تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,412 |
تعداد دریافت فایل اصل مقاله | 97,230,253 |
تغییرات مکانی فرسایشپذیری خاک در ارتباط با سنگشناسی و توپوگرافی | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 245-264 اصل مقاله (1.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.350168.669379 | ||
نویسندگان | ||
مهدی جعفریان1؛ علی گلکاریان* 1؛ حجت امامی2 | ||
1گروه مرتع و آبخیز، دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
چکیده | ||
امروزه فرسایش آبی یکی از شکلهای مهم تخریب طبیعت به شمار میرود و معضلات ناشی از آن از مشکلات جداییناپذیر حوزههای آبخیز کشور است. در بین عوامل متعدد محیطی موثر بر فرسایشپذیری خاک سنگشناسی، توپوگرافی و اقلیم از مهمترین عوامل موثر در فرسایشپذیری خاک میباشند. هدف از این پژوهش بررسی خصوصیات خاک شامل تعداد موثر قطره (NDI)، میانگین وزنی قطر خاکدانهها (MWD)، مقاومت فروروی خاک (PR)، چسبندگی خاک (COH)، هدایت اشباع (Ks) و شاخص فرسایشپذیری خاک (K) میباشد. بنابراین شش جنسسنگ (گرانیت، آهک، افیولیت، شیل، مارن و ماسه سنگ) در استان خراسان رضوی انتخاب شد و نمونهبرداری در سه کلاس شیب 10-0، 25-10 و بیشتر از 25 درصد در سال 1400 انجام شد. به منظور مقایسه فرسایشپذیری خاک در جنسسنگهای مشابه در اقلیم مختلف، جنسسنگ آهک در شهرستان طبس (اقلیم خشک) انتخاب شد. نتایج نشان داد میانگین شاخص فرسایشپذیری خاک و سایر شاخصها در جنسسنگهای مختلف دارای تفاوت معنیداری میباشند (001/0P<). نتایج اندازهگیری شاخص فرسایشپذیری خاک در شیبهای مختلف نشاندهنده عدم معنیداری شاخص فرسایشپذیری در سه کلاس شیب بود (05/0,p<893/0=sig). فرسایشپذیری خاک در آب و هوای مختلف در جنسسنگ مشابه آهک با مقدار83/0 در جنسسنگ آهک طبس و 96/0 تن هکتار ساعت بر هکتار مگاژول میلیمتر در جنسسنگ آهک سرخس، نشان داد، فرسایشپذیری خاک در آب و هوای مختلف دارای تفاوت معنیداری میباشد (05/0,p<023/0=sig). نتایج اندازهگیری شاخص CSEI نشان داد بیشترین مقدار کاهش فرسایشپذیری منعکس شده توسط این شاخص در جنسسنگ گرانیت با میزان 64 درصد و کمترین مقدار آن در جنسسنگ شیل با مقدار 25 درصد میباشد. | ||
کلیدواژهها | ||
سنگشناسی؛ خصوصیاتخاک؛ فرسایشپذیری؛ شاخص CSEI؛ مدل EPIC | ||
مراجع | ||
Ahmadi, F., Nosrati, K., & Hoseinzadeh, M. M., (2019). Origin of the contribution of soil erodibility units in sediment production and its relationship with soil organic carbon stock in Kohdasht watershed in Lorestan province: Hydrogeomorphology, 5(20), 141-164. https://www.sid.ir/paper/383021/fa. (in Persian) Blanco, H, & Lal, R., (2008). Principles of Soil Conservation and Management. Springer Science, pp: 1-46. DOI 10.1007/978-1-4020-8709-7. Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464-465. http://dx.doi.org/10.2134/agronj1962.00021962005400050028x. Buol, S. W., Southard R. J., Graham, R. C. McDaniel, P. A. (2003). Soil Genesis and Classification. Fifth Edition. Iowa State Press. https://doi.org/10.2136/vzj2003.7670 Brito, W.B.M., Campos, M.C.C., de Brito Filho, E.G., de Lima, A.F.L., Cunha, J.M., da Silva, L.I., dos Santos, L.A.C., & Mantovanelli, B.C., (2020). Dynamics and spatial aspects of erodibility in Indian Black Earth in the Amazon, Brazil. Catena, 185, p.104281. https://doi.org/10.1016/j.catena.2019.104281. Bryan, R. B. 2000. Soil erodibility and processes of water erosion on hillslope. Geomorphology,32:385-415. https://doi.org/10.1016/S0169-555X(99)00105-1. Chen, S., Zhang, G., Zhu, P., Wang, C. & Wan, Y., 2022. Impact of slope position on soil erodibility indicators in rolling hill regions of northeast China. Catena, 217, p.106475. https://doi.org/10.1016/j.catena.2022.106475. Esmaieli, A & Abdollahi, KH. (2011). Watershed management and soil protection. second edition. Ardabil: Mohaghegh Ardabili University Publications. (in Persian). Farajdokht, M. Asghari, SH & Shahab, H. (2017). Effect of height and slope on erodibility index (K) of universal soil loss equation. The fifth national conference and the first international conference on organic and conventional agriculture. https://civilica.com/doc/932968 (in Persian). Fatollahi, T. Solemani, K., Kelarestani, A., Habibnezhad, M., Noormohamad, F., Jarareh, K & Doosti, Y., (2011). Investigating the role of soil texture in the sedimentation of reservoirs in the Sardeh al-Shatar spring area. The 6th National Conference on Watershed Science and Engineering and the4th National Conference on Erosion and Sedimentation. 269-274. https://civilica.com/doc/89102/. (in Persian). Fryrear D.W., Bilbro J.D., Saleh A., Schomberg H.M., Stout J.E. and Zobeck T.M., 2000. RWEQ: improved Haverkamp, R., Ross, P.J., Smettem, K.R.J. & J.Y. Parlange. (1994). Three-dimensional analysis of infiltration from disc infiltrometer. 2. Physically based infiltration equation. Water Resource Research, 30:2931–2935. https://doi.org/10.1029/94WR01788. Irankhah, H., Asadi, H. Shabanpoor Shahrestani, M & GHorbanzadeh, N. (2016). The relationship between aggregate stability and some characteristics of soil and climate. The first international conference and the second national conference on agriculture, environment and food security. https://civilica.com/doc/638154. (in Persian). Kemper W.D., & Rosenau R.C., (1986). Aggregate stability and size distribution. In: Klute, A. (ed) Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monogroph No. 9. 2nd Edition. American Society of Agronomy and Soil Science Society of America, Madison, WI. 5:425–442. https://doi.org/10.2136/sssabookser5.1.2ed.c17. Kiani Hirchgani, M., Sadeghi, H. R., & Felahatkar, S. (2019). Comparative analysis of soil erodibility factor in Shazand watershed. Journal of Ecohydrology. 6(1). 153-163. https://www.sid.ir/paper/254161/fa. (in Persian). La Manna, L., Tarabini, M., Gomez, F. & Rostagno, C.M., (2021). Changes in soil organic matter associated with afforestation affect erosion processes: The case of erodible volcanic soils from Patagonia. Geoderma, 403, p.115265. https://doi.org/10.1016/j.geoderma.2021.115265. Leoppert, R. H., Hallmark, C. T., and M. M. Koshy. (1984). Routine procedure for rapid determination of soil carbonates. Soil Sci. Soc. Am. J. 48: 1030-1033. https://doi.org/10.2136/sssaj1984.03615995004800050016x. Liu, G., Xu, M. & Ritsema, C., (2003). A study of soil surface characteristics in a small watershed in the hilly, gullied area on the Chinese Loess Plateau. Catena, 54(1-2), pp.31-44. https://doi.org/10.1016/S0341-8162(03)00055-9. Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T. & Qu, L.Q. (2011). Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the runoff on out method. Journal of Hydrology, 396: 24–32. https://doi.org/10.1016/j.jhydrol.2010.10.028. Nezami, M., & GHodrati, A. (2013). The effect of land use and the slope of the soil erodibility coefficient in pasture lands. The 6th National Conference on Watershed Management and Water and Soil Resources Management. https://civilica.com/doc/264160. (in Persian). NoruziFard, F., Salehi, M.H., Khademi, H., DavoudianDehkordi, A.R. (2010). Genesis, classification and mineralogy of soils formed on various parent materials in the north of Chaharmahal-Va-Bakhtiari province. Jounal Water and Soil. Ferdowsi University of Mashhad, 24(4): 647-658. http://www.redalyc.org/articulo.oa?id=180249980007. Omidvar. E., Kavian. A., Solaimani, K., & Moshari, S. (2015). Investigation of Applicability of Soil Map Units to Estimate the Spatial Variability of Soil Erodibility. Scientific Research Journal of Desert Ecosystem Engineering. 4(9). 95-107. https://www.sid.ir/paper/254521/fa. (in Persian). Tahmasbi, F., jafarzadeh, A. A.(2012). The effect of clay minerals on soil erodibility in Kalibar and Dast Tabriz region. MSC Thesis, College of Agriculture. Department of Soil Science. University of Tabriz. (in Persian). Pazhand, M., & Emami, H., (2019). Investigate the alteration of soil erodibility, organic carbon, calcium carbonate and clay percentage along a hillslope. The 16th Iran Soil Science Congress. University of Zanjan. https://www.sid.ir/paper/363164/fa. (in Persian). Pazhand, M., & Emami, H., Astaraee, A,.(2016). Relationship between Topography and Some Soil Properties. Journal of Water and Soil. Vol. 29, No. 6, Jan.-Feb. 2016, p. 1699-1710. 10.22067/jsw.v29i6.44736. (in Persian). Reisian, R., & CHarkhabi, A., (2006). Investigating the effect of slope and land use on the rate of erosion and sedimentation in the Gorkak watershed. The first watershed conference. 305-309. https://www.sid.ir/paper/461877/fa. (in Persian). Richter. G., & Negendank. J. F. W., (1977). Soil erosion processes and their measurement in the German area of the Moselle river. Earth Surface Processes, 2: 261–7. https://doi.org/10.1002/esp.3290020217. Salehi, M. (2014). Comparison of erodibility of soils obtained from two parent materials, limestone and marl, in pasture and rainfed areas in Cheshme Ali-le-Draz area, Chaharmahal and Bakhtiari province. The second national conference on engineering and management of agriculture, environment and sustainable natural resources. https://civilica.com/doc/357732. (in Persian). Schaetzl, R. Anderson. S. 2005. Soils, Genesis and Geomorphology. Cambridge University Press. Shi, X. Z., & Yu, D. S. (2001). Measurement of erodibility for soils in subtropical china by simulated and natural rainfall. Sustaining the Global Farm, pp: 803-806. Tisdall, J. M., & Oades, J. M., (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33: 141– 163. http://dx.doi.org/10.1111/j.1365-2389.1982.tb01755.x. Vaezi, A. R., Bahrami, H. A., Sadeghi, H. R., & Mahdian, M. H, (2008). Study of factors affecting erodibility based on the universal soil loss equation in calcareous soils. Journal of Soil and Water Sciences. 14(5). https://www.sid.ir/paper/15969/fa. (in Persian). Veihe, A. (2002). The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. Geoderma, 106: 101-120. https://doi.org/10.1016/S0016-7061(01)00120-3. Wang, H., Zhang, G.H., Li, N.N., Zhang, B.J. & Yang, H.Y., (2018). Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China. Geoderma,325, pp.18-27. https://doi.org/10.1016/j.geoderma.2018.03.037. Wang, H., Zhang, G.H., Li, N.N., Zhang, B.J. and Yang, H.Y., (2019). Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena, 174, pp.24-35. https://doi.org/10.1016/j.catena.2018.11.003 Wang, H., Zhang, G.H. & Wang, J., (2022). Plant community near-surface characteristics as drivers of soil erodibility variation along a slope gradient in a typical semiarid region of China. Catena,212, p.106108. https://doi.org/10.1016/j.catena.2022.106108. Wischmeier, W. H. & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook. No.537, US Department of Agriculture, Washington DC. Williams, J. R., Jones, C. A. and Dyke, P. T. (1984). A modeling approach to determining the relationship between erosion and productivity. Transactions of the American Society of Agricultural Engineers, 27, 129-144. doi: 10.13031/2013.32748 @1984. Yao, Y., Liu, J., Wang, Z., Wei, X., Zhu, H., Fu, W. & Shao, M., (2020). Responses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfall. Science of the Total Environment, 709, p.136150. https://doi.org/10.1016/j.scitotenv.2019.136150. Zhang, K., Li, S., Peng, W. & Yu, B. (2004). Erodibility of agricultural soils and loess plateau of China. Soil and Tillage Research, 76: 157-165. https://doi.org/10.1016/j.still.2003.09.007. | ||
آمار تعداد مشاهده مقاله: 253 تعداد دریافت فایل اصل مقاله: 253 |