تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,570 |
تعداد دریافت فایل اصل مقاله | 97,221,200 |
Prevalence, Risk Factors, and Molecular Epidemiology of Anaplasma phagocytophilum in Sheep Raising in Khuzestan Province, Iran | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 9، دوره 18، شماره 2، تیر 2024، صفحه 233-242 اصل مقاله (1.26 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.2.1005347 | ||
نویسندگان | ||
Razieh Heidari1؛ Vahid Noaman2؛ Hedieh Jafari* 3 | ||
1Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, (AREEO), Karaj, Iran. | ||
2Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, (AREEO), Karaj, Iran. | ||
3Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Ahvaz, Iran. | ||
چکیده | ||
Background: Anaplasma sp. is a blood protozoon that causes economic damage to the livestock industry. Therefore, studying this disease’s epidemiology and distribution pattern in different regions is essential. Objectives: This study aimed to investigate the variety of infections of the Anaplasma sp. in the sheep population of Khuzestan Province in Iran. Methods: A total of 200 sheep blood samples were randomly collected and examined using specific nested polymerase chain reaction (nPCR) based on the 16S rRNA gene. Results: The prevalence of Anaplasma phagocytophilum was 17%, and infected sheep had no clinical signs. The effective risk factors in the spread of infection in Khuzestan Province include sheep aged 3-5 years, low sanitation, high-density farms, use of acaricides in the field, and hot season (P≤0.05). There was no significant association between the occurrence of A. phagocytophilum infection and variables of altitude, farm type, vectors, distance from other farms, and sex. Conclusion: Since the infection often has no clinical symptoms, identifying the risk factors and epidemiology is essential to develop control and prevention planning. | ||
کلیدواژهها | ||
Anaplasma phagocytophilum؛ Nested-PCR؛ Risk factors؛ Sheep؛ 16S rRNA | ||
اصل مقاله | ||
Introduction
The first product amplified the 16S rRNA gene (1468 bp) of the Anaplasma sp. The PCR solution was prepared based on the following instruction and with a final volume of 25 μL: 2.5 μL of DNA, 2.5 μL of PCR 10X buffer, 0.75 μL of MgCl2 solution at a concentration of 50 µM, 0.5 μL of dNTP at a concentration of 10 µM, 0.5 μL of each primer at a concentration of 20 µM, 0.5 μL of Taq DNA polymerase at a concentration of 5 U/μL, and 17.625 μL of distilled water. After preparing the solutions, frequent DNA amplification was conducted: primary denaturation step at 95°C for 5 minutes, denaturation step at 94°C for 45 seconds, primer connection step at 55°C for 45 seconds, chain lengthening step at 72°C for 90 seconds. Each step was conducted for 35 cycles and then examined in 1.5% agarose gel of electrophoresis with ethidium bromide staining. Specific internal primer sets targeting the V1 region of the 16S rRNA (962 bp) were used to detect A. phagocytophilum. Specific nPCR reactions were performed directly with 1 μL of the primary PCR product separately. The nPCR for A. phagocytophilum was performed in 25 μL total volume (Kawahara et al., 2006). The nested-PCR solution, with a total volume of 20 μL, was prepared as follows: 0.5 μL of the sample (from primary PCR), 2 μL of PCR 10X buffer, 0.6 μL of MgCl2 solution at a concentration of 50 µM, 0.4 μL of dNTP at a concentration of 10 µM, 0.4 μL of each primer at a concentration of 20 µM, 0.1 μL of Taq DNA polymerase at a concentration of 5 U/μL, and 15.6 μL of distilled water. After preparing the solutions, the frequent DNA amplification was conducted under the following program: primary denaturation step at 95°C for 5 minutes, denaturation step at 94°C for 45 seconds, primer connection step at 56°C for 45 seconds, and chain lengthening step at 72°C for 45 seconds. Also, each step was conducted for 35-40 cycles and then was examined in 1.5% agarose gel of electrophoresis with ethidium bromide staining.
Abdullah, D. A., Ali, F. F., Jasim, A. Y., Ola-Fadunsin, S. D., Gimba, F. I., & Ali, M. S. (2020). Clinical signs, prevalence, and hematobiochemical profiles associated with Anaplasma infections in sheep of North Iraq. Veterinary World, 13(8), 1524-1527. [DOI:10.14202/vetworld.2020.1524-1527][PMID] Atif, F.A. (2015). Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitology Research, 114(11), 3941–3957.[DOI:10.1007/s00436-015-4698-2][PMID] Atif, F. A. (2016). Alpha proteobacteria of genusAnaplasma (Rickettsiales: Anaplasmataceae): Epidemiology and characteristics of Anaplasma species related to veterinary and public health importance. Parasitology, 143(6), 659–685. [DOI:10.1017/S0031182016000238][PMID] Aubry, P., & Geale, D. W. (2011). A review of bovine anaplasmosis. Transboundary and Emerging Diseases, 58(1), 1–30.[DOI:10.1111/j.1865-1682.2010.01173.x][PMID] Dantas-Torres, F. (2015). Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. International Journal for Parasitology. Parasites and wildlife, 4(3), 452–461.[DOI:10.1016/j.ijppaw.2015.07.001][PMID] da Silva, N. B., Taus, N. S., Johnson, W. C., Mira, A., Schnittger, L., & Valente, J. D. M., et al. (2018). First report of Anaplasma marginale infection in goats, Brazil. Plos One, 13(8), e0202140. [DOI:10.1371/journal.pone.0202140][PMID] Jalali, S. M., Khaki, Z., Kazemi, B., Bandehpour, M., Rahbari, S., & RaziJalali, M., et al. (2013). Molecular detection and identification of Anaplasma species in sheep from Ahvaz, Iran. Iranian Journal of Veterinary Research, 14(1), 50 -56. [Link] Jouglin, M., Rispe, C., Grech-Angelini, S., Gallois, M., & Malandrin, L. (2022). Anaplasma capra in sheep and goats on Corsica Island, France: A European lineage within A. capra clade II? Ticks and Tick-borne Disease, 13(3), 101934. [DOI:10.1016/j.ttbdis.2022.101934][PMID] Kang, J. G., Ko, S., Kim, Y. J., Yang, H. J., Lee, H., & Shin, N. S., et al. (2011). New genetic variants of Anaplasma phagocytophilum and Anaplasma bovis from Korean water deer (Hydropotes inermis argyropus). Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 11(7), 929–938. [DOI:10.1089/vbz.2010.0214][PMID] Kawahara, M., Rikihisa, Y., Lin, Q., Isogai, E., Tahara, K., & Itagaki, A., et al. (2006). Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. In wild deer and ticks on two major islands in Japan. Applied and Environmental Microbiology, 72(2), 1102–1109. [DOI:10.1128/AEM.72.2.1102-1109.2006][PMID] Khaki, Z., Jalali, S. M., Kazemi, B., Razi Jalali, M., & Yasini, S. P. (2015). A study of hematological changes in sheep naturally infected with Anaplasma spp. and Theileria ovis: Molecular diagnosis. Iranian Journal of Veterinary Medicine, 9(1), 19-26. [DOI:10.22059/IJVM.2015.53228] Kocan, K. M., de la Fuente, J., & Cabezas-Cruz, A. (2015). The genus Anaplasma: New challenges after reclassification. Revue scientifique et technique, 34(2), 577-586. [DOI:10.20506/rst.34.2.2381][PMID] Moradi, Z., Ebrahimzadeh, E., Shayan, P., & Zarghami, F. (2021). Morphological and molecular investigation of anaplasma infection in dromedary camel (camelus dromedarius) in Bushehr Province, Iran. Iranian Journal of Veterinary Medicine, 15(3), 295-300. [DOI:10.22059/IJVM.2020.306095.1005109] Noaman, V. (2012). Identification of hard ticks collected from sheep naturally infected with Anaplasma ovis in Isfahan province, central Iran. Comparative Clinical Pathology, 21, 367-369. [DOI:10.1007/s00580-012-1438-1] Noaman, V. (2013). Discrimination between Anaplasma marginale and Anaplasma ovis by PCR-RFLP. World Applied Sciences Journal, 21(2), 190-195. [Link] Noaman, V. (2019). [A review on Anaplasma phagocytophilum as a zoonotic agent (Persian)]. Tehran University of Medical Sciences Journal, 76(12), 778-785. [Link] Noaman, V. (2020). Epidemiological study on Anaplasma phagocytophilum in cattle: Molecular prevalence and risk factors assessment in different ecological zones in Iran. Preventive Veterinary Medicine, 183, 105118. [DOI:10.1016/j.prevetmed.2020.105118][PMID] Noaman, V., Allameh, S. K., & Nabavi, R. (2017). Anaplasmosis in Ruminants of Iran: An overview. Advanced Technology in Clinical Microbiology, 1(2), 13. [Link] Noaman, V., Bastani, D. (2016). Molecular study on infection rates of Anaplasma ovis and Anaplasma marginale in sheep and cattle in West-Azerbaijan province, Iran. Veterinary Research Forum, 7(2), 163–167. [PMID] Noaman, V., & Moradi, M. (2019). Molecular epidemiology and risk factors assessment of Anaplasma spp. on dairy cattle in southwest of Iran. Acta Veterinaria Eurasia, 45(1), 30-36. [DOI:10.26650/actavet.2019.18014] Noaman, V., Nabinejad, A., Shahmoradi, A., & Esmaeilkhanian, S. (2016). Molecular detection of bovine leukocytic Anaplasma species in Isfahan, Iran. Research in Molecular Medicine, 4(2), 47-51 [DOI:10.18869/acadpub.rmm.4.2.47] Noaman, V., & Shayan, P. (2009). Molecular detection of Anaplasma phagocytophilum in carrier cattle of Iran-first documented report. Iranian Journal of Microbiolog, 1(2), 37-42. [Link] Noaman, V., & Shayan, P. (2010). Molecular detection of Anaplasma bovis in cattle from central part of Iran. Veterinary Research Forum, 1(2), 117-122. [Link] Noaman, V., & Shayan, P. (2010). Comparison of microscopic methods and PCR-RFLP for detection of Anaplasma marginale in carrier cattle. Iranian Journal of Microbiology, 2(2), 89–94. [PMID] Rar, V., Tkachev, S., & Tikunova, N. (2021). Genetic diversity of Anaplasma bacteria: Twenty years later. Infection, Genetics and Evolution, 91, 104833. [DOI:10.1016/j.meegid.2021.104833][PMID] Shaukat, A., Mehmood, K., Shaukat, I., Naeem, M. A., Mehfooz, A., & Saleem, M. I., et al (2019). Prevalence, haematological alterations and chemotherapy of bovine anaplasmosis in Sahiwal and crossbred cattle of District Faisalabad, Punjab Pakistan. Pakistan Journal of Zoology, 51(6), 2023-2032. [Link] Soosaraei, M., Haghi, M. M., Etemadifar, F., Fakhar, M., Teshnizi, S. H., & Asfaram, S., et al. (2020) Status of Anaplasma spp. infection in domestic ruminants from Iran: A systematic review with meta-analysis. Parasite Epidemiology Control, 11, e00173. [DOI:10.1016/j.parepi.2020.e00173][PMID] Stuen, S., Granquist, E. G., & Silaghi, C. (2013). Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Frontiers in Cellular and Infection Microbiology, 3, 31. [DOI: 10.3389/fcimb.2013.00031] Stuen, S., Scharf, W., Schauer, S., Freyburger, F., Bergström, K., & von Loewenich, F. D. (2010). Experimental infection in lambs with a red deer (Cervus elaphus) isolate of Anaplasma phagocytophilum. Journal of Wildlife Diseases, 46(3), 803–809.[DOI:10.7589/0090-3558-46.3.803][PMID] Stuen, S., Torsteinbø, W. O., Bergström, K., & Bårdsen, K. (2009). Superinfection occurs in Anaplasma phagocytophilum infected sheep irrespective of infection phase and protection status. Acta veterinaria Scandinavica, 51(1), 41. [DOI:10.1186/1751-0147-51-41][PMID] Tabrizchi, M. R., & Ahmadi-hamedani, M. (2023). Effects of blood storage time and temperature on Döhle body or döhle body-like inclusions in feline neutrophils. Iranian Journal of Veterinary Medicine, 17(1), 47-52. [DOI:10.32598/IJVM.17.1.1005253] Tanveer, M., Farooq, M., Amjad, M., Asif, M., Kashif, M., & Latif, M., et al. (2022). Molecular prevalence, associated risk factors and phylogeny of Anaplasma marginale, Theileria ovis and T. lestoquardi in sheep from Pakistan. Comparative Immunology, Microbiology and Infectious Diseases, 86, 101822.[DOI:10.1016/j.cimid.2022.101822][PMID] Woldehiwet, Z. (2010). The natural history of Anaplasma phagocytophilum. Veterinary Parasitology, 167(2-4), 108–122.[DOI:10.1016/j.vetpar.2009.09.013][PMID]
| ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 411 تعداد دریافت فایل اصل مقاله: 312 |