 مقطع محاسبه گردید. نتایج حاصله از نرمافزار Flow-3D برای سنجش کیفی وضعیت خطر کاویتاسیون در تنداب سرریز سد سورک از دقت مناسبی برخوردار است؛ بهطوریکه خطای RMSE فشار 2-10×26/0 پاسکال و سرعت2-10× 23/0 متربرثانیه نسبت به نتایج آزمایشگاهی بدست آمد. همچنین پارامترهای تاثیرگذار بر کاهش کاویتاسیون از قبیل زبری و هوادهی مورد بررسی قرار گرفت. نتایج نشان میداد در فاصله 70 تا 95 متری از تاج سرریز احتمال وقوع کاویتاسیون و خسارات ناشی از آن وجود دارد. نتایج تحلیل حساسیت نشان داد که استفاده از زبری یکنواخت 5/2 میلیمتری و هوادهی در طول شوت موجب افزایش شاخص کاویتاسیون میشود. در این زبری مناطق مستعد وقوع کاویتاسیون به مقاطع پایین دست شوت جابجا میشوند. در زبری یکنواخت 5/1 میلیمتر در طول کل سرریز، نتایج الگوریتم نزدیکترین همسایگی در دو مقطع پایانی 75/99 و 105 متری و در زبری یکنواخت 5/2 میلیمتر در طول کل سرریز در دو مقطع 42 و 25/89 متری از تاج سرریز نسبت مدل Flow-3D بحرانیتر است که به معنی آسیبپذیری بیشتر این نواحی در مقابل پدیده کاویتاسیون است. | ||
کلیدواژهها | ||
سد سورک؛ Flow3D؛ کاویتاسیون؛ الگوریتم طبقهبندی نزدیکترین همسایگی؛ سرریز شوت | ||
مراجع | ||
Azhdary Moghaddam, M., & Hasanalipour, A. (2020). Assessing the Reliability of Cavitation on Chute Spillway by Using Form and Monte Carlo Simulation Method. Irrigation Sciences and Engineering, 43(3), 87-99. Bilušn, I., Predin, A., & Skerget, L. (2007). The extended homogenous cavitation transport model, Journal of Hydraulic Research, 45(1), 81-87. Dong, Z., Liu, Z., Wu, Y., & Zhang, D. (2008). An experimental investigation of pressure and cavitation characteristics of high velocity flow over a cylindrical protrusion in the presence and absence of aeration. J. Hydrodyn. 20(1), 60–66. Dular, M., & Coutier-Delgosha, O. (2009). Numerical modelling of cavitation erosion. International journal for numerical methods in Fluids 61(12), 1388-1410. Falvey, H. T. (1990). Cavitation in chutes and spillways (p. 145). Denver: US Department of the Interior, Bureau of Reclamation. Ferrer-Troyano, F.J., Aguilar-Ruiz, J.S., & Riquelme, J.C. (2003). Empirical evaluation of the difficulty of finding a good value of k for the nearest neighbor. International Conference on Computational Science, Springer, Berlin, Heidelberg, Vol. 2658, 766-773. Frizell, K., Renna, F., & Matos, J. (2013). Cavitation Potential of Flow on Stepped Spillways. Journal of Hydraulic Engineering, 139(6), 630-636. Gabriel, E. (2021). Risk Analysis of Cavitation in Hydraulic Structures. World Journal of Engineering and Technology, 9(3), 614-623. Ghazi, B., Daneshfaraz, R., & Jeihouni, E. (2019). Numerical investigation of hydraulic characteristics and prediction of cavitation number in Shahid Madani Dam's Spillway. Journal of Groundwater Science and Engineering, 7(4): 323-332. Hamilton, W.S. (1983). Preventing cavitation damage to hydraulic structures. International Water Power and Dam Construction, 35(1), 40-43. Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning. Springer series, California. Jalili Ghazizadeh, M., Zarrati, A., & Safavi, K. (2011). Characteristics of Air-Water layers along the nappe over spillway aerators. International Water Power and Dam Construction, 22, 5-24. Kermani, E., Barani, G., & Ghaeini-Hessaroeyeh, M. (2018). Cavitation Damage Prediction on Dam Spillways using Fuzzy-KNN Modeling. Journal of Applied Fluid Mechanics, 11. 323-329. Khatsuria R .M. (2013). Hydraulics of Spillways and Energy Dissipators, CRC Press. Luo, Y. Q., Diao, M.J., He, D. M. & Bai, S. X. (2012). Numerical simulation of aeration and cavitation in high dam spillway tunnels. Advances in Water Science, 23(1), 110-116. Macleod, J. E., Luk, A., & Titterington, D. M., (1987). A re-examination of the distance-weighted k nearest neighbor classification rule. IEEE Transactions on Systems, Man, and Cybernetics, 17(4), 689-696. Matos, J., Novakoski, C. K., Ferla, R., Marques, M. G., Dai Prá, M., Canellas, A. V. B., & Teixeira, E. D. (2022). Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams. Water, 14(3), 306. Momber, A. W. (2004). Aggregate liberation from concrete by flow cavitation. International Journal of Mineral Processing, 74, 177–187. Nie, M. (2001). Cavitation Prevention with Roughened Surface. Journal of Hydraulic Engineering, 127(10), 47–52. Novakoski, C. K., Ferla, R., Marques, M. G., Prá, M. D., Canellas, A. V. B., & Teixeira, E. D. (2022). Extreme pressures and risk of cavitation in steeply sloping stepped spillways of large dams. Water. Basel. Vol. 14, n. 3 (Jan. 2022), 24 p. Ramamurthy, A., Ranganath, Y., & Carballada, L. (1984). Pressure and Source Size Effects on Cavitation Damage. Journal of Hydraulic Engineering, 10, 1490-1494. Samadi-Boroujeni, H., Abbasi, S., Altaee, A., & Fattahi-Nafchi, R. (2020). Numerical and physical modeling of the Effect of roughness height on cavitation index in chute spillways. International Journal of Civil Engineering,18, 539-550, 1-12. Samani, H. (2015). Design of Hydraulic Structures, SimayeDanesh Publication. Suguo, S., Guoyu, W., Fufeng, W., & Deming, G. (2011). Experimental study on unsteady cavitation flows around three-dimensional hydrofoil. Chinese Journal of Applied Mechanics, 28(2), 105-110. Terrier, S., Pfister, M., & Schleiss, AJ. (2022). Performance and Design of a Stepped Spillway Aerator. Water, 14(2):153. https://doi.org/10.3390/w14020153. Wan, W., Liu, B., & Raza, A. (2018). Numerical Prediction and Risk Analysis of Hydraulic Cavitation Damage in a High-Speed-Flow Spillway. Shock and Vibration. Wu, X., & Kumar, V. (2009). The top ten algorithms in data mining. CRC press. Yuan, W., & Schnerr, G.H. (2003). Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation. Journal of Fluids Engineering, 125(6), 963-969. Zandi, Y. (2005). Cavitation in overflows, Tabriz Islamic Azad University Press. Zavrel, J. (1997). An empirical re-examination of weighted voting for k-NN. Proceedings of the 7th Belgian-Dutch Conference on Machine Learning, 139-148. Zhenwei, M. U., Zhiyan, Z., & Tao, Z. (2012). Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Engineering, 28, 808-812. | ||
آمار تعداد مشاهده مقاله: 242 تعداد دریافت فایل اصل مقاله: 221 |