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Abstract 
Single crystals of a new coordination polymer, {[Zn(2,2’-bipyridine)(H2O)2(1,5-

NDS)].2H2O}, where 1,5-NDS is 1,5-naphthalenedisulfonate ion, have been 
successfully grown under hydrothermal conditions. The as-synthesised coordination 
polymer was characterised by X-ray Diffraction analysis which shows that the metal 
centres have been linked by 1,5-NDS linkers and then the structure has extended in a 
1D chain. Moreover, the compound was studied using thermogravimetric analysis 
(TGA) to check its thermal stability and IR spectroscopy.  The prepared compound was 
a good candidate as a precursor to prepare ZnO nanoparticles. ZnO nanoparticles which 
were achieved after calcinating the compound, were characterized by Scanning Electron 
Microscopy (SEM) and PXRD. 
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Introduction 
Recently, Metal-Organic Frameworks (MOFs), 

which are known as crystalline porous materials and 
have been classified as a subset of coordination 
polymers, have fascinated a lot of attention due to their 
structure, topology, and also applications. Gas 
adsorption, drug delivery, magnetism, catalysis, 
separation, sensor technology, and luminescence can be 
listed as the most common applications of MOFs. These 
materials, which are characterized by their high specific 
surface areas and uniformly sized pores and channels, 
comprise metal ions or metal ion clusters that are 
bridged by organic linkers (1-14).  

The sulfonate group with its three oxygen atoms 
provides variable coordination modes which leads to 

various frameworks but their networks have been 
studied much less probably due to the weak 
coordination of sulfonate anions. However, sulfonate 
anions weak ligation accompanied with different modes 
of coordination are ideal for structural diversity and this 
is the main advantage of sulfonate solids. In 
complexation with sulfonates, soft metal ions have 
improved bonding patterns compared to hard metal ions 
which result in vastly hydrated and naturally zero- or 
one-dimensional assemblies. Softer metal ions are 
superior bonding collaborators. As a result, Rare-earth-
based MOFs have been the most reported sulfonated 
MOFs (15, 16).  

Among sulfonates, arenedisulfonate anions are 
flexible anions that have potential binding sites and can 
be used to make coordination polymers with a variety of 
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topologies and multiple dimensions (17).  As a good 
example of arenedisulfonates, 1,5-NDS with its firm 
construction and two dynamic assemblies in two 
locations can construct a material with the required 
structural and physico-chemical properties (18).  

Herein, we are reporting a 1D structure consisting of 
1,5-NDS and 2,2’-bipyridine  as the organic linkers and 
Zn(NO3)2.6H2O as the inorganic precursor. Moreover, 
we refer to a simple process for the preparation of ZnO 
nanoparticles based on pyrolysis of the novel 
compound. 

 

Materials and Methods 
All materials were industrially presented and applied 

as received. FTIR spectrum was obtained on EQUINOX 
55 BRUKER Spectrometer. To assess the stability of 
the compound thermally, thermogravimeric analysis 
(TGA) was accomplished with TGA Q50 V6.3 analyser 
under flowing Argon. PXRD measurements were 
applied, to evaluate the purity of the prepared sample 
and characterize the nanoparticles, using a XPERT-PRO 
diffractometer with monochromatized CuKα radiation. 
The morphology of ZnO Nanoparticles was 
characterized by KYKY EM-3200 Scanning Electron 
Microscope (SEM). 
 
Synthesis 

The compound was gained hydrothermally by 
mixing Zn(NO3)2.6H2O (0.5 mmol , 0.148 g) and 1,5-
NDS (1 mmol, 0.360 g) in water (5ml). 2,2´-bipyridine 
was added to obtain the PH=3 while stirring the 
solution. Teflon vessel  was used to put the mixture in  
and then the container was put  in a steel autoclave 
which was sealed and then heated from 20 °Ϲ to 110 °C 
at the rate of 4 °Ϲ per hour for 19 hours. The needle-like 
colorless crystals were accumulated, rinsed with water, 
and dried at ambient temperature. The yield of this 
process is about 82 % based on zinc nitrate hexahydrate.  
Elem. Anal.Calc. (%): C, 41.41; H, 3.79; N, 4.83. Found 
(%): C, 41.19; H, 4.11; N, 4.67 for 1  
 
Preparation of zinc oxide (ZnO) nanoparticles with 
direct calcination 

Compound 1 was placed in crucible and heated at 
600 ºC for 6h and then cooled down to 30 ºC.  ZnO 
nanoparticles were obtained through the combustion of 
the organic moieties. The production of ZnO 
nanoparticles was confirmed by XRD patterns together 
with TGA. 
 
Crystallographic Data Collection and Refinement 

STOE IPDS-II diffractometer was used for data 

collection which is supplied with an image plate 
detector using MoKα X-ray radiation. To integrate and 
index all the collected reflections, X- area package was 
applied. Concerning the absorption correction, X-
SHAPE and X-RED packages were used (25). X-
SHAPE were used to adjust crystal size and shape. 
SHELXS97 were applied to solve the structure through 
Direct methods and SHELXL97 was used to refine the 
structure through full matrix least squares on F2 (26). 
All the non-hydrogen atoms were anisotropically 
refined. Calculation on the position of aromatic 
hydrogen atoms and were done with isotropic 
displacement parameters of 1.2- and 1.5-times 
displacement parameters of the corresponding carbon 
atoms, respectively. Facts on investigational and 
crystallographic information, interatomic distances and 
chosen hydrogen bonds are displayed in Tables 1-3, 
correspondingly. 

 

Results and Discussion 
Teflon-lined stainless-steel autoclaves was used for 

hydrothermal synthesis, as this method is one of the 
most powerful methods to prepare coordination 
polymers. Furthermore, as we have done in our previous 
investigation (19), we developed the solvothermal 
synthesis method by taking on the gradual temperature-
programmed for the cooling method from 110 ºC to 
ambient temperature through a rate of 4 ºC/h.  

The structure was satisfactorily described in the 
orthorhombic unit cell with space group of Pca21. The 
asymmetric unit comprises of a Zn(II) ion, one 2,2’-
bipyridine, one NDS ligand, two coordinated and two 
free water molecules. The central metal ion is 
coordinated to two oxygen from two different NDS in 
trans configuration (Zn(1)-O(1)=2.196Å, Zn(1)-
O(4)=2.183Å) , two water oxygen atoms (Zn(1)-
O(7)=2.044, Zn(1)-O(8)=2.043), and  two nitrogen 
atoms from 2,2’- bipyridine (Zn(1)-N(1)=2.108, Zn(1)-
N(2)=2.104) in a distorted octahedral fashion (Figure 1). 
Bond lengths range of Zn–N and Zn-O (Table 2) is 
consistent with the previously reported values (20). The 
bipyridine ligands display bidentate chelating mode. 
Each NDS connects two different Zn complexes entities 
in zigzag mode running along [100], founding 1-D 
coordination polymer (Figure 2).  

In the preparation and design of supramolecular 
construction, intermolecular and intramolecular 
hydrogen bondings are playing important roles (21). 
Different hydrogen bondings between free and 
coordinated water molecules and oxygen of sulfonate 
ions stabilize the structure by linking the 1D chains of 
the compound (Table 3).   
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The structure can be simplified by considering the 
tetrahedral Zn atoms and the centroid of NDS ligands as 
nodes, which construct one-dimensional zig-zag chains. 
This simplification can be seen in Figure 3 as pink and 
blue balls representing the tetrahedral Zn atoms and 
NDS ligands, respectively. Also, the interstitial water 
molecules are removed for clarity. This type of 
explanation can give a better understanding of the wave-
like coordination polymer. 
 
X-ray powder diffraction 

With the intention of approving the pureness of the 
bulk sample, the X-ray powder diffraction patterns are 
measured as presented in Figure 4. It is evident that 
there is satisfactory similarity between the peak 

positions of the simulated XRD pattern based on single 
crystal X-ray data and experimental PXRD pattern, 
which indicates the purity of the bulk sample. The 
chosen alignment of the powder samples in the course 
of collection of the experimental XRD data could be 
responsible for the insignificant variations in the 
intensity of reflections (22).  
 
IR spectrum   

In the IR spectrum of 1 a wide-ranging band at 
3100-3500 cm-1 corresponds to the coordinated water 
molecules. In the 600-800 cm-1 and 1500-1600 cm-1 
regions the frequencies of the naphthalene rings can be 
seen.  (23, 24) The spectrum indicates both νas

   and νs of 
the S=O bonds which are found at about 1030 cm-1 (νs) 

Table 1. Crystal data and structure refinement for the compound 
Compound formula C20 H22 N2 O10 S2 Zn 
Molecular weight 579.93 

Crystal system Orthorhombic 
Space group Pca21 

Temperature (K) 295(2) 
Wavelength (A°) 0.71073 

a (A°) 14.990 (3) 
b (A°) 8.6570 (17) 
c (A°) 17.689 (3) 

Z 4 
Cell volume (A°3) 2295.5 (8) 
Density (g cm-1) 1.678 

μ (mm-1) 1.312 
F (000) 1192 

Total reflections 10451 
Unique reflections 4293 

Rint 0.0216 
Data/restraints/parameters 4293 / 4/ 340 

Goodness-of-fit on F2 1.028 
R [I>2σ(I)] (R1,wR2) 0.0264, 0.0499 
R (all data) (R1,wR2) 0.0320, 0.0509 
Completeness of data 0.977 

 
Table 2. Selected bond distances (Å) and angles (º) in 1 

Bond lengths (Å) Bond distances (º) 
Zn1-O1     2.196(2) O1-Zn1-O7     82.47(8) 
Zn1-O4     2.183(2) O1-Zn1-O8    92.69(8) 
Zn1-O7     2.044(2) N1-Zn1-O4a     94.94(8) 
Zn1-O8     2.043(2) N1-Zn1-O7     95.11(9) 
Zn1-N1     2.107(2) N2-Zn1-O4 a     95.60(8) 
Zn1-N2     2.104(2) N2-Zn1-O8     94.57(9) 

a-0.5+x, -y, z 
 

Table 3. Distances (Å) and angles (º) of the selected hydrogen bond 
D–H…A d(D–H) d(H…A) d(D…A) D - H...A

O7-H1…O10 0.76(3) 1.91(3) 2.654(3) 167(3) 
O7-H2…O5 0.66(3) 2.20(3) 2.829(3) 160(4) 
O9-H1…O5 0.79(5) 2.51(5) 3.191(4) 145(4) 
O9-H2...O3 0.85(4) 1.99(4) 2.829(3) 169(3) 

O10-H1…O3 0.73(3) 2.11(3) 2.822(3) 165(5) 
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and 1200 cm-1 (νs) (Figure 5). 
 

Thermal analysis 
Thermogravimetric study of 1 was performed under 

argon atmosphere in the temperature range between 25 
to 600 ºC. The heating rate for this experiment was set 
to 10 ºC/min. TGA of the compound shows quite high 
stability of the solid. Despite the loss of four water 
molecules (theoretical weight loss 12.41%, observed 

12%), the compound remains stable up to 400 °Ϲ. The 
organic moiety vanished at 460 °Ϲ and the structure 
start to decompose. As a final point, the residual is 
possibly zinc oxide (found 35.03%, calcd. 38.4%), 
which is in agreement with PXRD pattern (Figure 6).  
 
Characterization of ZnO nanoparticles 

The nanoparticles of ZnO, which were obtained by 
calcinating the coordination polymer, were 

 
Figure 1. ORTEP plot of Zn surrounding with 50% probability ellipsoids. Free water molecules are omitted 

 

 
Figure 2. 1D chain of the prepared coordination polymer 

 
 
 

 
Figure 3. Simplified net by considering the centroid of the NDS ligands as blue circle and Zn atoms as pink circles 
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characterized by PXRD and the pattern matches the 
standard PXRD pattern of ZnO (hexagonal phase, space 
group P63mc, with lattice constants a=3.24982 Å, 
c=1.6021 Å, Z=2, JCPDS No. 36-1451) (Figure 7). The 
line broadening in PXRD together with the SEM image 
(Figure 8) specifies that the particles of the prepared 
compound are on the nanometer scale. The crystalline 
dimension  (D) of the sub-micrometer crystallites has 
been considered by the Scherrer equation: ܦ =	 ߚߣ0.9 cos 	ߠ
  Where λ is the X-ray wavelength (1.5 406 A ˚ for Cu 

Ka), β is FWHM (line broadening at half the maximum 
intensity) and ϴ is the position of maximum diffraction 
peak. The crystalline dimension of the particles has 
been discovered to be about 45 nm which is in 
accordance with the SEM image that shows the particles 
in the nanometer range.  

ZnO nanoparticles with an average diameter in the 
nanometer range are shown through SEM image in 
Figure 8.  
 
Conclusions 

In the present study, we have synthesized and 

 
Figure 4. PXRD pattern (black) and simulated pattern from single XRD (red) for the compound 

 

 
Figure 5. IR spectrum of the compound 

 
Figure 6. TGA profiles of the as-synthesized compound 1 with a heating rate of 10 ºC/min 
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characterized a novel 1D coordination polymer, 
{[Zn(2,2’-bipyridine)(H2O)2(1,5-NDS)].2H2O}, which 
was obtained using Zn(NO3)2.6H2O as the inorganic 
precursor and 1,5-NDS as the organic linkers. The TGA 
of the compound shows its thermal stability up to 400 
°Ϲ. After calcinating the coordination polymer, ZnO 
was obtained and then characterized using PXRD and 
SEM. 
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