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INTRODUCTION

Communities’ growth and overconsumption of clean water lead to a permanent demand 
and search for new water sources. Groundwater is an extensive source of drinking water supply 
in different urban areas around the world. Hence, water quality stability has always been of 
considerable geoenvironmental interest in most developed and developing countries (Maghrebi 
et al., 2022; Noori et al., 2022; Nasrabadi et al., 2010; Nasrabadi and Abbasi Maedeh, 2014a and 
2014b). A remarkable number of academic studies have evaluated different attitudes toward 
groundwater such as reservoir issues, hydrogeology, quality, vulnerability, sustainability, and 
so on (Pandey and Kazama, 2011; 2012; Pandey et al., 2011; 2012; Chapagain et al., 2010). 
Although seas cover almost 75% of the earth’s surface and finding new technologies to desalinate 
seawater takes a vast area of scientific research but it is not easy. Hence, quality monitoring to 
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The high amount of Electrical Conductivity (EC) in the groundwater is one of the 
major negative Geo-environmental problems which has a considerable effect on 
the quality of drinking water. To address this challenging problem we proposed an 
intelligent Machine Learning (ML) based approach to predict EC in urban areas. We 
applied the deep learning technique as one of the most applicable ML techniques 
with high capabilities for intelligent predictions. Five different deep neural networks 
(Net 1 to Net 5) were developed in this study and their reliability to predict EC with 
an emphasis on different settings of inputs, features, functions, and the number of 
hidden layers was evaluated. The achieved results showed that deep neural networks 
can predict EC parameters using minimum and economic input parameters. Results 
showed parameters Cl and SO4 with a high range of correlation and pH with a low 
range of Pearson correlation properties are influential parameters to be used as the 
input of neural networks. Activation function Relu, optimization function Adam with 
a learning rate of 0.0005 and loss function Mean Squared Error with the minimum of 
two hidden dense layers from Keras laboratory of Tensor Flow developed an efficient 
and fast network to predict the EC parameter in urban areas. Maximum epochs for 
developed networks were defined up to 2000 iterations while epochs are reducible up 
to 200 to drive minimum loss function outcome. The maximum training and testing R2 
for developed networks was 0.99 in both the training and testing parts.
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help for saving drinking water is located at the top of resource research nowadays in sustainable 
environments (Sun et. al. 2019)

A variety of geological, geotechnical, environmental, and human-made factors contribute 
to variations in groundwater quality (Nasrabadi and Abbasi Maedeh, 2014a and 2014b). For 
instance, Total Dissolved Solids (TDS) and Nitrate are among the most significant and common 
factors that may adversely affect the groundwater quality of an aquifer and both Anthropogenic 
and Geopogenic sources are known to greatly govern the extent of such contamination (Pazand 
et al., 2012). The lack of efficient and widespread sewer systems results in the direct and indirect 
discharge of municipal wastewater to surface and groundwater bodies. Leached fertilizers and 
pesticides can be introduced as another geoenvironmental threat to agriculture; the amount 
beyond the limit taken up by plants will be leached downwards to aquifers (Nolan 2001). 
Anthropogenic sources such as acid rain and sulphate fertilizers as well as geopogenic ones 
such as pyrite oxidation in a limestone aquifer can both contribute to groundwater quality 
degradation (Stigter et al.,1998; Chan 2000; Vizintin et al., 2009). 

The Electrical Conductivity (EC) parameter constitutes the next fundamental parameter 
regards drinking, industrial and agricultural water. EC is directly linked to water salinity, 
sodium absorption coefficient, and drinking water quality (Asghari Moghaddam et al., 2006; 
Mehrdadi et al., 2012). Electrical Conductivity is a scale measuring the water’s salinity and has 
been measured from 0 to 50,000 uS/cm. Electrical Conductivity is measured in micro Siemens 
per centimetre (uS/cm). Freshwater is usually between 0 and 1,500 uS/cm and typical seawater 
has a conductivity value of about 50,000 uS/cm. A narrow range of salinity could be found 
naturally in waterways which is significant for plants and animals growing. High levels of salinity 
in freshwater can lead to aquatic ecosystem problems as well as convoluted drinking uses.  A 
linear relationship has been detected between EC and TDS which has been described in the 
literature (Maedeh et. Al., 2013). From a geoenvironmental point of view, EC fluctuation might 
be affected by an anthropogenic source or a high amount of groundwater usage. Subsidence, 
cracks, aquifer salinity, and death of ground in the high EC area might be a major probable crisis 
(Nasrabadi and Abbasi Maedeh, 2014a and 2014b). 

To measure all the participated quality factors of drinking water, especially groundwater 
sources, laboratory tests are necessary, while most of these lab tests take time and are not cost-
efficient during the time. In addition, for a fast reaction to finding where is the source of the 
pollution in some critical situations like biological pollution leakage, radioactive detection, 
oil leakage or so on, and what is the effect of measured parameters on other quality factors, 
laboratory tests are not so efficient and most of the time prepared fast response kits or probs will 
be more efficient. Nowadays, different Machine Learning (ML) approaches are used to define 
nonlinear and smart relationships between parameters and calculate the effective weight of each 
parameter on the targeted parameters to predict the specific parameters and their relationship 
with other factors (Abbasi Maedeh et. Al., 2013). 

Machine Learning is applied in systems like Geotechnical and Environmental Health 
Monitoring, Terrific, sea and air navigation, and medical system. The significance of using ML 
stems from cost reduction, human footprint and effort, and reliability. Moreover, ML is capable 
to simulate systems, even if mathematical models are complex and time-consuming. This is the 
case for geoenvironmental and groundwater monitoring systems. Neural Networks which are 
the main part of ML can model the dynamic behaviour of a non-linear process only through 
training. For instance, a General Regression Neural Network (GRNN) and a single-objective 
optimization model are suggested to predict quality parameters in groundwater in previous 
research (Taulli, 2019). 

A Neural Network with more than one simple hidden layer has been called Deep Neural 
Network, also known as Deep Learning (Sutton and Barto., 2018). Deep Learning methodology 
has been considered a convenient substitute for regressions and empirical models to predict 
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the behaviour of data series, owing to their time reliability and adaptability to unpredicted 
changes (Zheng and Sabuncu, 2018). The Deep Learning method could be applied not only for 
qualitative predictions of water but also for predicting groundwater situation and volume (Sun 
et.al 2019). Strong programming languages and highly advanced programming libraries such 
as TensorFlow, and Keras help scientists to design, develop and use different Deep Learning 
approaches to make predictions. Such advanced libraries are widely being used in different 
industries and cutting-edge technology interdisciplinary research (Aggarwal, 2015; Sun et.al 
2019). 

A variety of previous research has used deep learning to predict targeted parameters in 
Geotechnical and environmental engineering (Coulibaly et al., 2001; Kumar et al., 2002; Coppola 
et al., 2003; Hosaini et al., 2007; Khalili et al., 2008; Dehghani et al., 2009; Aggarwal, 2015; 
Zhang & Sabuncu, 2018; Sun et.al 2019). For instance, previous research on Geoenvironmental 
engineering showed strong perdition and precise outcome of the TDS parameter of groundwater 
in urban areas (Mehrdadi, et al., 2012; Abbasimaedeh, et.al., 2013).

In this study, we applied deep learning prediction theory to predict the EC parameters of the 
groundwater reservoir of very busy and populated urban areas. The updated database of urban 
groundwater quality factors for Tehran city, the capital city of Iran, has been imported into our 
model as the input. We aimed to predict the salinity and Electrical Conductivity of the urban 
groundwater which is the main resource of drinking water in Tehran province. Authors have 
previous research on the groundwater quality of similar areas and in this article, they apply 
different deep learning methods to predict future groundwater quality based on limited and 
economic input data, location, and seasonal properties. The innovation of this study could help 
to reduce the bug of traditional data interpolation to estimate parameters and we have developed 
different deep neural networks to predict local and global EC parameters of groundwater sources 
in urban areas. 

MATERIALS AND METHODS

Tehran is situated in northern Iran and is identified as the most populated city in Iran. Tehran 
has an approximate population of more than 15 million people and is prominent among the 
Middle East capitals (Nasrabadi and Abbasi Maedeh, 2014a and 2014b). Although a massive 
rise rate of the population during the last 70 years, its density is relatively constant at around 120 
persons per hectare (Asadpour and Nasrabadi 2011). Such a case confirms an overwhelming 
urban enlargement and consequently an expanded anthropogenic pollution discharge. The 
locations of Tehran Province and Tehran County are illustrated in Figure 1.

 

Figure 1. Location of Tehran Province and Tehran county in Iran 

   

Fig. 1. Location of Tehran Province and Tehran county in Iran
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To identify the groundwater flow direction within the study area and a better understanding 
of industrial areas, the general topography, and industrial and residential spatial distribution 
of Tehran province are depicted in Figure 2. Regarding the fast socio-economic and industrial 
growth, land use has been playing a crucial role in groundwater quality degradation in 
Tehran province. Agriculture is the dominant land use in the southern parts of the province 
while industrial and residential parts are concentrated in the western and northern parts. The 
density of industrial zones is higher in the southwestern and southern parts of the city, while 
a relatively even distribution is observed regarding residential land use (Noori et al. 2022). In 
general, the groundwater flows southwards. Tehran city and its land use are considered the 
main groundwater pollution source in the southern parts of the province, which are located at 
relatively low elevations (Nasrabadi and Abbasi Maedeh, 2014a and 2014b). 

To appropriately cover the study area, more than 450 boreholes were selected for groundwater 
sampling in this study, and the lab result of each borehole for at least 15 years, different sessions, 
and months were collected in the database. The overlapped aerial photo of proposed borehole 
locations and distributed map of land elevation in the study area have been shown in Figure 3. It 
is observed that most of the boreholes were concentrated at the elevation of 1000 to 2000 m and 
limited numbers were located in the higher levels, especially in the eastern part. 

The northern zone of Tehran Province includes parts of the Alborz mountains, while 
southern Tehran areas are located in the central Iran plain. Tehran flat generally has a plain-
like physiographic feature, in which hilly land structure forms a harsh morphology with south-
eastern Tehran heights, southern Karaj hills, and southern Kahrizak hilly lands. It is reliable 
that Tehran Province belongs to Alborz and central Iran structural zones. These areas lie on the 
northern Tehran fault. 

The oldest stratigraphic units of Tehran Province including a late Precambrian to mid-Triassic 
platform sequence comprise several geologic formations and alluvial unconformities (Nasrabadi 
and Abbasi Maedeh, 2014a and 2014b). In the southern half of the Tehran plain, against the 
northern half, Neogene units were formed mainly of marl, red sandstones, and conglomerates 
with red hilly land features. In Tehran Province, several epeirogenic and orogenic phenomena 
have been caused in the recent morphotectonics area. Geological structures (e.g., faults and 
folds) have an NW–SE general trend in the western parts turning to an NE trend in the east 
(Nasrabadi and Abbasi Maedeh, 2014a and 2014b).

Parameters such as temperature, pH, Electrical Conductivity, and Dissolved oxygen have 
been evaluated using portable instruments at the sampling site and the other parameters have 
been analysed in the laboratory. Nitrate, nitrite, and sulphate have been measured by the HACH 

 

Figure. 2 Elevation distribution of Tehran Province (left); Residential and industrial areas 
distribution (right)  

   

Fig. 2. Elevation distribution of Tehran Province (left); Residential and industrial areas distribution (right)
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instrument and US-EPA methods 8039, 8507, 8051, and 8029 have been employed respectively. 
All cations have been measured via the EPA-3005 method and through the inductive flame 
atomic absorption spectrometer (FAAS). Standardized method number 4500 has been used 
to measure carbonate and bicarbonate anions and chloride measurement has been carried out 
applying the argentometric method (Coppola et al., 2003; Biswas, 2005; Abbasimaedeh and 
Mehrdadi, 2012).    

An ANN is a computation technique to accelerate the learning process and tries to trace 
the input space (input layer) and a desirable environment (output layer) by using functions 
called neurons by identifying inherent relationships between data (Esmaeili Vakili et al., 2004; 
Taherion, 2006). Hidden layers receive data from the input layer, process it, and send it to the 
output layer. Each neural network receives training through instances. 

Network learning is carried out when the linkage weight between the layers changes in a way 
that the difference between the predicted and the measured values are within permissible limits. 
Prosperity in this status fulfils the learning proceeding. This declares the weight of memory and 
neural network know-how. Trained neural networks can be used to predict outputs corresponding 
to actual new data (Abbasimaedeh et al., 2013). Considering the structure of neural networks, 
features such as speed processing, learning capability by a schema design method, conception of 
proficiency after learning, flexibility against surprising defeats, and lack of significant disruption 
on the part of the connection could be the result of weight distribution. 

Deep neural networks with more than two layers that have been designed to predict EC were 
developed in this study. A maximum of 4 hidden layers were used for preliminary networks and 
layers were reduced to two layers in the optimized design. The major difference between the 
current study networks with normal ANNs is to use of very deep networks and a high amount 
of inner features to increase prediction accuracy.  Dense layers for multilayer neural networks 
were selected for network structures (Fig.4). The inner features for hidden layers were selected 
between 1000 to 500 for primary hidden layers and were reduced up to 10 in the final hidden 
layers on deep neural networks. The Relu activation function has been used for all of the hidden 
layers except the final layers which have no activation function. 

 

Figure 3. Overlapped picture of study area elevation versus boreholes location  

   

Fig. 3. Overlapped picture of study area elevation versus boreholes location
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To achieve the best prediction outcome with the highest amount of accuracy the Adam 
optimizer function with a learning rate of 0.0005 for updating neuron weights has been applied 
to the deep networks. All the designed deep networks in this study were updated with their 
weights with 2000 to 1000 epochs. Furthermore, 70% and 30% of the total data have been 
considered for the training and testing stages respectively.  In addition, 20% of training data 
have been chosen for the validation of network output in proposed deep networks. The mean 
squared error (MSE) and R-squared amount were used in proposed deep networks to estimate 
the errors of predictions. The relationship for loss function as MSE errors is shown in Equation 
1.  

( ) ( )
2

1

1 .1 
n

i i
i

MSE y y Eq
n =

= −∑  (1)

MATERIALS AND METHODS 

The quantitative analysis of groundwater quality parameters can be reflected with an 
emphasis on different geological, geotechnical, and environmental indexes which have been 
assessed based on geoenvironmental engineering legislations. The maxima, minima, averages, 
and standard deviations of the physicochemical parameters were calculated and have been 
shown as the primary data analysis in Table 1. Statistical analysis has been done on 3287 results 
of each set for Anions, Cations, pH, No3, TDS, and EC. The result showed only 25 percent of 
data had EC amounts lower than 573 mS/cm and 75% of EC amounts were detected for less than 

 

Figure 4. The structure of the deep neural network (NET 5)  

   

Fig. 4. The structure of the deep neural network (NET 5)

Table 1. Primary data analysis of the dataset 
 

  
pH TDS (ppm) 

EC 
(μS/Cm) 

Cations (meq/L) Anions (meq/L) NO3 
(meq/L) K Na Mg Ca SO4 Cl HCO3 CO3 

Count 3287 3287 3287 3287 3287 3287 3287 3287 3287 3287 3287 3287 

Mean 7.83 1171.08 1906.23 0.08 8.52 3.85 6.88 7.12 8.25 3.80 0.02 27.36 
Std. 
Dev 

0.36 1622.76 2585.27 0.07 13.63 5.15 9.92 10.75 16.58 1.72 0.10 17.62 

Min 6.42 109.00 191.00 0.00 0.07 0.08 0.70 0.18 0.10 0.25 0.00 6.20 

25% 7.60 326.50 573.00 0.03 1.60 1.20 2.56 1.45 1.00 2.58 0.00 18.60 

50% 7.82 557.10 936.90 0.08 3.25 2.00 3.76 2.90 2.40 3.38 0.00 27.36 

75% 8.10 1157.50 1887.00 0.10 8.98 3.96 6.58 7.22 6.30 4.63 0.00 31.00 

Max 9.78 16100.00 25000 0.90 136 42 109 108 171 15.48 1.06 148.80 
 
  

Table 1. Primary data analysis of the dataset
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1887 mS/cm. It is concluded the study area is going to be the salinized area. According to WHO 
standards, the EC value should not exceed 400 μS/cm. The current investigation indicated that 
the EC value was 179.3–20 μS/cm with an average value of 192.14 μS/cm.

A linear relationship between EC and TDS has been developed based on the current study’s 
collected dataset. The proposed relationship could estimate the TDS parameter with the highest 
degree of accuracy and shows R-squared 0.99 in its TDS development. The proposed relationship 
to estimate TDS based on EC in our study of the urban area is presented in Eq. 2. 

EC(µS/cm) = 1.58 (TDS (ppm)) + 53.36  (2)

The kriging interpolation method has been used to estimate the EC amount in the areas 
between actual boreholes for current study boundaries. Kriging is an interpolation method that 
makes predictions at unsampled locations using a linear combination of observations at nearby 
sampled locations (DiBiase et al., 2006). The result of EC prediction based on the Kriging method 
has been depicted in Figure 6. The result shows the northern part has been filled with blue or 
null. The null is per the lack of measured data in this area which has mountain geomorphology.  
The distribution of EC in other areas shows by Equipotential Line with the range of 1000 mS/
cm difference. The maximum amount of EC shows in the north-western southwestern western 
part of the Tehran province. This interpolation significantly has confirmed the authors’ previous 
studies in this area. 

The meaningful relationship between Anions, Cations, pH, TDS, and EC in the statistical 

 
Figure 5. Scatter graph of measured EC and TDS  
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Fig. 5. Scatter graph of measured EC and TDS

 
Figure 6. Distributed map of EC (mS/cm) based on Kriging interpolation  

   

Fig. 6. Distributed map of EC (mS/cm) based on Kriging interpolation
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correlation analysis has been assessed in this study. Preliminary statistical analysis showed a 
semi-linear relationship among parameters which could be a strong reason to select the Pearson 
Correlation analysis for the current study. Pearson correlation coefficients measure the linear 
relationship between the variables (Abbasimaedeh et al., 2013). This method is a relationship 
in which the variables tend to move in the same/opposite direction but not necessarily at a 
constant rate whereas the rate is constant in a linear relationship. According to the rule of 
correlation coefficients, the strongest correlation is considered when the value is closest to +1 or 
-1. A positive correlation coefficient implies that the variables are affiliated directly.

The result of the Pearson correlation showed the strongest relationship between EC, K, Na, 
Mg, Ca, SO4, and Cl. The result of correlation analysis showed a limited or negligible negative 
correlation between EC and the remaining parameters in this study database. Results showed 
a negative relationship between pH, Co3, and EC while other relationships are positive. The 
achieved relationship between EC and pH is not enough strong in linear correlation but based 
on the lowest price and easy accessibility of the pH test, this parameter will be considered as 
an input in the proposed neural networks of this study. In addition, the achieved strong linear 
and meaningful correlation between EC and TDS has confirmed the principle of developed 
relationship 1. The result of the Pearson correlation has been illustrated in Table 2. 

Keras and Tensor Flow libraries were used for developing deep-learning neural network 
structures. One of the main advantages of these libraries in addition to their development is 
that the models which are made based on these libraries can run with both GPU and CPU. Due 
to the constant number of input parameters for our proposed models, a constant amount of 
learning rate was considered for the model optimizer function. To reduce the weight saturation 
phenomenon in proposed deep networks, the activation function Relu was considered in our 
proposed deep networks and Tangent Hyperbolic and Sigmoid functions have been neglected.  

The optimized number of hidden layers and features has been considered in this study based 
on try and error. Different amounts for learning rates were applied to the model for the Adam 
optimizer function, while based on try and error it is concluded the amount 0.0005 was highly 
efficient in achieving acceptable accuracy of prediction. The results of the accuracy of prediction 
in terms of the R-squared values related to the EC parameter predicted by all the proposed deep 
neural networks have been reported in Table 3.

Five different deep networks with different numbers of hidden layers, features, and epochs 
were designed to predict EC parameters in the groundwater of the Tehran urban area. The input 

Table 2. Pearson correlation for anion, cation, EC, and pH 
 

  K Na Mg Ca So4 Cl Hco3 Co3 No3 pH TDS EC 
K 1                       

Na 0.59 1                     
Mg 0.60 0.77 1                   
Ca 0.60 0.74 0.77 1                 
So4 0.65 0.91 0.86 0.81 1               
Cl 0.61 0.90 0.82 0.91 0.84 1             

Hco3 0.18 0.21 0.32 0.10 0.24 0.07 1           
Co3 -0.04 -0.02 -0.05 -0.07 -0.04 -0.05 -0.08 1         
No3 0.18 0.23 0.17 0.26 0.22 0.22 0.20 -0.04 1       
pH -0.17 -0.11 -0.15 -0.20 -0.14 -0.14 -0.25 0.51 -0.07 1     

TDS 0.64 0.94 0.87 0.89 0.94 0.96 0.21 -0.05 0.25 -0.16 1   
EC 0.65 0.94 0.87 0.91 0.94 0.97 0.21 -0.05 0.25 -0.16 0.99 1 

 
  

Table 2. Pearson correlation for anion, cation, EC, and pH
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parameters of each proposed network have been shown in Table 3. The aim of deep layers neural 
network design is to reduce the inputs with an emphasis on the rate of correlation between EC 
and other available parameters, accessibility, ease to measure, and the price of the lab test. We 
considered two different deep learning models as targeted deep neural networks which have 
different targets. The first network with an emphasis on predicting based on the location and 
time of the sampling in addition to principal quality parameters (NET 4) and the second one 
was only designed based on principal quality parameters (NET 5).

Cl and SO4 are very important and common parameters that normally will measure in 
different technical statements like soil mechanics reports. These parameters are highly influential 
on human health, industrial equipment health and durability, and construction durability. These 
parameters are easy to access and measure in both soil and water environment, while laboratory 

Table 3. Structure of developed deep neural networks and their outcomes 
 

Network 
structure  

Net 1  Net 2 Net 3  Net 4 (Tehran) Net 5 (Global) 

Input 

UTMy, UTMx, 
K, Na, Mg, Ca, 
So4, Cl, Hco3, 
Co3, No3, pH, 
Month, Year 

UTMy, UTMx, 
K, Na, Mg, Ca, 
So4, Cl, pH, 
Month, Year 

UTMy, UTMx, 
K, Na, Mg, Ca, 
So4, Cl, pH, 
Month, Year 

UTMy, UTMx, 
So4, Cl, pH, 
Month, Year 

 So4, Cl, pH 

Layer 1 

Layer type= 
Dense 

Feature=1000 
Function*= Relu 

Layer type= 
Dense 

Feature=1000 
Function= Relu 

Layer type= 
Dense 

Feature=500 
Function= Relu 

Layer type= 
Dense 

Feature=500 
Function= Relu 

Layer type= 
Dense 

Feature=500 
Function= Relu 

Layer 2 

Layer type= 
Dense 

Feature=500  
Function= Relu 

Layer type= 
Dense 

Feature=500 
Function= Relu 

Layer type= 
Dense 

Feature=500 
Function= Relu 

Layer type= 
Dense 

Feature=10 
Function= Relu 

Layer type= 
Dense 

Feature=10 
Function= Relu 

Layer 3 

Layer type= 
Dense 

Feature=200  
Function= Relu 

Layer type= 
Dense 

Feature=200  
Function= Relu 

Layer type= 
Dense 

Feature=200  
Function= Relu 

    

Layer 4 

Layer type= 
Dense 

Feature=10  
Function= Relu 

Layer type= 
Dense 

Feature=10 
Function= Relu 

Layer type= 
Dense 

Feature=10 
Function= Relu 

    

Out 
Layer type= 

Dense, 
Feature=1 

Layer type= 
Dense, 

Feature=1 

Layer type= 
Dense, 

Feature=1 

Layer type= 
Dense, 

Feature=1 

Layer type= 
Dense, Feature=1 

Optimizer  Adam (LR** 
0.0005) 

Adam (LR 
0.0005) 

Adam (LR 
0.0005) 

Adam (LR 
0.0005) 

Adam (LR 
0.0005) 

Val.Split*** 20% 20% 20% 20% 20% 
Epochs 2000 1000 2000 1000 1000 

R-squared 
Train 

0.99 0.99 0.99 0.99 0.99 

R-squared 
Test 

0.99 0.95 0.95 0.99 0.99 

*Activation function       ** Learning Rate                      *** Validation split  
 

Table 3. Structure of developed deep neural networks and their outcomes



Pouyan Abbasimaedeh, P. and  Ferdosian, N.721

tests to measure these two parameters are fairly common and cost-efficient. On the other hand, 
developed probs which are very common and are beneficial to show pH in real time are so cheap 
and common in environmental monitoring.

Proposed NET 4 was designed to predict EC in the study area and it can consider the time of 
the sampling (year and month) as inputs, while proposed NET 5 has been designed for a global 
perspective to predict EC from three simple parameters. All the information for the current 
study proposed deep neural networks have been explained in Table 3.

RESULT AND DISCUSSION 

Five different proposed deep neural networks with an emphasis on the explained input 
parameters and described configuration were developed under the Linux operating system and 
Python version 3.9. To compare the accuracy of developed prediction models (Net 1 to Net 
5), we have used the R-squared values related to the EC parameter predicted by the models. 
The results of the accuracy of prediction in terms of the R-squared values related to the EC 
parameter predicted by all the proposed deep neural networks for both train and test datasets 
were reported in Table 3. We found that all five methods provide high R-squared values when we 
train them. For instance, Net 1, Net 4, and Net 5 provide the highest amount of accuracy with 
an R-squared value equal to 0.99.

The actual amount and predicted amount of EC parameter (mS/cm) for each developed deep 
neural network in the stages of training and test were depicted in Figure 7. These results showed 
the minimum accuracy was measured in the test steps of developed Net 2 and Net 3, while other 
networks achieved the highest amount of accuracy for the actual and predicted amount of EC 
parameter (mS/cm). The lack of prediction accuracy is detected where the amount of actual 
EC exceeds 10000 mS/cm in proposed NET 2 and NET 3, hence the R-squared error for these 
two proposed networks showed a lower amount of resolution in a comparison with the amount 
achieved by other proposed networks. Outcomes showed Net 4 and Net 5 could predict the 
amount of EC (mS/cm) with the highest accuracy of 0.99 and using a minimum range of input 
parameters.  

Considering only the R-Squared parameter is not sufficient in comparing all investigated 

   

  

Figure 7. Result of training and test to predict EC parameter (mS/cm) for each proposed deep 
neural network; from top left to right (Net 1 to Net 5). The red and green dots are training and 

test results respectively. The horizontal axes are the actual amount the and horizontal axes are the 
predicted amount (mS/cm). 

   

Fig. 7. Result of training and test to predict EC parameter (mS/cm) for each proposed deep neural network; from 
top left to right (Net 1 to Net 5). The red and green dots are training and test results respectively. The horizontal axes 

are the actual amount and horizontal axes are the predicted amount (mS/cm).
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deep learning models to find the best model we have provided the result of the accuracy for each 
of the proposed deep neural networks with an emphasis on loss function, depicted in Figure 8. 
The result illustrated the minimum loss that occurred after approximately 200 epochs for each 
network. Hence, it is acceptable and doable to reduce the number of epochs up to 200 for each 
network and decrease the analysis time of proposed deep networks. In addition, it is depicted 
that a higher amount of iteration to achieve the minimum loss function has happened in Net 5. 

Our deep neural networks were developed based on the available database of hydrochemical 
parameters of Tehran Province groundwater. The database is an updated version of the database 
used in our previous research (Nasrabadi and Abbasimaedeh 2014a and 2014 b). The achieved 
results showed the minimum error in our data prediction which is verifiable with the mentioned 
research when using NET 4. Based on the total results, we can conclude that for predicting EC, 
Net 5 performed a better estimation than the rest models (with high accuracy, less response 
time, and fewer required parameters as input to train the neural network), while other proposed 
deep learning models had almost acceptable accuracy.

CONCLUSIONS

To predict the Electrical Conductivity of groundwater in urban areas the dataset of 
groundwater parameters for Tehran city, the capital of Iran, was collected and considered as 
the input for deep neural networks to predict the EC in groundwater of urban areas. Previous 
research indicated that the most distinguishing factor of drinking water quality in urban areas 
was Electrical Conductivity in the urban area. Single-layer neural networks have been already 
used to estimate different quality parameters of drinking water in previous studies, while several 
deep neural networks were used to predict the Electrical Conductivity of Tehran urban areas 
in this study. Input parameters for proposed networks were selected based on the result of 
Pearson correlation, accessibility, cost-benefit, and time and location effects. Dense layers of 
deep neural networks were developed based on Keras and Tensor Flow libraries for artificial 
network configuration. In addition, the Relu activation function and Adam optimizer were used 
for the current proposed deep predictor networks. Furthermore, the MSE function was defined 

   

 
Figure 8. Result of training and test loss for EC for each of the developed deep neural networks; 

from top left to right (Net 1 to Net 5). The red and blue dots are training and test results 
respectively. The horizontal axes are loss amount, and the horizontal axes are epoch numbers. 

 

Fig. 8. Result of training and test loss for EC for each of the developed deep neural networks; from top left to right 
(Net 1 to Net 5). The red and blue dots are training and test results respectively. The horizontal axes are loss amount, 

and the horizontal axes are epoch numbers.
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as the loss function.  The result of the current study with an emphasis on the outcomes of the five 
proposed deep networks are summarized as follows: 

- The developed deep neural networks based on Keras and Tensor flow could significantly 
and accurately predict the EC parameters of urban areas. 

- Proposed deep networks in this study can predict EC with an emphasis on both locational 
and time, and quality parameters in urban areas. The achieved result showed it is possible to use 
both Net 4 and Net 5 to predict an accurate amount of EC parameters in urban areas

- The result of the proposed deep neural networks showed some of the developed networks 
could not predict with a high amount of accuracy in the high range of EC. The lower range of 
R-squared was detected in both Net 2 and Net 3 for both the training and testing stages. 

- The amount of loss function outcome in proposed deep networks showed a minimum 
of about 200 epochs is enough to estimate the acceptable accuracy of the EC parameter in 
groundwater to achieve R-squared 0.99.  

- The correlation between EC and other quality factors showed although there is a 
meaningful and positive relationship between Na, K, Mg, SO4, Cl, and EC regarding easy to 
achieve and cheapest price of test SO4, Cl, and pH was selected as the inputs of the developed 
and proposed networks 4 and 5. The maximum R-squared for proposed networks were 0.99 and 
they are enough strong to predict the high and low range of EC with an emphasis on the input 
ranges.
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