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INTRODUCTION

Although: (1) air pollution by particulate matter is recognized globally as one of the most 
concerning environmental problems because of its significant negative impacts on human and 
ecological health and on national development (WHO, 2016, 2018, 2020), (2) the particulate 
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The present study aims to provide baseline information on the temporal characteristics 
of PM2.5 and PM10 concentration time series variations, mainly on the cross-correlation 
between PM2.5 and PM10, using the improved mathematical and nonlinear methods. 
Firstly, the fractal theory such as fractal dimension is used to detect the pollution level 
in PM2.5 and PM10 time series. Secondly, the Multifractal Detrending Moving-Average 
Analysis (MFDMA) is used to analyze the multifractal characteristics of PM2.5 and PM10 
concentrations. Thirdly, Multifractal Detrending Moving-Average cross-correlation 
Analysis (MFXDMA) is used to study the cross-correlation between PM2.5 and PM10 
concentrations measured from January 1 to December 31, 2020, along the Boulevard de 
la Marina, one of the major roads in Cotonou. The results have indicated that: (1) PM10 
and PM2.5 concentration time series are characterized by a fractal dimension, which can 
permit to detect the pollution levels and to analyze the differences in emissions sources; 
(2) there is a significant multifractal structure in the PM2.5 and PM10 concentration 
data and their fluctuations are long-range correlated, however, the multifractal properties 
and self-memory characteristics change with the months; (3) generally, the multifractal 
degree and the complexity of PM10 are much stronger than those of PM2.5. However, 
they present a similar multifractality degree in some months of the year; (4) except, in 
February, the cross-correlation between PM2.5 and PM10 time series in the months 
of the year presents multifractal characteristics with positive persistence; (5) the cross-
correlation multifractal features show monthly variation. This paper provides the inter-
relationship between air PM2.5 and PM10 time series which may help taking steps in 
controlling the air quality and management of the Cotonou port area environment.
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matter such as PM2.5 and PM10 with a respectively aerodynamic diameter smaller than 2.5 and 
10 micrometers are major air pollutants (WHO, 2016) in the Benin Republic, data on PM2.5 
and PM10 concentrations are not widely measured and are unavailable over a long period. 
This lack of data related to PMs constitutes a limitation to the understanding of several aspects 
of air pollution and especially in their modeling process in the Benin Republic (Awokola et 
al., 2020). To overcome this unavailability of data, during the international research program 
named DACCIWA (Dynamic Aerosol-Cloud-Chemistry Interaction in West Africa), weekly-
scale mass concentrations of PM2.5 and PM10 were measured from February 2015 to March 
2017 in Cotonou (Benin) and Abidjan (Côte d’Ivoire) (Knippertz et al., 2015; Evans et al., 2018). 
These data allowed Djossou et al.(2018) to study the level of air pollution in these two cities 
and to produce the first contribution to aerosol source identification within the two cities. They 
showed that in Cotonou, the concentration of PM2.5 is three times greater than the standard 
recommended by the World Health Organization. The authors found severe air pollution in 
Cotonou and Abidjan. But, the temporal resolution of the data measured during the DACCIWA 
program is prohibitive for studies on the variation of PM2.5 and PM10 concentrations on fine 
temporal scales. Recently, during the Beninese-German scientific mission financed by the 
German Corporation for International Cooperation GmbH (GIZ), PM10, PM4, PM2.5, and 
PM1 mass concentration, and meteorological variables at a 15-minutes scale were measured 
in Cotonou, along the Boulevard de la Marina, a major road in Cotonou (Kounouhewa et al., 
2020). Based on the data measured during January 2020 by this international cooperation, 
Kounouhewa et al. (2020) confirmed Djossou’s work, and have shown that the concentration of 
PM2.5 and PM10 are greater than the WHO recommendation in terms of concentration.

Moreover, during the collaborative research project between Lancaster University, the 
Liverpool School of Tropical Medicine and the Measuring Air Quality for Advocacy in Africa 
(MA3) initiative of the African Center for Clean Air (ACCA), Awokola et al. (2020) have 
evaluated the feasibility and practicality of longitudinal measurements of ambient PM2.5 using 
low-cost air quality sensors (Purple Air-II-SD) across thirteen locations in seven countries in 
sub-Saharan Africa, such as Benin Republic (Cotonou), Burkina Faso (Ouagadougou), Gambia 
(Fajara), Nigeria (Lagos, Enugu, Anambra), Cameroon (Douala), Kenya (Nairobi), Uganda 
(Kampala). Using the PM2.5 concentration data collected continuously from January 1st to 
December 31st 2019, they have indicated high concentrations of PM2.5 at Cotonou.

It is well known and argued by (Mayer,1999; and Kinney, 2008) that environmental pollution 
is the result of many physical and chemical interactions between anthropogenic and natural 
conditions; thus, it is a complex system. According to (Xepapadeas,1992; Liu et al., 2003; Esposito 
et al., 2016) a better understanding of the structure of air pollutant concentrations time series 
and the dynamic mechanisms that govern their temporal variability are important and needed 
to strongly improve air pollution prevention policies.

Several authors, for example, Nikolopoulos et al. (2021) have shown that the fractal approach 
is one of the efficient tools to study the dynamic characteristics of air pollutant concentrations 
and characterize their temporal structure and variability. This approach was applied by (Wang 
et al., 2000; Lee et al., 2002, 2003a, 2003b; Ho et al., 2004; Shi et al., 2008, 2015; Ski et al., 2015; 
Xue et al., 2015; Liu et al., 2015; Zhang et al., 2016, 2019; Goa et al., 2019, and Nikolopoulos et 
al., 2019, 2021).  These authors have demonstrated that nonlinear approaches are required to 
investigate the complex behavior in air pollutant time series.

To date, in the Benin Republic,  limited studies are focused on the analysis of  PMs 
concentration, and the state of art on air pollution is mainly focused on (i) the identification 
of air pollutants sources, (ii) the investigation of their elemental composition, and (iii) the 
comparison of the limit of the particulate matter’s concentration to those of the WHO and EU 
recommendation. However, no research study has been focused on a better understanding of 
PM2.5 and PM10 concentration time series variations, mainly on the cross-correlation between 
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PM2.5 and PM10 observed around the Cotonou Autonomous Port area and Boulevard de la 
Marina in Benin by nonlinear approaches.

This study aims to complete the study of Kounouhewa et al. (2020), and to provide baseline 
information for the understanding of the temporal structure and variabilities of PM2.5 and 
PM10 concentrations series, especially to characterize the level of air pollution and the cross-
correlation properties between PM2.5 and PM10 in the Cotonou port area by the fractal 
approach.

The remaining contents of the paper are structured as follows: in section 2, study sites, the 
dataset, and methods are described. Analysis of results and their interpretations are provided 
in section 3. Finally, the paper is concluded with a summary, key limitations of the study, and 
outlook for further research in Section 4.

MATERIALS AND METHODS

The Benin Republic is one of the countries in South West Africa, located between, the 
Republic of Togo and the Federal Republic of Nigeria respectively in the West and the East part 
of the country. Benin is also boarded in the North and the North-West by the Niger Republic 
and Burkina Faso, respectively. In the South part, a coastline of around 121 km long (in the 
Gulf of Guinea) separates the country from the Atlantic Ocean. Cotonou is one of the most 
populous cities because of its high urban transport of thousands of two-wheeled motorcycle 
taxis (locally known as « zémidjan »), rejecting smoke fine particles in the atmosphere (Mama 
et al., 2013). The study site (6.35 N 2.41 E) is located on the border of the main road along the 
area of Cotonou port in Marina Avenue (Figure 1). The place is a traffic site, representative 
of anthropogenic emissions from cars, trucks, and two-stroke motorcycles (Kounouhewa et 
al., 2020). The study area is characterized by four seasons. The long rainy season extends from 
April to July and the short rainy season from October to November (Agbazo et al., 2019). These 
two seasons are interspersed with two dry periods that are extended from December to March 
and from August to September (Dossou, and Glehouenou-Dossou, 2007; Agbazo et al., 2019). 
March is the hottest month (∼30°C), while August is the coldest month (∼24°C). Figure 1 below 
shows the map of the location of the measurement site in Cotonou.

In the present study, air particulate matter data (PM2.5, PM10) was collected from the installed 
meteorological site in Cotonou (6.35 N, 2.41 E) during the Beninese-German scientific mission 
(Kounouhewa et al., 2020) from January 1rst, 2020 to December 31st, 2020. The measurement 
process is previously described in (Kounouhewa et al., 2020). The temporal resolution of the 
data recording is 15min. The reasons behind the choice of the site are: (i) its proximity to the 
port area where intense traffic activity is observed, (ii) several types of anthropogenic emissions 
from cars, trucks, and, two-stroke motorcycles can also be frequently released, (iii) along the 
Marina Avenue, an intense social life is regularly observed and particulate matter data may be 
very useful to estimate inhalation exposure to PM 2.5 and PM10. 

Different technics are used to reach the objectives of our study. These technics are described 
below. 

(1) The rate of change (ROC) on the PM2.5/PM10 ratio is introduced to reflect the degree of 
change in the PM2.5/PM10 ratio. According to Zhao et al. (2019), ROC is calculated as follows:

( ) ( )
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t  are respectively the ratio at time t+1 and t.

(2) The box-counting method developed in (Mandelbrot, 1982; Lovejoy et al., 1987; Hubert 
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and Carbonnel, 1989; Biaou, 2004) is used to compute the fractal dimension (Df ). The calculation 
process is described as follows:
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Fig 1. Geographical location of the study site in Cotonou: (a) Benin location in West Africa and 
Cotonou city’s location in Benin (b) Measurement site’s location along Marina Avenue in 
Cotonou. 
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Fig. 1. Geographical location of the study site in Cotonou: (a) Benin location in West Africa and Cotonou city’s 
location in Benin (b) Measurement site’s location along Marina Avenue in Cotonou.
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characterization of the cross-correlation between the daily PM2.5 and PM10 concentration 
and the multifractal properties between them. The MFXDMA method is decomposed in the 
following steps:

The first step is to calculate the profiles within the 
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 Z̃(t) = 1
n ∑ Z(t − k)⌈(n−1)(1−θ)⌉

k=−⌊(n−1)θ⌋                                                          (5) 
 
Where n is the window size, θ is the position parameter, and it varies in the range [0, 1]. 
According to Jiang and Zhou (2011), the centered MFXDMA algorithm (θ = 0.5) performs 
better than the backward and forward MFXDMA algorithms (θ = 0 and θ = 1). Therefore, in 
the present study, the centered MFXDMA algorithm is adopted. 
 

The third step is to calculate the qnth order cross-correlation as follows: 
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Thus, the following scaling relation is expected when the two series present multifractal nature 
as: 
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ℎ𝑥𝑥𝑥𝑥(𝑞𝑞) is the qnth-order cross-correlation exponent or the generalized cross-correlation 
exponent. According to (Zhou, 2008; Jiang and Zhou, 2011; Xu et al., 2017), for nonstationary 
time series ℎ𝑥𝑥𝑥𝑥(𝑞𝑞 = 2)> 1 and the Hurst exponent is 𝐻𝐻 = ℎ𝑥𝑥𝑥𝑥(𝑞𝑞 = 2) − 1, whereas, for 
stationary time series, Hurst exponent is 𝐻𝐻 = ℎ𝑥𝑥𝑥𝑥(𝑞𝑞 = 2). H(2) > 0.5 indicates long memory 
(positive long-range) or persistency in the signal and H(2) < 0.5 short memory or anti-
persistency. H(2) = 0.5, the signal is uncorrelated i.e. white noise. In the case of cross-
correlation analysis, hxy(2), is smaller (greater) than 0.5, indicating that there are anti-persistent 
(persistent) cross-correlations between the PM2.5 and PM10 concentration time series. Anti-
persistent behavior implies that a decrease (or increase) of PM2.5 fluctuations is related to an 
increase (or decrease) of PM10 fluctuations according to power-law. Whereas, the persistent 
behavior implies that a decrease (or increase) of PM2.5 fluctuations is related to a decrease (or 
increase) of PM10 fluctuations according to power-law. According to (Xue et al., 2005; 
Movahed et al., 2006; Arianos and Carbone, 2007; Zhou, 2008; Jiang and Zhou, 2011; Xu et 
al., 2017), the Renyi exponent 𝜏𝜏𝑥𝑥𝑥𝑥(𝑞𝑞) or the multifractal quality exponent is related to the qth-
order cross-correlation exponent ℎ𝑥𝑥𝑥𝑥(𝑞𝑞) by the following expression: 

τxy(q) = qhxy(q) − 1                                                                                                           (8) 

According to (Feder, 1988; Peitgen et al., 2004; Mohaved et al., 2006; Zhou, 2008), the 
multifractal spectrum fxy(αxy) and singularity strengths or the scaling exponent, 𝛼𝛼𝑥𝑥𝑥𝑥 are related 
to the qth-order cross-correlation exponent ℎ𝑥𝑥𝑥𝑥(𝑞𝑞) through Legendre transformation as follows: 
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Some pertinent parameters can be deduced from the multifractal spectrum, they are following: 
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( )xyh q  is the qnth-order cross-correlation exponent or the generalized cross-correlation 
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range) or persistency in the signal and H(2) < 0.5 short memory or anti-persistency. H(2) = 
0.5, the signal is uncorrelated i.e. white noise. In the case of cross-correlation analysis, hxy(2), is 
smaller (greater) than 0.5, indicating that there are anti-persistent (persistent) cross-correlations 
between the PM2.5 and PM10 concentration time series. Anti-persistent behavior implies that 
a decrease (or increase) of PM2.5 fluctuations is related to an increase (or decrease) of PM10 
fluctuations according to power-law. Whereas, the persistent behavior implies that a decrease 
(or increase) of PM2.5 fluctuations is related to a decrease (or increase) of PM10 fluctuations 
according to power-law. According to (Xue et al., 2005; Movahed et al., 2006; Arianos and 
Carbone, 2007; Zhou, 2008; Jiang and Zhou, 2011; Xu et al., 2017), the Renyi exponent ( )xy qτ  
or the multifractal quality exponent is related to the qth-order cross-correlation exponent ( )xyh q  
by the following expression:
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Some pertinent parameters can be deduced from the multifractal spectrum, they are following: 
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( ) ( )( ) 1xy xy xy xyf q h qα α= − +                                                                                                 (10)

Some pertinent parameters can be deduced from the multifractal spectrum, they are following:
Multifractal spectrum width, Δ𝛼 
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∆𝛼𝛼𝑥𝑥𝑥𝑥 = 𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖                                                                                                                                      (11) 
 
The Holder’s exponent, 𝛼𝛼𝑥𝑥𝑥𝑥0 is defined as the value of  𝛼𝛼𝑥𝑥𝑥𝑥 at which the multifractal 
spectrum reaches the maximum value.  
The asymmetric index, AI is expressed as:  
 
 

𝐴𝐴𝐴𝐴 = ∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥ℎ𝑥𝑥
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                                                                                                                                             (12) 

Where ∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 𝛼𝛼𝑥𝑥𝑥𝑥0 − 𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖     and    ∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑖𝑖𝑥𝑥ℎ𝑥𝑥 = 𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝛼𝛼𝑥𝑥𝑥𝑥0                    

These three parameters are used for the quantitative description of PM2.5 and PM10 
concentration time series separately and the cross-correlation between them. The asymmetry 
index (AI) is used to quantify the symmetry of the multifractal spectrum.  Also, the AI values 
explain how the multifractal spectrum is influenced by large- and small-scale fluctuations. AI=0 
corresponds to a symmetric shape, AI > 0 indicates the right-skewed shape, the multifractal 
spectrum is caused by small-scale fluctuations, and AI< 0 means the left-skewed shape, the 
time series are characterized by a multifractal structure, which is insensitive to local fluctuations 
with small amplitudes (Agbazo et al., 2021).  

The width of the multifractal spectrum, ∆𝛼𝛼𝑥𝑥𝑥𝑥 is used to characterize the degree of 
multifractality. Higher values of ∆𝛼𝛼𝑥𝑥𝑥𝑥 correspond to higher multifractal degree and vice versa. 
For pure monofractal,  ∆𝛼𝛼𝑥𝑥𝑥𝑥  is equal to 0 or less than 0.05 (Makowiec and Fulinski, 2010). 

𝛼𝛼𝑥𝑥𝑥𝑥0 gives valuable information about the structure of the studied process.  

According to Gu and Zhou (2010), when X = Y, MFXDMA is reduced to MFDMA. Which is 
used to examine the multifractal characteristics of studied variables. 

RESULTS AND DISCUSSION 

The temporal variation of the Rate of Change (ROC) on PM2.5 and PM10 in each month is 
shown in Figure 2. From this figure, generally, it’s observed that the ROC of PM2.5 is slightly 
closer to those of PM10, thus they present approximately the same degree of change. This result 
could be explained by similar sources. For both particulate matters, results show that the ROC 
varies across days, and sometimes large variability can be observed in some months, such as 
March, April, May, June, August, and December. These findings indicate that generally the 
PM2.5 and PM10 concentrations vary substantially from one day to another, and the degree of 
its change depends on the month. To understand the temporal variation of the pollution level, 
it is pertinent to analyze the degree of change in the PM2.5/PM10 ratio. 
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𝐴𝐴𝐴𝐴 = ∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥−∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥ℎ𝑥𝑥
∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥+∆𝛼𝛼𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥ℎ𝑥𝑥

                                                                                                                                             (12) 
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These three parameters are used for the quantitative description of PM2.5 and PM10 
concentration time series separately and the cross-correlation between them. The asymmetry 
index (AI) is used to quantify the symmetry of the multifractal spectrum.  Also, the AI values 
explain how the multifractal spectrum is influenced by large- and small-scale fluctuations. AI=0 
corresponds to a symmetric shape, AI > 0 indicates the right-skewed shape, the multifractal 
spectrum is caused by small-scale fluctuations, and AI< 0 means the left-skewed shape, the 
time series are characterized by a multifractal structure, which is insensitive to local fluctuations 
with small amplitudes (Agbazo et al., 2021).  

The width of the multifractal spectrum, ∆𝛼𝛼𝑥𝑥𝑥𝑥 is used to characterize the degree of 
multifractality. Higher values of ∆𝛼𝛼𝑥𝑥𝑥𝑥 correspond to higher multifractal degree and vice versa. 
For pure monofractal,  ∆𝛼𝛼𝑥𝑥𝑥𝑥  is equal to 0 or less than 0.05 (Makowiec and Fulinski, 2010). 

𝛼𝛼𝑥𝑥𝑥𝑥0 gives valuable information about the structure of the studied process.  

According to Gu and Zhou (2010), when X = Y, MFXDMA is reduced to MFDMA. Which is 
used to examine the multifractal characteristics of studied variables. 

RESULTS AND DISCUSSION 

The temporal variation of the Rate of Change (ROC) on PM2.5 and PM10 in each month is 
shown in Figure 2. From this figure, generally, it’s observed that the ROC of PM2.5 is slightly 
closer to those of PM10, thus they present approximately the same degree of change. This result 
could be explained by similar sources. For both particulate matters, results show that the ROC 
varies across days, and sometimes large variability can be observed in some months, such as 
March, April, May, June, August, and December. These findings indicate that generally the 
PM2.5 and PM10 concentrations vary substantially from one day to another, and the degree of 
its change depends on the month. To understand the temporal variation of the pollution level, 
it is pertinent to analyze the degree of change in the PM2.5/PM10 ratio. 

 

 

 

 

 

 correspond to higher multifractal degree and vice versa. 



Pollution 2023, 9(2): 628-645634

RESULTS AND DISCUSSION

The temporal variation of the Rate of Change (ROC) on PM2.5 and PM10 in each month is 
shown in Figure 2. From this figure, generally, it’s observed that the ROC of PM2.5 is slightly 
closer to those of PM10, thus they present approximately the same degree of change. This result 
could be explained by similar sources. For both particulate matters, results show that the ROC 
varies across days, and sometimes large variability can be observed in some months, such as 
March, April, May, June, August, and December. These findings indicate that generally the 
PM2.5 and PM10 concentrations vary substantially from one day to another, and the degree of 
its change depends on the month. To understand the temporal variation of the pollution level, it 
is pertinent to analyze the degree of change in the PM2.5/PM10 ratio.

Figure 3 shows the temporal variation of ROC in PM2.5/PM10 concentration ratios. Results 
show large variability across days in some months and significant differences are found between 
the months. Considering all the months of the year, the lowest ROC of the PM2.5/PM10 ratio 

 

Fig 2. Temporal variations of ROC on daily particulate matter concentrations in each month. Black 
color for (PM2.5) and red color (for PM10).   
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These three parameters are used for the quantitative description of PM2.5 and PM10 
concentration time series separately and the cross-correlation between them. The asymmetry 
index (AI) is used to quantify the symmetry of the multifractal spectrum.  Also, the AI values 
explain how the multifractal spectrum is influenced by large- and small-scale fluctuations. AI=0 
corresponds to a symmetric shape, AI > 0 indicates the right-skewed shape, the multifractal 
spectrum is caused by small-scale fluctuations, and AI< 0 means the left-skewed shape, the 
time series are characterized by a multifractal structure, which is insensitive to local fluctuations 
with small amplitudes (Agbazo et al., 2021).  

The width of the multifractal spectrum, ∆𝛼𝛼𝑥𝑥𝑥𝑥 is used to characterize the degree of 
multifractality. Higher values of ∆𝛼𝛼𝑥𝑥𝑥𝑥 correspond to higher multifractal degree and vice versa. 
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The temporal variation of the Rate of Change (ROC) on PM2.5 and PM10 in each month is 
shown in Figure 2. From this figure, generally, it’s observed that the ROC of PM2.5 is slightly 
closer to those of PM10, thus they present approximately the same degree of change. This result 
could be explained by similar sources. For both particulate matters, results show that the ROC 
varies across days, and sometimes large variability can be observed in some months, such as 
March, April, May, June, August, and December. These findings indicate that generally the 
PM2.5 and PM10 concentrations vary substantially from one day to another, and the degree of 
its change depends on the month. To understand the temporal variation of the pollution level, 
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is observed in September and October, which are closer to zero. In July, September, October, 
November, and December, the ROC doesn’t change significantly. This result suggests that in 
these months PM2.5/PM10 ratios have fewer changes and are stable. These findings indicate the 
presence of a few sources with low emissions. However, in the other months, the ROC changed 
significantly, suggesting greater changes in PM2.5/PM10 ratios, and the presence of a relatively 
unstable proportion of PM2.5. This finding indicates more diversity and variability of emission 
sources in these months.

Figure 4 shows the number of values per 2D bin for PM10 concentration, and PM2.5 
concentration, per month. According to the World Health Organization (WHO), the 24’-
h average concentration limits of PM2.5 and PM10 for good air quality are 25 and 50 µg/
m3, respectively. The results demonstrated that from March to December, PM2.5 and PM10 
concentrations appear preferentially respectively within the interval (0.0, 25) µg/m3 and (0.0, 
50) µg/m3. Therefore, in these months, most PM2.5 and PM10 daily concentrations are smaller 
than or closer to the WHO recommendations. Whereas in January and February PM2.5 and 
PM10 concentrations appear preferentially respectively within the interval (0.0, 50) µg/m3 
and (0.0, 100) µg/m3. Thus, most PM2.5 and PM10 daily concentrations are higher than the 
WHO recommendations in these two months. Overall, the predominance of PM2.5 and PM10 
concentrations between respectively 0 and 50 µg/m3 and 0 and 100 µg/m3 is identified. However, 
sometimes, there is a possibility that the PM 2.5 and PM10 concentration becomes respectively 
higher than 50 µg/m3 and 100 µg/m3. The findings indicate that the level of air pollution caused 
by PM2.5 and PM10 depends on the month. Moreover, there exist some days for which the 
PM2.5 and PM10 concentrations are much higher than WHO recommendations. These days 

 

Fig 3. Temporal variations of ROC on PM2.5/PM10 ratio in each month. 
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can appear in all the months but preferentially in the months of the dry season. The total number 
can exceed 50 (fifty) days in the year.

Figure 5 displays the box-counting results of PM10 and PM2.5 concentrations by using 
different pollution levels thresholds, th. As shown in the figure, (i) the number of boxes N(λ) 
is a decreasing function of λ; (ii) the log-log plots of N(λ) versus λ present a linear relationship 
with the slope equal to -1 when Th is 0, (iii) with increasing Th levels, the log-log plots can 
be approximate to a straight line with slope different from-1, which represent the opposite 
of the fractal dimension (-Df). These findings indicate that the examined PM10 and PM2.5 
concentration time series are characterized by a fractal dimension. Therefore, this approach can 
be used to identify the scale invariance within a specific time scale range when characterizing 
the pollution level in particulate matter concentration time series.

Figure 6 describes the relationship between the fractal dimension (Df) and the threshold (Th) 
for PM10 and PM2.5 concentrations time series. For both examined PM concentration time series, 
the fractal dimension decreases with the threshold level. This result suggests that the examined 
PM2.5 and PM10 concentration time series are characterized by multifractal characteristics. 
Thus, the threshold level (Th) changes the temporal structure of the PM concentration time 
series. It’s demonstrated in this figure at lower Th values { }0,0.5,1 *WHO-limit and higher Th 
values { }3.5,4,4.5 *WHO-limit, that the fractal dimension of PM10 is systematically smaller than 
PM2.5 ones. Then, at medium th values { }1.5,2,2.5, 3 *WHO-limit the fractal dimension of 
PM10 is larger than those of PM2.5. These results suggest that PM10 and PM2.5 concentrations 

 
Fig 4. The number of values per two-dimensional bin (25 µg/m3 × 50µg/m3) of PM10 and PM2.5 
concentration, per month. 
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Fig 5. Box counting graph derived from daily particulate matter concentration: (a) for PM10 
measurements; (b) for PM2.5 measurements 

   

 

Fig 6. Fractal dimension (Df) versus levels thresholds, Th 

   

Fig. 5. Box counting graph derived from daily particulate matter concentration: (a) for PM10 measurements; (b) 
for PM2.5 measurements
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are provided by different sources. These results suggest that, for lower and higher threshold levels, 
PM10 concentration time series present high intermittency compared to PM2.5 ones. Opposite 
results are obtained for the medium threshold level. For higher Th values, the intermittency is 
constant because the fractal dimensions of PM10 are equal to those of PM2.5. These findings 
indicate that some temporal characteristics can be revealed in PMs time series by analyzing the 
relationship between fractal dimension (Df) and threshold (Th). However, the study of the single 
fractal dimension cannot permit describing deeply the distribution of PM concentration in its 
local fluctuations. Therefore, it’s necessary to study this temporal series under a multifractal 
framework. These results have been corroborated by previous studies such as (Ho et al., 2004; 
Lee et al., 2002, and Lee et al., 2003a) in Asia.     

 In Figure 7, the main parameters of PM10 and PM2.5 concentration-time series’ multifractal 
spectra are presented. Overall, the H(q=2), asymmetry index (AI), Holder or singularity exponent 
(α0), and the multifractal spectrum width (Δα) values obtained for the PM10 concentration time 
series are different from those of PM2.5, but they are closer in some months and vary generally 
in the same manner (Figure 7). This implies that in each month the fluctuation regimes in the 
PM10 daily concentration time series are different from that of PM2.5. Thus, some differences 
are presented in each month for both PM concentrations concerning their emissions sources, 
which present greater changes between the months.

 

 

Fig 7. Hurst exponent and main parameters of monthly and annual multifractal spectra of PM10 
(red color) and PM2.5 (black color) concentration time series. For both PM time series, temporal 
variation of H(q=2), asymmetry index (AI), Holder or singularity exponent (α0), and the 
multifractal spectrum width (Δα) are shown in panels (a), (b), (c), and (d), respectively. January 
(J), February (F), March (M), April (A), May (M), June (J), July (J), August (A), September (S), 
October (O), November (N) and December (D), Y stands for Annual scale 
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It can be observed in Figure 7a the temporal variation of H(q = 2). Except for February and 
November, H(q = 2) values are lower than 1. Therefore, in February and November, the PM10 
and PM2.5 concentration time series are non-stationary signals. In February and November, 
the Hurst exponent, h (h=H(q=2) -1) is lower than 0.5, thus in these months, the time series for 
both PM concentrations are characterized by anti-persistent behavior. They are characterized 
by persistent behavior during the other months. The results can be interpreted as follows: an 
increase in the PM10 and PM2.5 daily concentration values is likely to be followed by an increase 
in PM10 and PM2.5 concentration. These findings are useful in modeling these two examined 
variables.

The asymmetry index (AI) results obtained each month and annually for PM10 and PM2.5 
concentrations time series are presented in Figure 7b. In January, the multifractal spectrum of 
the daily PM10 and PM2.5 concentrations are symmetric, because AI-value is equal to zero. 
Therefore, according to Xie and Bao (2004), the singularity of the large and small fluctuations 
is identical. For PM10 (PM2.5), AI values are negative during July, August, September, and 
October (April, July, August, September, and October). Therefore, in these months their 
corresponding multifractal spectrum presents right-hand deviation with local low fluctuations, 
while the opposite result is obtained during the other months because AI values are positive. 

Overall, α0 varies monthly, however, no trend is obvious (Figure7c). The α0 values obtained 
during the month are greater than 1, except during October and December for PM10 and 
PM2.5 concentration time series (Figure7c). For both PM concentration and among the months 
examined, February presents the highest value of α0, while the lowest value is found in December. 
This result implies that February exhibits the greatest persistence. Generally, except for January, 
February, and March, the α0 values of PM2.5 are higher than that of PM10. This finding suggests 
that in these months PM10 is governed by a more regular process and more variability than 
PM2.5, whereas the opposite result is obtained in January-February-March. 

Overall, for both PMs concentration time series, the multifractal spectrum widths (Δα) are 
different from zero during all the months and studied years (Figure 7d).  This result confirms the 
findings obtained above from the box-counting method. Thus, the PM10 and PM2.5 time series 
may be more suitably described by using a multidimensional fractal structure (or multifractal 
scaling analysis). 

Generally, the multifractal spectra of PM2.5 are wider than that of PM10 during the months 
of the year, except in January and February, meaning that the fluctuation regimes in PM2.5 are 
more complex than that of PM10. However, during January, and February, and when the daily 
time series observed during the studied year are considered, the multifractal spectra of PM10 
present a lower width compared to PM2.5. Thus, during these periods, the multifractality degree 
of PM10 is larger and its time series present more complex behavior. During the studied year 
and specifically during April, July, September, and October, PM2.5 and PM10 exhibit similar 
values of multifractal spectra width (Δα) and therefore present a similar degree of multifractality. 
Among the studied month, the highest value of (Δα) is found in February and the lowest value 
in December. This finding suggests that PM10 and PM2.5 time series are characterized by a 
larger (smaller) degree of complexity in February (December). This result could be attributed to 
the nature of its emission sources or an unidentified local process.

According to Xie and He (2019), it’s necessary to examine the relationship between PM2.5 
and PM10 when studying them around a port area. So, the monthly and annual multifractal 
spectra of the multifractal detrending moving-average cross-correlation analysis between 
PM10 and PM2.5 concentration time series are shown in Figure 8. The results have shown that 
some differences exist between monthly and annual multifractal spectra. Thus, the nonlinear 
relationship between PM10 and PM2.5 concentration time series changes monthly and the 
monthly relationship is different from that of the annual scale. It can be observed that the 
monthly and annual multifractal spectra have a bell-like shape and present a concave-down 
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parabola. This finding indicates that the cross-correlation between daily PM10 and PM2.5 
concentration time series in each month and during the year are multifractal and present strong 
multifractal characteristics. Thus, the cross-correlation between these PM concentrations is a 
multiscale series.

Figure 9 presents the Hurst exponent and the main parameters of the monthly and annual 
multifractal spectra of the multifractal detrending moving-average cross-correlation analysis 
between PM10 and PM2.5 concentration time series. 

As shown in Figure 9a, in all the months of the year, except in February, hxy(q = 2) values are 
between 0 and 1 and greater than 0.5, meaning positive persistent cross-correlation between 
PM10 and PM2.5 concentration in these months. Thus, an increase (decrease) in PM2.5 
concentrations fluctuations is associated with an increase (or decrease) in PM10 concentrations. 
The same findings are obtained when one considers all the data observed during the studied year. 
However, the opposite results are found in February. In this month, an increase (or decrease) in 
PM2.5 is related to a decrease (or increase) in PM10 concentrations according to the power law. 
In addition, the persistent behavior of the cross-correlation between PM2.5 and PM10 depends 
on the month.

As shown in Figure 9b, the asymmetry index (AI) obtained for the cross-correlation 
multifractal spectra of the cross-correlation between PM10 and PM2.5 is less than zero in July, 
August, September, October, and December, and the opposite result is obtained in the other 
months and during the studied year. These findings indicate that the cross-correlation is left-

 

Fig 8. Monthly (black color) and annual (red color) multifractal spectra obtained from Multifractal 
detrending moving-average cross-correlation analysis (MFXDMA) between PM10 and PM2.5 
concentration time series 
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moving-average cross-correlation analysis (MFXDMA) between PM10 and PM2.5 concentration time series
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skewed in July, August, September, October, and December, and right-skewed in the other 
months. Thus, low fractal exponents characterize the spectra of the cross-correlation in July, 
August, September, October, and December.

According to α0 values (Figure 9c), the multifractality degree of the cross-correlation between 
PM10 and PM2.5 concentration vary monthly. The cross-correlation between PM2.5 and PM10 
presents the highest multifractality in February and the lowest in November. 

In the months of the year and during the studied year, the widths (Δα) of the cross-correlation 
multifractal spectra of the correlation between PM10 and PM2.5 (Figure 9d) are all significantly 
nonzero. This finding indicates that the cross-correlation between PM10 and PM2.5 presents 
multifractal nature. In some months named as group1 (January, February, March, April May, 
August, and December), and during the studied year, the widths are greater than 0.5, thus 
PM10 and PM2.5 cross-correlation time series present strong multifractality, however, weak 
multifractality is obtained in others months named as group2 (June, July, September, October, 
and November). Overall, the temporal fluctuations of the cross-correlation between PM10 and 
PM2.5 are characterized by greater complexity in group1 than in the group2. Thus, the changes 
in the temporal fluctuations of the cross-correlation between PM10 and PM2.5 in group1 is 
larger than in group2. 

Fig. 9. Main parameters of the monthly and annual multifractal spectra obtained from Multifractal detrending 
moving-average cross-correlation analysis between PM10 and PM2.5 concentration time series. The temporal vari-
ation of H(q=2), asymmetry index (AI), Holder or singularity exponent (α0), and the multifractal spectrum width 
(Δα) are shown in panels (a), (b), (c), and (d), respectively. January (J), February (F), March (M), April (A), May 
(M), June (J), July (J), August (A), September (S), October (O), November (N) and December (D). Y, stands for 

Annual scale.
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CONCLUSIONS

The present study aims to provide baseline information in the full understanding of PM2.5 
and PM10 concentration time series variations, mainly on the cross-correlation between PM2.5 
and PM10 using nonlinear approaches. Daily PM2.5 and PM10 concentration time series 
measured from January 1st to December 31st, 2020, along the Boulevard de la Marina, a major 
road in Cotonou are examined by the fractal approach. These data are recorded during the 
Beninese-German scientific mission financed by the German Corporation for International 
Cooperation GmbH (GIZ). The box counting method has been used to detect the pollution levels 
and to analyze the differences in emissions sources for pollution episodes through the fractal 
dimension. Different threshold levels (Th) or pollution levels are used. The threshold levels are 
{ }0,0.5,1,1.5,2,2.5,3,3.5,4,4.5 *WHO-limit. WHO-limit is the WHO recommendation for 
the corresponding particulate matter. The multifractal detrending moving-average analysis 
(MFDMA) is used to analyze the multifractal characteristics of PM2.5 and PM10 concentrations. 
Multifractal detrending moving-average cross-correlation analysis (MFXDMA) is used to study 
the cross-correlation between PM2.5 and PM10 concentrations. The most major results can be 
summarized as follows:

(1) PM10 and PM2.5 concentration time series are characterized by a fractal dimension, 
which permits to detect the pollution levels and to analyze the differences in emissions sources. 
For lower { }0,0.5,1 *WHO-limit and higher threshold level { }3.5,4,4.5 *WHO-limit, PM10 
concentration time series present high intermittency compared to PM2.5 ones. Opposite results 
are obtained for medium threshold level{ }1.5,2,2.5  3 * and WHO-limit.

(2) Except in February and November, where the opposite results are revealed, daily PM2.5 
and PM10 time series observed during the other months and the year are considered. PM2.5 
and PM10 are characterized by persistent behavior and are stationary signals.

(3) In all the months of the year, PM2.5 and PM10 fluctuations are characterized by 
significant multifractal structures, however, the multifractal properties change with the months. 

(4)  In most of the months, the multifractal degree and complexity of the PM10 time series 
are characterized by a much stronger multifractal degree and complexity, compared to the 
PM2.5 time series. However, they present a similar multifractality degree in some months of the 
year.

(5) The cross-correlation between PM2.5 and PM10 time series in the months of the year 
is characterized by multifractal characteristics with positive persistence, however, the cross-
correlation multifractal features present monthly variation.

The study’s findings provide complementary informations for a better understanding of the 
multiscale dynamics of air pollution, especially providing some reference values for the joint 
control of the Cotonou port area PM2.5 and PM10 concentrations. This work recommends the 
use of the practical mathematical tool of Chaos theory to describe PM.25 and PM10 variability, 
to predict how these variables will behave in the future, and to obtain better short-and long-
term forecasts. Moreover, box dimension is recommended here to characterize the temporal 
structure of (PM2.5, and PM10) concentrations. However, the availability of long-term PM10 
and PM2.5 data is needed and strongly recommended to reinforce our conclusions. Future work 
should address to the cross-correlation analysis between meteorological factors and particulate 
matter (PM2.5, and PM10) based on multifractal theory. The present study limitations refer to 
the short study period, which is only one year of available data.
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