تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,011 |
تعداد دریافت فایل اصل مقاله | 97,205,601 |
امکانسنجی تولید استروویت از شیرابه دفنگاه سراوان | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 7، مهر 1401، صفحه 1517-1530 اصل مقاله (1.65 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.343478.669273 | ||
نویسندگان | ||
محمدباقر فرهنگی* 1؛ حمیدرضا زارع گیلدهی2؛ مریم خلیلی راد1؛ نسرین قربان زاده1؛ محدثه شیرین زاده2 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
غلظتهای زیاد آمونیوم و فسفات در شیرابه، امکان تولید کانی استروویت (MgNH4PO4.6H2O) که یک کود کندرهای ارزشمند در کشاورزی شناخته میشود را فراهم میکند. در این پژوهش امکان تولید رسوب استروویت از شیرابه دفنگاه سراوان بررسی شد. پژوهش در گروه علوم خاک دانشگاه گیلان و در سال 1400 انجام شد. نمونهبرداری از شیرابه انجام شد و غلظت یونهای آمونیوم، فسفات و منیزیم در آن اندازهگیری شد. تشکیل رسوب استرویت در سه نسبت مولی 1:1:1، 2/2:1/1:1 و 5:2:1/2 از [NH4+]:[Mg2+]:[PO43−] و در دو pH متفاوت 9 و 5/9 بررسی شد. از آنجا که مقدار آمونیوم در شیرابه بسیار بیشتر از منیزیم و فسفات بود، نسبتهای مولی مورد آزمایش بر اساس غلظت آمونیوم محاسبه شد و برای تنظیم غلظتهای منیزیم و فسفات به ترتیب از نمک کلرید منیزیم (MgCl2.6H2O) و اسید فسفریک (H3PO4) استفاده شد. بررسی ویژگیهای استروویت تشکیل شده با آنالیز XRD و FTIR انجام شد. موقعیت و شدت پیکها در رسوبهای تشکیل شده در همه تیمارها تطابق خوبی با پیک استاندارد استروویت داشت که رسوب این کانی را تایید کرد. آنالیز FT-IR طیف کریستال استرویت در همه نسبتهای مولی بررسی شده را نشان داد. مقایسه رسوب تشکیل شده نشان داد که در 5/9 pH= مقدار استروویت تشکیل شده در نسبتهای مولی 1:1:1 و 2/2:1/1:1 [NH4+]:[Mg2+]:[PO43−] بیشتر از 9 pH= بود. حذف آمونیوم در 5/9 pH= و در نسبتهای مولی 5:2:1/2، 2/2:1/1:1 و 1:1:1 از شیرابه به ترتیب 5/45، 7/39 و 7/32 درصد بود. بنابراین، استفاده از منابعی مانند شیرابه دفنگاه زباله در تولید استروویت، ضمن حذف آمونیوم میتواند هزینه تولید این کود را کاهش دهد. | ||
کلیدواژهها | ||
آمونیوم؛ بهینهسازی؛ فسفات؛ کود کندرها | ||
مراجع | ||
Baird, R.B. (2017). Standard methods for the examination of water and wastewater, 23rd. Water Environment Federation, American Public Health Association, American Water Works Association. Barbosa, S.G., Peixoto, L., Meulman, B., Alves, M.M. and Pereira, M.A. (2016). A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical Engineering Journal, 298, 146-153. Buchanan, J.R., Mote, C.R. and Robinson, R.B. (1994). Thermodynamics of struvite formation. Transactions of the ASAE, 37, 617–621. Butt, T.E., Alam, A., Gouda, H.M., Paul, P. and Mair, N. (2017). Baseline study and risk analysis of landfill leachate – current state-of-the-science of computer aided approaches. Science of the Total Environment, 580, 130–135. Çelen, I. and Türker, M. (2001). Recovery of ammonia as struvite from anaerobic digester effluents. Environmental Technology, 22(11), 1263-1272. Chauhan, C.K. and Joshi, M.J. (2014). Growth and characterization of struvite-Na crystals. Journal of Crystal Growth, 401, 221–226. Di Iaconi, C., Pagano, M., Ramadori, R. and Lopez, A. (2010). Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology, 101, 1732–1736. Farmer, V.C. (1974). Infrared Spectra of Minerals, Monograph No. 4, Mineral, Soc. Publishers, United Kingdom, London. Frost, R. L., Weier, M. L. and Erickson, K. L. (2004). Thermal decomposition of struvite. Journal of Thermal Analysis and Calorimetry, 76, 1025–1033. Gong, W., Li, Y., Luo, L., Luo, X., Cheng, X. and Liang, H. (2018). Application of struvite-MAP crystallization reactor for treating cattle manure anaerobic digested slurry: Nitrogen and phosphorus recovery and crystal fertilizer efficiency in plant trials. International Journal of Environmental Research and Public Health, 15, 1397. Hao, X., Wang, C., Van Loosdrecht, M.C.M. and Hu, Y. (2013). Looking beyond struvite for Precovery. Environmental Science & Technology, 47, 4965–4966. Huang, H., Liu, J., Wang, S., Jiang, Y., Xiao, D., Ding, L. and Gao, F. (2016). Nutrients removal from swine wastewater by struvite precipitation recycling technology with the use of Mg3(PO4)2 as active component. Ecological Engineering, 92, 111–118. Huang, H., Xiao, D., Zhang, Q. and Ding, L. (2014). Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 145, 191-198. Huang, H., Zhang, D., Wang, W., Li, B., Zhao, N., Li, J. and Dai, J. (2019). Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources. Science of the Total Environment, 655, 211–219. Kaza, S., Yao, L., Bhada-Tata, P. and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Publications, Washington, DC. Khalil, S.K.H. and Azooz, M.A. (2007). Application of vibrational spectroscopy in the identification of the composition of the urinary stones. Journal of Applied Sciences Research, 3, 387–391. Kim, D., Min, K.J., Lee, K., Yu, M.S. and Park, K.Y. (2017). Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater. Environmental Engineering Research, 22, 12–18. Kurtulus, G., and Tas, A.C. (2011). Transformations of neat and heated struvite (MgNH4PO4.6H2O). Materials Letters, 65, 2883-2886. Law, K.P. and Pagilla, K.R. (2019). Reclaimed phosphorus commodity reserve from water resource recovery facilities-A strategic regional concept towards phosphorus recovery. Resources, Conservation and Recycling, 150, 104429. Le Corre, K.S., Valsami-Jones, E., Hobbs, P. and Parsons, S.A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283, 514-522. Li, B., Huang, H.M., Boiarkina, I., Yu, W., Huang, Y.F., Wang, G.Q. and Young, B.R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. Li, B., Boiarkina, I., Huang, H.M., Munir, T., Wang, G.Q. and Young, B.R. (2019). Phosphorus recovery through struvite crystallization: Challanges for future design. Science of the Total Environment, 648, 1244–1256. Li, X.Z. and Zhao, Q.L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20, 171–181. Luo, Z., Wang, D., Yang, J., Huang, H. and Su, G. (2019). Nitrogen removal from digested piggery wastewater using fermented superphosphate within the pretreatment stage and an MAP fertilizer pot test. Journal of Cleaner Production, 152, 88–102. Martí, N., Pastor, L., Bouzas, A., Ferrer, J. and Seco, A. (2010). Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Research, 44, 2371–2379. Miller, F.A. and Wilkins, C.H. (1952). Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry, 24, 1253–1294. Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S.E. and Spiller, M. (2021). A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Science of the Total Environment, 756, 143726. Nakamoto, K. (1978). Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., John Wiley & Sons, New York. Peng, L., Dai, H., Wu, Y., Peng, Y. and Lu, X. (2018). A comprensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768–781. Ramaswami, S. Behrendt, J. Wang, G., Eggers, S. and Otterpohl, R. (2016). Combining magnesium ammonium phosphate precipitation with membrane processes for ammonia removal from methanogenic leachate. Water Environment Journal, 30, 218–226. Rodlia, A., Ikhlas, N., Pandebesie, E.S., Bagastyo, A.Y. and Herumurti, W. (2020). The effect of mixing rate on struvite recovery from the fertilizer industry. In IOP Conference Series: Earth and Environmental Science, 506, 012013. IOP Publishing. Ryu, H.D., Lim, D.Y., Kim, S.J., Baek, U.I., Chung, E.G., Kim, K. and Lee, J.K. (2020). Struvite precipitation for sustainable recovery of nitrogen and phosphorus from anaerobic digestion effluents of swine manure. Sustainability, 12(20), 8574. Saadat, E., Ghorbanzadeh, N., Farhangi, M.B. and Fazeli Sangani, M. (2022). Potential application of Chlorella sp. biomass cultivated in landfill leachate as agricultural fertilizer. Archives of Agronomy and Soil Science, 69, 890-906. Shu, L., Schneider, P., Jegatheesan, V. and Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97(17), 2211-2216. Siciliano, A. (2016). Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environmental Science and Pollution Research, 23(6), 5949-5959. Siciliano, A., Limonti, C., Curcio, G.M. and Molinari, R. (2020). Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, 12(18), 7538. Siciliano, A., Ruggiero, C. and De Rosa, S. (2013). A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Safety and Environmental Protection, 91, 311–320. Stefov, V., Soptrajanov, B., Kuzmanovski, I., Lutz, H.D. and Engelen, B. (2005). Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues III. Spectra of protiated and partially deuterated magnesium ammonium phosphate hexahydrate. Journal of Molecular Structure, 752, 60-67. Tao, W., Fattah, K.P. and Huchzermeier, M.P. (2016). Struvite recovery from anaerobically digested dairy manure: A review of application potenzial and hindrances. Journal of Environmental Management, 169, 46–57. Tonetti, A.L., de Camargo, C.C. and Guimarães, J.R. (2016). Ammonia removal from landfill leachate by struvite formation: an alarming concentration of phosphorus in the treated effluent. Water Science and Technology, 74(12), 2970-2977. Uysal, A., Yilmazel, Y.D. and Demirer, G.N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181, 248–254. Wang, K., Li, L., Tan, F. and Wu, D. (2018). Treatment of landfill leachate using activated sludge technology: A Review. Hindawi Archaea, 10 page. Wijekoon, P., Koliyabandara, P.A., Cooray, A.T., Lam, S.S., Athapattu, B.C. and Vithanage, M. (2022). Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. Journal of Hazardous Materials, 421, 126627. Wu, H., Ma, W., Kong, Q. and Liu, H. (2018). Spatial-temporal dynamics of organics and nitrogen removal in surface flow constructed wetlands for secondary effluent treatment under cold temperature. Chemical Engineering Journal, 350, 445–452. Wu, S., Zou, S., Liang, G., Qian, G. and He, Z. (2018). Enhancing recovery of magnesium as struvite from landfill leachate by pretreatment of calcium with simultaneous reduction of liquid volume via forward osmosis. Science of the Total Environment, 610, 137-146. Yilmazel, Y.D. and Demirer, G.N. (2011). Removal and recovery of nutrients as struvite from anaerobic digestion residues of poultry manure. Environmental Technology, 32, 783-794. Zhang, T., Ding, L. and Ren, H. (2009). Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166, 911–915. Zhang, T., Jiang, R. and Deng, Y. (2017). Phosphous recovery by struvite crystallization from livestock wastewater and reuse as fertilizer: A review. Physico-Chemical Wastewater Treatment and Resource Recovery, 135–152. Zheng, F., Huang, C.H. and Norton, L.D. (2004). Effects of near-surface hydraulic gradients on nitrate and phosphorus losses in surface runoff. Journal of Environmental Quality, 33(6), 2174–2182. | ||
آمار تعداد مشاهده مقاله: 288 تعداد دریافت فایل اصل مقاله: 308 |