تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,127,212 |
تعداد دریافت فایل اصل مقاله | 97,234,960 |
Estimation of actual evapotranspiration using SEBAL and METRIC algorithms and validation with lysimetric data in arid regions | ||
Desert | ||
دوره 27، شماره 2، اسفند 2022، صفحه 259-276 اصل مقاله (1.97 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2022.90828 | ||
نویسندگان | ||
V. Davarzani؛ M. Vafakhah* ؛ H.R. Moradi | ||
Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran | ||
چکیده | ||
Estimation of actual evapotranspiration (ET) in large areas is an important part of water resources management. In recent years, remote sensing has been successfully used in ET estimation, which is supposed to be more accurate for estimating ET on regional and agricultural scales. The main aim of this investigation is to evaluate the efficiency of two algorithms namely Surface Energy Balance Algorithms for Land (SEBAL) and Mapping ET at high Resolution with Internalized Calibration (METRIC) algorithms for estimating actual ET from agricultural lands in Davarsen County, Iran. Accordingly, six Landsat 8 OLI/TIR satellite images and Lysimeter data installed in these lands were used. The amounts of actual ET were estimated using two algorithms and the obtained results were compared with Lysimeter data. Based on the results of evaluation, Root Mean Square Error (RMSE) of 0.54 and 0.64 mm day-1, Nash-Sutcliffe Efficiency (NSE) criteria of 0.85 and 0.79, Mean Bias Error (MBE) of 0.04 and 0.02 mm day-1, Mean Absolute Error (MAE) of 0.42 and 0.48 mm day-1 and coefficient of determination (R2) of 0.86 and 0.82 were estimated for SEBAL and METRIC algorithms, respectively. These statistical indices show that these algorithms have a high accuracy for estimating actual ET in the study area. The executive applications of this study can be used to determine the exact amount of evapotranspiration in irrigated lands for water allocation planning, optimization of crop production, irrigation management and assessment of land use change on water efficiency. | ||
کلیدواژهها | ||
Actual evapotranspiration؛ Energy balance algorithm؛ Remote sensing؛ Water management | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
References Abrishamkar M, Ahmadi A. 2017. Evapotranspiration estimation using remote sensing technology based on SEBAL algorithm, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41; 65-76. Allen R, Tasumi M, Trezza R, Waters R, Bastiaanssen W. 2002. SEBAL (Surface Energy Balance Algorithms for Land), Advance Training and Users Manual–Idaho Implementation, version, 1; 97. Allen RG, Morse A, Tasumi M. 2003. Application of SEBAL for western US water rights regulation and planning. In Proc. ICID Int. Workshop on Remote Sensing. Allen RG, Tasumi M, Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model, Journal of Irrigation and Drainage Engineering, 133; 380-394. Babran S, Honarbakhsh N. 2008. Water Crisis in Iran and World. Rahbord, 16, 193-214. Bastiaanssen W, Noordman E, Pelgrum H, Davids G, Allen R. 2005. SEBAL for spatially distributed ET under actual management and growing conditions, ASCE Journal of Irrigation and Drainage Engineering, 131; 85-93. Bastiaanssen WG. 1998a. Remote sensing in water resources management: The state of the art. International Water Management Institute, Colombo, Sri Lanka. Bastiaanssen WG. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey, Journal of Hydrology, 229; 87-100. Bastiaanssen WG, Pelgrum H, Wang J, Ma Y, Moreno J, Roerink G, Van der Wal T. 1998. A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation, Journal of Hydrology, 212; 213-229. Bhattarai N, Quackenbush LJ, Im J, Shaw SB. 2017. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models, Remote Sensing of Environment,196;178-192. Carmona F, Rivas R, Kruse E. 2017. Estimating daily net radiation in the FAO Penman–Monteith method, Theoretical and Applied Climatology, 129; 89-95. Estimation of actual evapotranspiration using SEBAL and METRIC algorithms … 275 Diak GR, Whipple MS. 1993. Improvements to models and methods for evaluating the land-surface energy balance and ‘effective’roughness using radiosonde reports and satellite-measured ‘skin’temperature data, Agricultural and Forest Meteorology, 63; 189-218. Filgueiras R, Mantovani EC, Althoff D, Ribeiro RB, Venancio LP, dos Santos RA. 2019. Dynamics of actual crop evapotranspiration based in the comparative analysis of SEBAL and METRIC-EEFLUX, Irriga 1(1); 72-80. Folhes M, Rennó C, Soares J. 2009. Remote sensing for irrigation water management in the semi-arid Northeast of Brazil, Agricultural Water Management, 96; 1398-1408. French A, Jacob F, Anderson M, Kustas W, Timmermans W, Gieske A, Su Z, Su H, McCabe M, Li F. 2005. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sensing of Environment, 99; 55-65. Hafeez M, Chemin Y. 2002. Evapotranspiration Estimation using TERRA/ASTER sensor: A case study in District 1 of UPRIIS, Central Luzon, Philippines, Canadian Journal of Remote Sensing, 101; 81- 95. Hoseinalizadeh M, Ayoubi S, Shataei S. 2006. Comparison of various interpolation methods on evaluation surface soil properties (Case study: Mehr Sabzevar Watershed), Journal of Agricultural Sciences and Natural Resources, 13; 152-162. Howell TA. 2005. Lysimetry. In Encyclopedia of Soils in the Environment, ed. D. Hillel, 379-386. Oxford: Elsevier. Jaafar HH, Ahmad FA. 2020. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon, Remote Sensing of Environment, 238; 111034. Javadian M, Behrangi A, Gholizadeh M, Tajrishy M. 2019. METRIC and WaPOR estimates of evapotranspiration over the Lake Urmia Basin: comparative analysis and composite assessment, Water, 11; 1647. Jia Z, Liu S, Xu Z, Chen Y, Zhu M. 2012. Validation of remotely sensed evapotranspiration over the Hai River Basin, China, Journal of Geophysical Research: Atmospheres, 117, 113-125. Kimura R, Bai L, Fan J, Takayama N, Hinokidani O. 2007. Evapo-transpiration estimation over the river basin of the Loess Plateau of China based on remote sensing, Journal of Arid Environments, 68; 53- 65. Li H, Zheng L, Lei Y, Li C, Liu Z, Zhang S. 2008. Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology, Agricultural Water Management, 95; 1271-1278. Losgedaragh SZ, Rahimzadegan M. 2018. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran), Journal of Hydrology, 561, 523-531. Mazidi A, Kooshki S. 2015. Simulation of Rainfall-Runoff Process and Estimate of Flood with HEC- HMSModel in Khorramabad Catchment Area, Geography and Development Iranian Journal, 13; 1- 10. Modiri S, Modiri M. 2016. Calibration of separate window model factors to calculate land surface temperature using MODIS images, European Online Journal of Natural and Social Sciences, 5; 546-558. Mutiga JK, Su Z, Woldai T. 2010. Using satellite remote sensing to assess evapotranspiration: Case study of the upper Ewaso Ng’iro North Basin, Kenya, International Journal of Applied Earth Observation and Geoinformation, 12; S100-S108. Paul G, Gowda PH, Prasad PV, Howell TA, Staggenborg SA, Neale CM. 2013. Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08, Advances in Water Resources, 59; 157-168. Sari DK, Ismullah I, Sulasdi W, Harto A. 2013. Estimation of water consumption of lowland rice in tropical area based on heterogeneous cropping calendar using remote sensing technology, Procedia Environmental Sciences, 17; 298-307. Spiliotopoulos M, Holden NM, Loukas A. 2017. Mapping evapotranspiration coefficients in a temperate maritime climate using the metric model and landsat TM, Water, 9; 23. 276 DESERT, 27-2, 2022 Tang R, Li ZL, Chen KS, Jia Y, Li C, Sun X. 2013. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data, Agricultural and Forest Meteorology, 174; 28-42. Tasumi M. 2003. Progress in operational estimation of regional evapotranspiration using satellite imagery. In Ph.D.Dissertation, University of Idaho, 357. Tasumi M. 2019. Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin, Agricultural Water Management, 226; 105805. Tasumi M, Trezza R, Allen RG, Wright JL. 2003. US Validation tests on the SEBAL model for evapotranspiration via satellite, In 2003 ICID Workshop on Remote Sensing of ET for Large Regions. Tasumi M, Trezza R, Allen RG, Wright JL. 2005. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid US, Irrigation and Drainage Systems, 19; 355-376. Teixeira AdC, Bastiaanssen WG, Ahmad M.-u.-D, Bos M. 2009. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River basin, Brazil: Part A: Calibration and validation, Agricultural and Forest Meteorology, 149; 462-476. Wagle P, Bhattarai N, Gowda PH, Kakani VG. 2017. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum, ISPRS Journal of Photogrammetry and Remote Sensing, 128; 192-203. Wolff W, Francisco JP, Flumignan DL, Marin FR, Folegatti MV. 2022. Optimized algorithm for evapotranspiration retrieval via remote sensing, Agricultural Water Management, 262; 107390. Yang Y, Shang S. 2013. A hybrid dual‐source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: Algorithm and model test, Journal of Geophysical Research: Atmospheres, 118; 2284-2300. Yang Y, Shang S, Jiang L. 2012. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China, Agricultural and Forest Meteorology, 164; 112-122. Zhou J, Zhang X, Zhan W, Zhang H. 2014. Land surface temperature retrieval from MODIS data by integrating regression models and the genetic algorithm in an arid region, Remote Sensing, 6; 5344- 5367. Zwart SJ, Bastiaanssen WG. 2007. SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems, Agricultural Water Management, 89; 287- 296. | ||
آمار تعداد مشاهده مقاله: 238 تعداد دریافت فایل اصل مقاله: 269 |