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A B S T R A C T 

 

The blasting operation is one of the technologies used for breaking rock masses and reducing the rock mass into smaller sizes to improve 
transportation and further particle separation. The improvement of blast fragmentation supports the maximization of mining operation and 
productivity. Soft computing and regression model has been developed in this study to optimize small-scale dolomite blast operations in 
Akoko Edo, Nigeria. WipFrag software was used to analyze the results of 35 blasting rounds. As independent variables, one uncontrollable 
parameter and five controllable blast parameters were chosen to predict blast particle sizes using four mathematically motivated soft 
computing model approaches. The prediction accuracy of the developed models was tested using various model performance indices. The 
study revealed that rock strength influences blast fragmentation results, and based on the rock strength properties, the fragmentation block 
size increases with an increase in rock strength. The results of the model performance indices used for the evaluation of the proposed models 
showed that the modified Artificial Neural Network (ANN) called Hunter Point (HP-ANN) has the highest predictive accuracy. A new model 
evaluator was also developed in this study called the decision factor. Its application indicates that the HP-ANN model is the best model 
suitable for the prediction of blast fragment size distribution. Therefore, the developed models can be used to predict the blast result mean 
size (X50) and the 80% percentage passing size (X80) for mining engineering blasting practices. 
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1. Introduction 

The reduction of rock size using explosives materials is performed in 
mines to reduce in-situ rock mass into smaller particle sizes that can be 
easily handled by loading and haulage equipment. The improvement of 
small-scale blasting will directly assist the mine management to 
minimize operational costs and optimize productivity in the mine. 
Explosives are energetic materials widely used for rock mass 
fragmentation in mining and civil engineering operations [1]. The rock 
blasting operation could be referred to as the first comminution process 
in quarrying and mining, and as a result of this, the size of fragments 
obtained should not exceed the gape of the downstream primary crusher 
for efficient beneficiation [2-3]. The rock mass blasting process involves 
breaking massive rock formations to extract the largest possible size at 
a reduced cost. To achieve this objective, control of explosive-induced 
energy is an essential condition that must be satisfied to avoid poor blast 
results and environmental damages [4-5]. The main target of mine 
blasting design is to guarantee productive and environmentally friendly 
fragmentation under existing working conditions [6]. Taiwo revealed 
that blasting fragmentation size distribution is influenced by 
uncontrollable factors and the explosive charge proportion [7]. The 
blast Controllable factors are parameters under the control of the blast 
engineer; which can be easily changed to adjust the blasting result. Title 
explained that the uncontrollable factors are constrained by the rock’s  

 
 
discontinuity nature, heterogeneity, anisotropy, and non-elastic 
properties [8]. The prediction and assessment of the rock size  
distribution during the blasting operation is important to understand 
the blasting result efficiency [9]. In mining operations, the distribution 
of rock blast fragmentation has a high influence on the rate of 
productivity and downstream operational efficiency [10]. As indicated 
by Thurley [11], there are many fragmentation measurement methods 
used for assessing the results of blasting operations. Among these 
methods are, the oversize boulder count, sieving, visual analysis, shovel 
loading rate, and image analysis [12]. The artificial neural network has 
been found important in research works and the development of 
prediction models in the mining engineering field according to Abiodun 
et al. [13]. Various conventional statistical methods, empirical equations, 
and artificial neural network systems have been utilized by different 
researchers to predict rock fragment size distribution and other impacts 
of blasting operations [14-17]. 

Rezaei et al. [18] used the Multi-Layer Perception type of feed-
forward back-propagation neural network with an architecture of 9-5-5-
1 to develop a new predictive model for estimating the height of the 
destressed zone (HDZ), and the results were compared with 
conventional regression analysis (CRA). The comparative analysis 
performed between the proposed models and available models for 
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predicting the height of the destressed zone demonstrates that the 
results of the ANN model are consistent with the results of previous 
models, particularly in-situ measurements and empirical models. The 
ANN model also takes into consideration the possible effective 
parameters on the HDZ. In an iron ore mine, Bahrami et al. [16] used 
the artificial neural network (ANN) method to develop a prediction 
model for rock fragmentation induced by blasting. Their findings were 
discussed using eight parameters as input variables: hole diameter, 
burden, powder factor, and blastability index. The study demonstrates 
that the ANN technique is an effective method for predicting and 
improving blast fragmentation. The study was unable to compare the 
performance of the developed model to that of other Artificial 
Intelligence (AI) techniques and was primarily concerned with large-
diameter iron ore mining operations. Sayadi et al. [17] used various 
ANN models to predict simultaneous rock fragmentation and back 
break in the blasting operation of Tehran Cement Company limestone 
mines in Iran. Through an empirical and soft computing modelling 
approach, the study also revealed ANN as a supportive approach for 
improving blasting operations. Nonetheless, the work focuses on large-
diameter drill hole blasting, leaving unanswered the question of ANN 
performance with small-diameter drill holes. Amoako et al. [20] also use 
ANN and hybrid support vector machine learning to predict blast 
fragmentation. Therefore (AI) approaches are preferred over other 
predictive modelling methods because of their capacity to incorporate 
various variables influencing the result of a blast among different 
benefits as revealed by Rezaei et al. [18], and Amoako et al [20]. 

This paper adopted ANN, SVM, Ridge, and Multivariate (MVR) 
regression models for the development of blast particle size distribution 
prediction models. Several previous papers had focused on developing 
mean fragment size prediction models for large-scale blast operation; 
this paper attempts to minimize the loss in production and costly trial 
and error blast design in dolomite quarries through the development of 
optimum prediction models using combined soft computing and 
regression analysis approaches. The blast design parameters and rock 
strength property of thirty-five blasting operations were gathered and 
utilized as the input parameters to develop the proposed models. ANN, 
SVM, Ridge regression, and multivariate regression were used to 
develop the proposed models. The accuracy of the established models 
was tested using various prediction performance indices. The study also 
proposes a new prediction performance index to determine the accuracy 
of the models' forecasting. 

2. Review of blast operation prediction attempts 

Blasting is an art, and the professionalism and technical expertise of 
the blaster, play an important role to ensure productive and safe results 
[21]. Several authors have explored the improvement of blasting 
operations through adjustments in blast controllable parameters, 
empirical modifications, and comparisons. These authors have adopted 
various blast controllable parameters, and it was discovered that none 
of the developed formulae took into account all properties and 
conditions available due to the heterogeneity of the blasting operation 
and rock formation. 

Da Gama proposed a microcomputer simulation model and a 
Comminution Theory model for predicting blast results using selected 
parameters [22-23]. Babaeian et al. [24] identified the main 
disadvantage of the model as the fact that the effect of stemming length, 
spacing, and bench height was ignored, as well as the absence of non-
uniformity and uniformity prediction factors. Larsson et al. and 
Kuznetsov’s models were introduced in the 1970s as predicting formulas 
to improve blasting efficiency by predicting possible fragmentation 
results from specific combinations of blast parameters [25-26]. The 
models took into account factors, such as explosive type, rock mass 
classification, the impact of applied blast energy, and the evaluation of 
fragmentation uniformity and non-uniformity. The models' prediction 
performance was criticized due to their poor performance in predicting 
particle size distribution [24]. In 1983, the emergence of the Kuz-Ram 
model by Cunningham [27] came to the industry phase as a way to 

improve blasting work and cover up for previous models with 
limitations in applicability and efficiency. limitations. The model 
proposed an empirical equation (Eq. 1) for predicting the 50% passing 
size of a blasting round, considering both controllable and 
uncontrollable parameters that influence the rock fragmentation result. 
The first version of the model was further improved by Cunningham 
through the adoption of the Lilly blastability index to properly assess 
the model's performance and account for rock site condition and 
specification [27-30]. 

 

X50 =𝐴q-0.8×Q1/6 ( 115

𝑆𝐴𝑁𝐹𝑂
) 19/30        (1) 

 

Where Q is the mass of explosives utilized in kg, A is the rock factor, 
q denotes the powder factor in kg/m3, A is the rock factor, and SANFO 
represents the relative effective energy of the explosive. Cunningham 
also developed the Kuznetsov-Cunningham-Ouchterlony (KCO) 
fragmentation model in 2005 as an extension of the Kuz-Ram model 
[31]. The Swebrec function was added to the Kuz-Ram model by the 
KCO model, replacing the Rosin-Rammler equation. The KCO model 
(Eq. 2) was proposed to help minimize the two limitations of the Kuz-
Ram model: poor prediction ability for fine fragments and poor 
estimation of the upper limit size range of fragmentation block sizes 
[31]. Singhai and Pyasi demonstrated that networks of artificial neurons 
could be used to compute arithmetic or logical functions [32]. Their 
work has been recognized as the origin of the application of ANN 
techniques since 1940. Furthermore, many prediction models, including 
[13-16, 20, 33-34] have been developed to determine the performance of 
blasting operations using an AI approach and proposed computing 
equations. 

 

X50 =𝐴q-0.8×Q1/6 (
115

𝑆𝐴𝑁𝐹𝑂
) 19/30           (2) 

3. Materials and Methods 

3.1. Description of the study area 

The study area is located in the Akoko Edo Local Government, Edo 
State, Nigeria. The quarry produces dolomite boulders and is currently 
in operation. 

Figures 1 and 2 show the Geological Map of the Golden Girl quarry 
in Akoko Edo, Edo State as extracted from the Geological Map of 
Nigeria, and the mine site, respectively. The Golden Girl quarry is 
located in Ikpeshi, Akoko Edo, Edo State, lying within latitudes 7°08’N 
to 7°10’N and longitudes 6°10’E to 6°15’E and forming part of the Igarra 
schist belt. 

3.2. Methodology used in data analysis 

Fragmentation analysis is an approach used to evaluate the rate of 
rock disintegration or particle size reduction after a blasting operation. 
For the quantification, size estimation, and distribution of fragmented 
rocks, can be obtained by taking sample images of a muck pile, truck, or 
conveyer belt [35]. Rock fragmentation during mining operations 
begins with the drilling and blasting process [8]. 

In conducting this research, blasting data relating to different blasting 
parameters were collected to cover a wide range of values for the 
burden-to-spacing ratio, stiffness ratio, drill hole diameter-to-burden 
ratio, stemming length, and powder factor. In the case study quarry, 
thirty-five scaled blast images were captured from different pit locations 
after each blast round. The images were analyzed separately using 
WipFrag 3.3© software. Drilling is carried out in the Golden Girl 
dolomite quarry by a Jackhammer and pneumatic compressor. The blast 
hole diameter of 40 mm is drilled vertically with staggered and square 
drill-hole patterns to different depths ranging from 1.4 m – 1.45 m. 
Explosive charging is administered using non-electric (NONEL) 
detonators, packaged emulsion gel as the bottom charge load, and 0.8 
g/cc ANFO as the column charge load. The drill hole geometry and 
blasting pattern of the case study mine is shown in Figure 3. Thurley 
established that Wipfrag is a picture examination framework for 
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evaluating the particle size distribution of materials [11]. WipFrag 
estimates a 2-D net and reproduces a 3-D dispersion utilizing the 
standard of Geometric likelihood [35-35]. WipFrag is described as a 
state-of-the-art image-based gravimetry framework primarily for black 
and white (gray tone) images, although it can also accept colored prints 
[11]. The images were analyzed with WipFrag© software to determine 
the fragmentation particle size, as shown in Figure 4. Representative 
samples were collected from the rock mass at each bench level blasted 
for the uniaxial compressive strength test. The samples were subjected 
to a strength test in accordance with the international society of rock 
mechanics ISRM, [37] and the strength of the rock samples were 
correlated with the blast fragmentation and explosive usage for the blast 
result performance selection for the model development. The Rock 
formation with close homogenous strength property was considered for 
model development in this study. 

 

 
Figure1. The geological map of Akoko Edo shows the study sample locations. 

 

 
Figure 2. The Golden Girl quarry in-situ formation before and after blasting; a) 
The blasted rock mass with 1m by 1 m scaling frame, b) The delineated image, and 
c. The mine face. 

 

Da Gama proposed a microcomputer simulation model and a 
Comminution Theory model for predicting blast results using selected 
parameters [22-23]. Babaeian et al. [24] identified the main 
disadvantage of the model as the fact that the effect of stemming length, 
spacing, and bench height was ignored, as well as the absence of non-
uniformity and uniformity prediction factors. Larsson et al. and 
Kuznetsov’s models were introduced in the 1970s as predicting formulas 

to improve blasting efficiency by predicting possible fragmentation 
results from specific combinations of blast parameters [25-26]. The 
models took into account factors, such as explosive type, rock mass 
classification, the impact of applied blast energy, and the evaluation of 
fragmentation uniformity and non-uniformity. The models' prediction 
performance was criticized due to their poor performance in predicting 
particle size distribution [24]. In 1983, the emergence of the Kuz-Ram 
model by Cunningham [27] came to the industry phase as a way to 
improve blasting work and cover up for previous models with 
limitations in applicability and efficiency. limitations. The model 
proposed an empirical equation (Eq. 1) for predicting the 50% passing 
size of a blasting round, considering both controllable and 
uncontrollable parameters that influence the rock fragmentation result. 
The first version of the model was further improved by Cunningham 
through the adoption of the Lilly blastability index to properly assess 
the model's performance and account for rock site condition and 
specification [27-30]. 

3.3. Development of Models 

The obtained fragmentation analysis results and selected blast design 
parameters were used to develop the models for predicting the blast X50 
and X80 particle sizes. The database’s statistical range of the blast 
parameters and WipFrag analysis results obtained from the monitored 
blasts at the case study quarry is presented in Table 1. The Hunter-Point 
ANN (HP-ANN), SVM, Ridge regression, and MLR were used to 
develop models to estimate the X50 and X80. For the two proposed 
models, thirty-five datasets were used with five input variables. The 
reason for smaller sample points (35) to predict the fragmentation size 
distribution is that most blasting operations in small hole mines are not 
consistent in parameters for some blast samples. However, the datasets 
used in both cases are enough to make reasonable soft computing 
models, as many authors have used an equal or lesser number of datasets 
to develop acceptable models. For instance, Bahrami et al. [16] used 
thirty-four datasets to predict the fragmentation size of the rock, 20 
datasets were used by Gokceoglu and Zorlu [38] to predict the blast-
induced ground vibration, Muhammed et al. [39] used 30 datasets to 
estimate organic and inorganic constituents in coal, and Lee et al. [40] 
used 30 datasets to predict the rock properties. 

Figure 5 presents the correlation matrix, which shows the relationship 
between the input and output variables. The correlation matrix shows 
the sensitivity of all the input parameters to the dependent variable. The 
following observations were drawn from the sensitivity analysis; X50 and 
X80 have a highly negative correlation with the powder factor, and a 
slightly positive correlation with B/S, Stiffness Ratio, and D/B. This 
means that as the stemming, stiffness ratio, and B/S increase, the X50 
increases, and as the powder factor decreases, the X50 and X80 increase. 
Many of the independent variables are highly correlated (both positively 
and negatively). Thus, while building the model, we will have to pay 
attention to multicollinearity. 
 

 
 

Figure 3. Mine’s blast parameter design. 



208 B.O. Taiwo et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 57-1 (2023) 205-213 

 

Figure 6a shows the relationship between rock strength and the 
powder factor used in the experiment blasting. The results revealed that 
a high-strength rock mass requires more explosive powder. In the case 
study mine, the maximum powder factor used was 0.98Kg/m3. The 
fragmentation size was also compared to the rock strength, as shown in 
Figure 6b. The results show that high-strength rock produces larger 
fragmentation sizes during some blast rounds. As mentioned by 
Villeneuve et al., a few blasts have no response to strength properties 
due to water, blast design property variation, and differences in rock 
characteristics [41]. 
 

Table 1. Blast and rock property data Visualization. 

Parameters Min. Max. Mean Standard Deviation 

Stemming (m) 0.2796 1.2 0.8198 0.3565 

Burden (m) 0.6818 0.9231 0.8012 0.0712 

Stiffness 1.0667 1.8571 1.6143 0.1942 

Spacing (m) 0.7 1.3 1.047 0.1131 

De/B 0.0333 0.0571 0.0486 0.0057 

(kg/m3) 0.4374 0.973 0.8058 0.1339 

UCS (MPa) 167.75 186.25 172 5.5134 

X50 (%) 0.1155 0.8018 0.3686 0.1578 

X80 (%) 0.3715 1.1729 0.6661 0.196 

 

 
Figure 4. Blast image analysis result for nine blasts round using WipFrag software. 

 
 

 
Figure 5. Correlation matrix showing the relationship between the input and 
output variables. 

 
Figure 6. Relationship between the dolomite rock strength, (a) powder factor, and 
(b) fragmentation size. 

3.3.1. Hunter Point-ANN (HPANN) approach to predict blast fragmentation 

The application of the ANN modelling approach in engineering and 
scientific problems has grown significantly over the previous year [13]. 
ANN is a computational modelling technique that mimics the structure 
and functions of natural neural networks. These networks are highly 
functional in fitting non-linear and perceiving patterns [42]. The pattern 
of the variables is modeled by artificial neurons based on preceding 
learning algorithms. During the model training process, associated 
weights are assigned to the interconnections between the ANN layers 
which are adjusted through the transfer function as the training 
progresses [39]. The artificial neural technique adopted in this research 
is trained using a backpropagation algorithm. Abiodun et al. established 
that the feed-forward BPNN comprises three layers which are: the input 
layer, the hidden layer, and the output layer [13]. 

The Hunt Point ANN training process involves optimizing the 
training algorithm several times alongside neuron adjustment. This 
approach was done using the back propagation training algorithm with 
both Bayesian Regularization and Levenberg-Marquardt (LM) training 
algorithms. 80% of the datasets were used for training, while 10% each 
were used for validation and testing, respectively. Three different model 
architectures (5:3:1, 5:5:1, and 5:10:1) were checked with the hyperbolic 
tangent function as the transfer function used for the hidden and output 
layers in the three cases for each of the proposed ANN models. The 6-3-
1 ANN architecture trained thrice using Bayesian Regularization with 
the sigmoid transfer function performed best for the X50 and X80 
prediction as indicated by the coefficient of determination and RSME 
in Table 2. The input and output parameters used in developing ANN 
models are presented in Table 1. Thirty-five datasets were used to train 
the neural network in the MATLAB© environment using the 
MATLAB© nnstart toolbox. The input and output variables elements 
were normalized (scaled) between -1 and 1 using Eq. (2) to achieve 
dimensional consistency in the variable elements and also to eliminate 
over-fitting. 

 

𝑋𝑖 =
2(𝑌𝑖−𝑌𝑚𝑖𝑛)

(𝑌𝑚𝑎𝑥−𝑌𝑚𝐼𝑁)
− 1           (2) 

 

Where Xi is the scaled element, Yi is the actual data to be scaled; 
Ymax and Ymin are the maximum and minimum values of the actual 
data, respectively. Five datasets have been used for testing and validation 
of neural networks. The connection structure of the ANN and its 
performance during training are shown in Figure 7. The regression plots 
of ANN during training, testing, and validation indicate the excellence 
of the selected network, as shown in Figure 6c. The optimum model 
hyper parameters were de-normalized using Eq. (3) 

 

𝑌𝑖 = (
𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛

2
) 𝑋𝑝 + (

𝑌𝑚𝑎𝑥+𝑌𝑚𝑖𝑛

2
)          (3) 

 

Where XP is the predicted element Yi is the actual predicted data de-
normalized; Ymax and Ymin are the maximum and minimum values of the 
actual data, respectively. 

The optimum model with architecture 5-3-1 was transformed into the  
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Figure 7. The ANN model Training output for Mean size (X50). 

 

mathematical expression using Eq. (4) which shows the general form of 
the operating principle of the ANN model, as noted by Lawal et al. [43]. 

 

Pj = fsig / purlin { b0 + ∑  𝑛
𝑘=1 [fsig(bnk + ∑  𝑚

𝑖=1 wikҐi)wk×...]}           (4) 
 

where n is the number of neurons in the hidden layer; bnk is the bias 
in the kth neuron of the hidden layer; b0 is the bias in the output layer; 
wk is the weight of the connection between the kth of the hidden layer 
and the single output neuron; wik is the weight of the connection 
between the  

ith input parameter and the hidden layer; Γi is the input variable i; pj 
is the output variable; fpurlin and fsig are the linear and nonlinear transfer 
functions, respectively. 

The ANN mathematical expression for X50 is presented in Eq. (5) and 
the expression for X80 is presented in Eq. (6). 

 

X50 = 0.1292tanh (b1+b2+b3-0.2219) + 0.1869                          (5) 
b1 = -0.7718 tanh (-0.2590H/B - 0.3078D/B - 0.13443T + 0.2063 B/S + 0.7732K 
      + 2.8369)  
 

b2= - 0.5468 tanh (0.1803H/B + 0.1534D/B - 0.09932T -0.1468 B/S + 
       0.3651 K + 0 .0258)          
  

b3 = - 0.4464 tanh (-0.1621H/B - 0.0423D/B + 0.0633T + 0.3661B/S - 0.5682K – 
     0.01721) 
 

X80= 0.2222 tanh (b1 + b2 + b3 + 0.0401) + 0.40795        (6) 
 

b1= - 0.6633tanh (-0.0142H/B + 0.0457D/B+0.00022T-0.0094B/S - 0.6121K +  
       0.0238) 
 

b2= 0.4622 tanh (-0.0375H/B + 0.0095D/B - 0.04027T + 0.0075B/S –  
      0.4249K + 0.02087)     
 

b3= - 0.6561 tanh (0.0174 H/B - 0.0424 D/B + 0.00346T + 0.0069 B/S + 0.609K –  
      0.0231) 
 

Where X50 and X80 are the 50% and 80% passing size in mm, 
respectively, T is the stemming length in m, B is the burden in m, H is 
the drill hole length in m, S is the spacing in m, D is the drill hole 
diameter in m, K is the powder factor in Kg/ton, b1, b2, b3 are the total 
layer weight effect. 

The two algorithms considered performed closely well with low 
prediction error for both the training and testing datasets. The training 
process also revealed that the Bayesian Regularization algorithm had a 
slower training time compared to the LM algorithm. The low-range 
RSME value of the two models shows a good prediction result, with the 
Bayesian Regularization algorithm being the best-fitting model for both 
the X50 and X80 datasets. 

The developed neural network models are suitable for practical use at 
the mine with an R2 value of 0.812 for X80 and 0.943 for X50. The ANN 
model has shown a good performance in the prediction of 
fragmentation size, as shown in this study and other research, such as 
Kulatilake et al. [44]. 

 
Table 2. The model Performance for two Different ANN Algorithms. 

Outputs Models 
Bayesian Regularization 

Algorithm 
Levenberg-Marquardt 

Algorithm 

  R2 RSME R2 RSME 

X80 5:3:1 0.9409 0.00233 0.923521 0.00267 

 5:5:1 0.9216 0.00263 0.859329 0.0137 

 5:10:1 0.923521 0.00288 0.935089 0.00247 

X50 5:3:1 0.982081 0.000399 0.1369 0.0339 

5:5:1 0.982081 0.000411 0.942841 0.000171 

5:10:1 0.976144 0.00054 0.9604 0.00083 

3.3.2. Multi-variant regression analysis (MVRA) 

The network relation between the variables can also be calculated 
using multi-variant regression analysis (MVRA) Eq. (7) is used to 
develop a multivariate linear regression equation for the prediction of 
X50 and X80. 

 

𝑌(𝑋) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛         (7) 
 

Where, β1, β2,…, βn, are the coefficients of the regression model, β0  is 
the intercept, Y(x) is the predictive value, and x1, x2,…, xn are the 
independent variables. 

Eqs. (8-9) were generated for X80 and X50 prediction using SPSS©. 
MVRA was conducted with the same datasets and the same input 
parameters used in ANN. 

 

X80 = 0.013D/B - 0.846H/B - 0.534T - 0.0103B/S - 1.568K + 4.120                      (8) 
 

X50 =-0.001D/B + 0.012 H/B - 0.581T + 0.818 B/S - 1.173K + 1.312        (9) 
 

Where, X50 and X80 are the 50% and 80% passing sizes in mm, 
respectively, T is the stemming length in m, B is the burden in m, H is 
the drill hole length in m, S is the spacing in m, D is the drill hole 
diameter in m, and K is the powder factor in Kg/ton. 

3.3.3. Support Vector Machine (SVM) 

Support Vector Machine, according to Reddy, is considered to be the 
most widely used machine learning module in the field of geotechnical 
engineering and tunneling [45]. SVM utilizes an optimization scheme 
to minimize an objective cost function, especially an 𝜀-insensitive loss 
function, which is comprised of nonlinear kernel function sets (which 
can transform the input data from a lower dimentional to a higher-
dimensional feature space, a procedure commonly known as mapping). 
SVM can approximate the correlations between the inputs and outputs 
in a dataset in an inherent, nonlinear fashion. The linear function of 
SVM is expressed in Eq. (10). 

 

F (a) = w×a + d          (10) 
 

Where a is the input variable, w is the weight vector, and d indicates 
the model error values. 

The SVM data training process is characterized by four main kernel 
functions, including the sigmoid function, linear, polynomial, and radial 
base (RBF) function [46]. The RBF kernel has been proven to have the 
ability to perform normally on a variety of databases [46]. In this study, 
the RBF kernel function with a kernel (gamma) operating parameter set 
to 0.01 and a coefficient of penalty (C) set at 10 was considered the best. 
For the adopted RBF kernel function in this study, Eq. (10) was 
transformed into Eqs. (11-12). The result of the SVM model is presented 
in Figure 8. 

 

𝑓(𝑎) = 𝑤 × 𝐻(𝑎, 𝑎𝑖) + 𝑑         (11) 
 

𝐻(𝑎, 𝑎𝑖) = 𝑒𝑥𝑝
/𝑎−𝑎𝑖/2

2ɤ2            (12) 
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Where; H (a, ai) is the kernel function, and ɤ variance and our hyper 
parameter. 

3.3.4. Ridge Regression Analysis 

The ridge regression is a type of regressor used in modelling datasets. 
The proposed prediction model was developed by modifying ordinary 
least squares regression in a way that is helpful to avoid overfitting in 
predictions. In Ordinary Least Squares, the weight estimator is 
computed using Eq. (13). For better modelling results, this study 
adopted Eq. (14) in the ridge regression. 

 

β = (XT X)-1 XT y          (13) 
 

β = (XT X + λI)-1 XT y          (14) 
 

Where I is the identity matrix, and λ is a new input variable 
introduced into the model. In the ridge regression, λ is controlled by a 
hyper parameter, and ἀ is the expression for the decision factor (DF) in 
Eq. (18) was developed to provide further evaluation of the performance 
of the developed models based on the combination of the three adopted 
indices. The higher the value of the decision factor (DF) the more 
accurate the proposed model. the parameter that controls the over-
fitting penalty. 

To develop the proposed predictive model for X50 and X80 using ridge 
regression, a user-coding approach on Python© was used. The modelling 
was conducted with the same datasets and input parameters as those 
used for ANN training. Different values were set for ἀ with 1 giving the 
optimum value for both the training and testing data. Figure 9 shows the 
performance of the developed regression model. 

 

 
Figure 8. Graph showing the SVM regression performance for the developed 
models. 

 

 
Figure 9. Graph showing the Ridge regression performance for the developed 
models. 
 

4. Results and Discussion 

4.1. Model Relationship 

Four proposed models were developed with HP-ANN, MVR, SVM, 
and Ridge regression for the prediction of dolomite blast fragmentation 
size (X50 and X80). The trained and optimized models were validated by 
ten datasets to determine the best model for fragmentation size 
prediction. The validation results are shown in Fig.10, with HP-ANN, 
MVR, SVM, and Ridge regression having R2 values of 0.812, 0.673, 0.661, 
and 0.659, respectively for X80 prediction. The high R2 value of HP-ANN 
makes it more suitable for the prediction of blast fragmentation 

compare to the other three models with a lower coefficient of 
determination. 

The predicting performance of the four proposed models was 
determined utilizing three well-known statistical differences and 
efficiency indicator indices, as shown in Eqs. (15-17). Root means square 
deviation (RMSD) and man bias (MB) were used as statistical difference 
indicators to evaluate the significant difference between the measured 
fragment size obtained from Wipfrag and the predicted sizes by each 
proposed model. Also, the Nash-Sutcliffe index for the coefficient of 
efficiency determination was used to evaluate the model prediction 
efficiency in percentage [48]. 

 

RMSD= √
∑ (𝐹𝑖−𝑀𝑖)^2𝑁

𝑖=1

𝑁
         (15) 

 

MB=1

𝑁
∑ (𝐹𝑖 − 𝑀𝑖)𝑁

𝑖=1         (16) 
 

NS=1 −
∑ (𝑀𝑖−𝐹𝑖)𝑁

𝑖=1 ^2

∑ (𝑀𝑖−𝑀𝑒)𝑁
𝑖=1 ^2

        (17) 
 

Where N indicates the number of datasets, M is the measured value, 
F denotes the model predicted value, and Me is the mean value of the 
measured value, respectively.  

 

DF= NS- RMSE+MB                             (18) 
 

Where NS is the Nash-Sutcliffe index in percentage, RMSD is the root 
mean square error, and MB is the mean bias. The model performance 
validation result is presented in Figures 10 and 11. The closer the Nash-
Sutcliffe novel index is to 100, the higher the efficiency of the proposed 
model, and the closer calculated value of RSME and MB, the best the 
model performance [48]. Therefore, HP-ANN gives the highest value of 
NS, R2, DF, and the lowest value of RSME, and MB, which makes it the 
most suitable model for the prediction of dolomite quarry 
fragmentation size distribution. The low value of MB for HP-ANN 
(Table 3) shows that it underestimates the predicted blast fragment size, 
while the high MB value for SVM, Ri, and MVR shows that it is 
overestimating the measured fragmentation size, as shown in Fig. 10. 
The both comparison charts, the indices of the model performance, and 
the decision factor, all indicate that the Hunter point ANN models give 
excellent predictions for the fragmentation 80% and 50% passing size of 
blast fragmentation in the dolomite quarry. 

5. Conclusion 

In this study, a new predictive model based on ANN was developed 
for estimating blast particle size distribution at small-scale mines, and 
the results were compared to those of SVM, Ridge, and Multivariate 
(MVR) regression models. The developed model with the new data set, 
hunter-Point artificial neural network (HP-ANN), with a 5:3:1 
architecture, trained by the Bayesian Regularization algorithm three 
times with a sigmoid transfer function, has the highest prediction 
accuracy. The coefficient of correlation, root means square deviation 
(RMSD), Nash-Sutcliffe index (NS), and mean bias (MB) were used to 
assess the performance of the models used. 

The key results of this study are summarized as follows: 
1. The study revealed that rock strength influences blast 

fragmentation results. Based on the rock strength properties, 
the fragmentation size increases with an increase in rock 
strength. 

2. The result of the statistical indicator indices (RSME, MB, NS, 
R2) used for the evaluation of the proposed models showed that 
the HP-ANN has the highest predictive accuracy. The values of 
RSME, MB, NS, and R2 for X50 are 0.027, 0.17, 88.07%, and 0.94, 
respectively, and for X80 they are 0.051, 0.23, 76.26%, and 0.81, 
respectively. 

3. The MVR model possesses predictive accuracy lesser than HP-
ANN, but higher than SVM and Ridge regression models.  

4. A new model evaluator was developed called the decision 
factor. Its application indicates the HP-ANN model is the best 
model suitable for the prediction of blast fragment size 
distribution in a dolomite quarry.  
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The proposed model's limitation to small-hole drill dolomite quarry 
is a drawback, but further work, including a larger dataset from other 
types of aggregate quarries, is recommended to broaden the proposed 
model's application scope. Furthermore, the authors intend to 
investigate fragmentation size distribution using hybrid and ensemble 
learning, as well as other optimization-based machine learning 
approaches. Furthermore, some other influential attributes will be 
added to the blasting dataset to improve the accuracy of the 
fragmentation size distribution prediction. 
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Table 3. Performance evaluation of each developed model for the blast fragment size prediction. 
 

 RSMD 
 

MB 
 

NS (%) 
 

 R2 
 

DF 
 

   X50 X80 X50 X80 X50 X80  X50 X80 
 

X80 X50 

Ri 0.0675 0.11 0.26 0.34 31.16 23.72  0.743 0.66 
 

24.167 31.48 

SVM 0.066 0.086 0.26 0.29 37.12 39.23  0.785 0.66 
 

39.62 37.45 

HP-ANN 0.027 0.051 0.17 0.23 88.07 76.26  0.943 0.81 
 

76.54 88.26 

MVR 0.028 0.060 0.168 0.25 87.24 67.37  0.795 0.67 
 

67.67 87.44 

 

 
Figure 9. The model performance validation for fragment size prediction; a. validation for X80 predictions, b. validation for X50 predictions. 

 

 
Figure 10. Evaluation and comparison of the four proposed models. 
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