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ABSTRACT ARTICLE INFO

The demand for extracting sophisticated features, capa-
ble of effectively predicting gene interaction networks,
from DNA or RNA sequences has increased in com-
putational biology. The epigenetic modifications along
with their patterns have been intensely recognized as ap-
pealing features affecting on gene interaction. However,
studying sequenced-based features highly correlated to
this key element has remained limited. In this paper,
classification of 23 genes in PPAR signaling pathway as-
sociated with muscle fat tissue in human was proposed
based on statistical distributions of the specified RNA-
5-mers abundance. Then, we suggested that these 5-
mers highly correlated to epigenetic modifications can
efficiently categorize the different gene interactions, par-
ticularly co-expression interaction and physical interac-
tion. Our results were evaluated according to
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1 Abstract continued

GeneMania web interface and shows that the geometric distribution of 5 mers in the
epigenetic modifications region indicates the proportion of most physical interactions and
the Poisson distribution the proportion of most Co-expression between genes

2 Introduction

Undoubtedly, one of the fastest growing area in computational biology is extracting dom-
inant features capable of dramatically differentiate gene interaction networks [13,16].
Truly, there are clear advantages of the use of these dominant features in developing
a high-quality model, leading to more accurately discriminating results. Proceeding this
track, it has been figured out epigenetic modification as one of the well-recognized class
of these features, such as methylation and acetylation, and can be applied to predict gene
expression [4,10]. From the statistical standpoint, considerably-correlated features to epi-
genetic modifications can be served as markers in prediction of gene expression[17], among
which k-mers can be supposed to study as appealing markers to specify the location as
well as level of epigenetic modification on chromosomes[11]. formatter will need to create
these components, incorporating the applicable criteria that follow. However, studies on
applying these K-mers in predicting gene interaction has fairly limited.
K-mers, small repetitive sequence with 2 up to 10 nucleotides, are treated as an appro-
priated tool to identify CpG islands, set propitious probes in microarray experiments,
determine epigenetic modification patterns on the chromosome, assay relations between
small segment sequences and different organisms genomes, identify of various breeds and
organisms, fingerprint in bacteria for identification of diseases, prediction of genes inter-
actions and study the association of genes with transcription factors[15,11]. Recently,
Martin Sauk suggested a k-mer-based method to replace mapping reads in FASTQ for-
matted sequencing raw data[11]. In addition, a k-mer-based software for capturing local
RNA variation from a set of standard RNA-seq libraries was suggested, independently of
a reference genome or transcriptome [12].
Applying statistical distribution has been well-recognized as a powerful tool in many
different fields in computational biology. The empirical distribution of DNA k-mers in
different studies was examined even prior to the sequencing of large genomes, providing
tenable probabilistic models for these k-mers [7]. One of the earliest research indicated
that negative binomial is a distribution for biology data due to higher variability between
biological replicates where an interesting variable having negative binomial distribution
is the counts of RNA. [5]. In addition, Carlos A. C. Bastos et. al indicated that distri-
bution of protein – coding inter-dinucleotide distances in the human genome is geometric
distribution, providing an analysis method the whole genome [2]. As well, the negative
binomial distribution, in duration modeling, was suggested for lengths in a DNA strand[9].
In another recent study, Trung Nghia Vu et.al proposed a Beta-Poisson distribution for
gene expression data distribution[18]. Furthermore, the distribution of mutants emerging
from single bursts in the RNA bacteriophage φ6 was figured out a Poisson distribution[6].
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Seemingly, statistical distribution of variable of interest can be an efficient approach to
discover specified patterns in genome, proteins, and other fields.

3 Materials and methods

3.0.1 Datasets

The epigenetic modifications data were downloaded from
(http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcellacetylation.aspx) for acetylation
and l(http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx) for methylation. A
widely used modification module including 13 modification sites revealed at 3286 promot-
ers and identified, by Wang et al and Braski et al, was addresses Based on the data in
these two authors” web sites These includes H2A-Z, H2BK12ac, H2BK120ac, H3K4me1
,H3K4me2 ,H3K4me3 ,H3K9me1 ,H3K18ac ,H3K27ac ,H3K36ac ,H4K5ac ,H4K8ac and
H4K91ac.This data set involved coordinates,having 23 up to 36 nucleoids length for all
uniquely mapped rides for each of modifications [1,19].
The gene data involved 23 genes are available on
(http : //www.kegg.jp/dbget− bin/wwwbget?hsa03320).
The gene set of interest in this study is a 23-gene set of PPAR signaling pathway associated
to muscle fat tissue in human (Tables 1). Moreover, the DNA and RNA sequences of
the corresponding genes were obtained from NCBI database[8]. This pathway is one of
the dramatically dominant pathways effective on the fat metabolism, controlling gene
expression network in adiposeness, lipid metabolism and metabolic homeostasis. The
PPARs are member of unclose receptors and there are three PPARs in mammalians
called: 1- PPAR α, 2-PPAR β, 3-PPAR γ . Furthermore, all computational works were
performed using a toolkit developed in our lab in MATLAB, EASYFIT, and R.

3.0.2 The proposed method

In this research, we are interested classifying genes based on the best distribution for the
5-mers abundances on these genes, as it was indicated that 5-mers can be taught of as im-
portant feature in prediction of epigenetic modification and genes interactions[15,3,14].our
research as abstract show in Figure 1.
Specifying 5-mers across whole RNA required thoroughly accounting critical considera-
tions to achieve accurate results, developing two main stages to extract 5-mers related to
epigenetic modifications. In the first stage, the RNA sequences were divided into 250-
nucleotide segments, due to having different lengths. Then, we kept only the set of 5-mers
that observed with at least two repeats in the RNA, owing to minimize the risk of includ-
ing 5-mers involving sequencing errors. In the next step, the total frequencies of these
5-mers in all 23 RNA sequences were calculated. Finally, the 5-mers with more than 10
frequencies were selected for further analysis and mapped on the DNA sequences of all
23 genes and 13 modifications, separately.
Second, the intervals of epigenetic modifications on the genes were symmetrically extended
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Gene Ch NCBI ID Start End
PPARD 6 NC 000006.12 35342558 35428191
PPARA 22 NC 000022.11 46150547 46243756
PPARG 3 NC 000003.12 12287850 12471013
TBL1X X NC 000023.11 9463295 9719740

TBL1XR1 3 NC 000003.12 177020754 177197260
HSD11B1 1 NC 000001.11 209686180 209734950
LIPA 10 NC 000010.11 89213569 89252039

PPARGC1A 4 NC 000004.12 23792021 24472771
NCOA4 10 NC 000010.11 46005088 46030714
FABP1 2 NC 000077.6 88122982 88128131

ANGPTL4 19 NC 000019.10 8364127 8374375
CYP4A11 1 NC 000001.11 46929174 46941499
ACOX1 11 NC 000077.6 8366263 116199045
ACOX3 4 NC 000004.12 8366263 8440725
FABP3 1 NC 000001.11 31360418 31373283
ACOX2 3 NC 000003.12 58505136 58537348
SAT1 x NC 000023.11 23783158 23786223

PTGER2 14 NC 000080.6 44988111 45003820
ACAA1 3 NC 000003.12 38122710 38137242
RXRA 9 NC 000009.12 134326463 134440586
UGT2B4 4 NC 000004.12 69480165 69526014
HMGCS1 2 NC 005101.4 52427351 52445082
NCOA6 20 NC 000020.11 34714774 34825630

Table 1: The 23 human genes of PPAR signaling pathway

to 30 nucleotides in both directions, starting from the center of the original interval. Then,
the abundances of these 5-mers in the corresponding modification interval were determined
for each of epigenetic modifications and genes. Therefore, for each gene, a vector of ele-
ments according to the detected 5-mers was generated, including 719 different 5-mers.
Having extracted, we determined the empirical distribution of 5-mers frequencies under
different epigenetic modifications including methylation and acetylation modifications,
applying statistical tests. Different discrete distributions were examined including geo-
metric, negative binomial, binomial, uniform, Poisson, logarithmic, and Hyper-geometric
through Kolmogorov-Smirnov test. The analysis was performed on 719 different 5-mers
found in each genes under each of epigenetic modifications, separately.

4 Results

Preliminary results exhibited that only three distributions including Poisson, negative
binomial and geometric distribution were expedient and others were poor match to the
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5-mers abundance. Interestingly, Poisson distribution is able to capture the variability of
5-mers frequencies in high number of genes under different epigenetic modifications. On
the other hand, the resulting fitted distribution for most of remaining is negative binomial
and geometric distribution, respectively.
On the other hand, to get more information, we further examined the distributions of
5-mers abundance in the specified genes under different epigenetic modifications. It can
be seen that this feature in all genes but RXRA is not of the same distribution. Simply,
for instance, the detailed results are provided the distribution plots of this feature in
gene PPARA under epigenetic modifications of interest, Figure 2. As shown, Poisson
distribution is the best fit for H2bk12ac, H3k27ac, H3k4me2, and H4k5ac and that of
remaining is Negative binomial distribution. It should be pointed out that even in the
same distribution, the means of 5-mers abundance under different modifications are not
the same.

Figure 1: The graphical abstract of our research

Afterwards,classifying genes was mainly performed by attributing the genes of which 5-
mer frequency distributions are the same distribution. The results are presented in Table
2.
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Figure 2: The distribution plot of 5-mers abundance in gene PPARA under 13 different
epigenetic modifications.

These findings motivated us to biologically evaluate these resulted clusters of genes. In
light of this, we applied GeneMania[20] and the accuracy results are shown in Table 3 and
Figure 3.We found a quite acceptable accuracy in high number of compositions. As can be
seen, under H2az epigenetic modification, the best performance achieved by Poisson dis-
tribution in predicting Co-expression network with network with 99.64 % precision.This
high level of prediction can be seen in other epigenetic modifications including H2bk5ac,
H3bk120ac, H3k36ac, H3k4me1, and H4k8ac. This means that if 5-mers were randomly
sampled from this RNA sequence, the shape of 5-mers abundances follow a Poisson distri-
bution where the mean and variance are the same. However, the distribution of interest in
gene PPARA under other epigenetic modifications is Negative binomial, a two-parameter
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distribution Cluster1 Cluster2 Cluster3
(Negative Binomial) (Geometric) (Poisson)

H2az PPARA ACOX2 ACOX3
PPARGC1A NCOA6 CYP4A11

TBL1X PPARD FABP3
TBL1XR1 PPARG LIPA
HSD11B1 RXRA NCOA4

UGT2B4
ACAA1

H3bk120ac PPARD ACOX3 TBL1XR1
PPARA RXRA LIPA
PARG NCOA4
TBL1X FABP1

HSD11B1 ANGPTL4
PPARGC1A CYP4A11

NCOA6 FABP3
ACOX2
SAT1

ACAA1
UGT2B4

H2bk12ac PPARD PPARGC1 PPARA
TBL1X RXRA PPARG
ACOX3 NCOA6 TBL1XR1

HSD11B1
LIPA
FABP1

ANGPTL4
CYP4A11
FABP3
ACOX2
SAT1

ACAA1
UGT2B4

H2bk5ac PPARD RXRA TBL1XR1
PPARA HSD11B1
PPARG LIPA
TBL1X FABP1

PPARGC1 ANGPTL4
ACOX3 CYP4A11

FABP3
ACOX2
ACAA1
UGT2B4
NCOA6

H3k18ac PPARD RXRA PPARG
PPARA TBL1XR1
TBL1X HSD11B1

PPARGC1A LIPA
ACOX3 FABP1

ANGPTL4
CYP4A11
FABP3
ACOX2
ACAA1
UGT2B4
NCOA6

distribution more efficient capable of explanation an over-dispersion variable than Poisson
distribution.
When comparing the plots, we found that in situations where 5-mers abundances have
more dispersion, negative binomial distribution has a better fit. In addition, the accuracy
for negative binomial and geometric clusters are moderately acceptable, 66.88%, in most
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distribution Cluster1 Cluster2 Cluster3
(Negative Binomial) (Geometric) (Poisson)

H3k27ac PPARD PPARGC1A PPARA
TBL1X RXRA PPARG

TBL1XR
HSD11B1

LIPA
FABP1

ANGPTL4
CYP4A11
ACOX3
FABP3
ACOX2
ACAA1
UGT2B4
NCOA6

H3k36ac PPARD TBL1XR1 HSD11B1
PPARA PPARGC1A LIPA
PPARG RXRA FABP1
TBL1X ANGPTL4

CYP4A11
ACOX3
FABP3
ACOX2

ACAA1UG
T2B4

NCOA6
H3k4me1 PPARA PPARD HSD11B1

TBL1X PPARG LIPA
CYP4A11 TBL1XR1 FABP1
ACOX3 PPARGC1A FABP3
ACOX2 ANGPTL4 SAT1
NCOA6 RXRA ACAA1

UGT2B4
H3k4me2 PPARD PPARG PPARA

TBL1X RXRA TBL1XR1
PPARGC1A HSD11B1

ACOX3 LIPA
NCOA4
FABP1

ANGPTL4
CYP4A11
FABP3
ACOX2
SAT1

ACAA1
UGT2B4

H3k4me3 PPARD PPARG LIPA
PPARA RXRA FABP1
TBL1X TBL1XR1 ANGPTL4

HSD11B1 CYP4A11
PPARGC1A FABP3

ACOX3 ACOX2
NCOA6 ACAA1

UGT2B4

of epigenetic modifications.
Finally, to deeper understand how this feature is able of classifying the genes, we ap-
plied GeneMania to represent gene interaction network for each of epigenetic modifica-
tions.(Figure 3)
Interestingly, as it can be seen, removing hub genes such as PPARA and PPARG from
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distribution Cluster1 Cluster2 Cluster3
(Negative Binomial) (Geometric) (Poisson)

H4k5ac PPARD RXRA PPARA
PPARGC1A NCOA6 PPARG

TBL1X
TBL1XR1
HSD11B1
NCOA4
FABP1

ANGPTL4
CYP4A11
ACOX3
ACOX2
SAT1

ACAA1
UGT2B4

H4k8ac PPARD PPARGC1A TBL1XR1
PPARA RXRA LIPA
PPARG FABP1
TBL1X ANGPTL4

HSD11B1 CYP4A11
NCOA6 ACOX3

FABP3
ACOX2
SAT1

ACAA1
H4k91ac PPARD RXRA PPARA

TBL1X PPARG
PPARGC1A TBL1XR1

ACOX3 HSD11B1
NCOA6 ANGPTL4

CYP4A11
FABP3
ACOX2
SAT1

ACAA1

Table 2: Clustering genes under different epigenetic modifications based on distribution
of 5-mers abundance in the genes

cluster 3 leads to 100 % accuracy in prediction. From biologically standpoint, this result
states that these genes are of special importance in gene interaction network, indicating
that different epigenetic modifications place these genes in different clusters.
To sum up, despite of that the prediction performances for both Pathway and Genetic
interaction were not satisfactory, the high consistency with GeneMania results can be
substantially seen for Physical interaction and in particular Co-expression interaction,
supporting our proposed feature as a powerful tool to predict these two important net-
works.

5 Discussion

In this paper, we suggested a 5-mer-based feature to predict two key gene interactions,
Co-expression and physical interaction networks in fat tissue. Our main approach was to
find the best distribution for the 5-mer abundance to classify genes. We found that three
commonly-used statistical distributions in biological fields, Negative binomial, geometric
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and Poisson distribution, were efficiently match to the 5-mers abundance, predicting the
interaction networks of which the genes are likely to be involved. The frequencies of 5-
mers within RNA sequences were differently distributed under various different epigenetic
modifications. As the Poisson distribution was proposed for rare DNA k-mers by Benny
Chor et al[7], it is a satisfied distribution to predict Co-expression network. In addition,
David Williams et al suggested the abundance distribution of DNA k-mers as a negative
binomial[21] which one of proposed distribution in our research. These two distributions
were suggested in other biological research [7,18].
The findings proposed that the structure within the specified 5-mers space exposing var-
ious epigenetic modifications can be further involved in different networks. In fact, our
study proposed that epigenetic modifications take place in regions of genes with differ-
ent distributions of 5-mers abundance. This means that these 5-mers have beneficial
information in predicting the gene interaction network where the genes of interest are
involved.

Epigenetic Distribution Physical Co- Pathway Genetic
Modification interactions expression interactions

H2az Geometric 66.88 27.38 4.39 1.35
H2az Geometric 66.88 27.38 4.39 1.35

H2bk12ac Geometric 66.88 27.38 4.39 1.35
H3bk120ac Geometric 66.88 27.38 4.39 1.35
H2bk12ac Geometric 66.88 27.38 4.39 1.35
H3k27ac Geometric 66.88 27.38 4.39 1.35
H3k36ac Geometric 66.88 27.38 4.39 1.35
H3k4me1 Geometric 39.6 38.83 21.58 0
H3k4me2 Geometric 66.88 27.38 4.39 1.35
H3bk120ac Geometric 66.88 27.38 4.39 1.35
H3k4me3 Geometric 66.88 27.38 4.39 1.35
H4k8ac Geometric 66.88 27.38 4.39 1.35
H2az Poisson 0 99.64 0 0.36

H2bk12ac Poisson 7.48 58.15 34.38 0
H2bk5ac Poisson 0 100 0 0

H3bk120ac Poisson 0 100 0 0
H3k18ac Poisson 6.72 76.63 16.64 0
H3k27ac Poisson 9.59 56.63 33.78 0
H3k36ac Poisson 0 99.95 0 0.05
H3k4me1 Poisson 0 100 0 0
H3k4me2 Poisson 22.33 58.63 23.12 0
H3k4me3 Poisson 23.12 54.55 41.37 0
H4K5ac Poisson 26.65 39.12 34.23 0
H4k91ac Poisson 8.31 41.85 49.84 0
H2az Negative Binomial 66.88 27.38 4.39 1.35

H2bk12ac Negative Binomial 66.88 27.38 4.39 1.35
H2bk5ac Negative Binomial 8.34 35.16 56.5 0

H3bk120ac Negative Binomial 21 39.68 39.32 0
H3k18ac Negative Binomial 66.88 27.38 4.39 1.35
H3k27ac Negative Binomial 66.88 27.38 4.39 1.35
H3k36ac Negative Binomial 66.88 27.38 4.39 1.35
H3k4me1 Negative Binomial 0 48.12 51.73 0.14
H3k4me2 Negative Binomial 66.88 27.38 4.39 1.35
H3k4me3 Negative Binomial 2.72 38.9 58.37 0
H4K5ac Negative Binomial 66.88 27.38 4.39 1.35
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Epigenetic Distribution Physical Co- Pathway Genetic
Modification interactions expression interactions

H4k8ac Negative Binomial 4.76 39.66 55.59 0
H4k91ac Negative Binomial 66.88 27.38 4.39 1.35

Table 3: Clusterring genes under diffetent epigenetic modifications based on distribution
of 5-mers abundance in the genes

Furthermore, we figured out that genes such as PPARA and PPARG contributed in three
different clusters are of special biologically importance in gene interaction network. In
other words, these genes have distinct roles in different gene interactions, under different
epigenetic modifications, and can be treated as hub genes.

H3K27ac

H2az
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H3K36ac

H2BK120ac
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H3K4me1

H2BK12ac
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H3K4me2

H2BK5ac



158 D. Salimi / JAC 54 issue 2, December 2022, PP. 143– 162

H3K4me3

H3K18ac
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H4K8ac

H4K5ac
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H4K91ac

Figure 3: Physical and co-expression networks for the epigenetic modifications based on
distribution of 5-mers abundance in the genes
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