تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,093,338 |
تعداد دریافت فایل اصل مقاله | 97,197,822 |
ارزیابی تأثیر پارامترهای خورشیدی و ژئومغناطیسی در مدلسازی زمانی-مکانی محتوای الکترون کلی (TEC) یونسفر با استفاده از مدلهای یادگیری ماشین | ||
فیزیک زمین و فضا | ||
مقاله 9، دوره 49، شماره 1، خرداد 1402، صفحه 153-169 اصل مقاله (1.99 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2023.339441.1007405 | ||
نویسندگان | ||
مهدیه السادات نظامزاده1؛ بهزاد وثوقی2؛ سید رضا غفاری رزین* 3 | ||
1گروه مهندسی ژئودزی، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران. رایانامه: m.nezamzadeh97@gmail.com | ||
2گروه مهندسی ژئودزی، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران. رایانامه: vosoghi@kntu.ac.ir | ||
3نویسنده مسئول، گروه مهندسی نقشهبرداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک، ایران. رایانامه: mr.ghafari@arakut.ac.ir | ||
چکیده | ||
در این مقاله مقدار محتوای الکترون کلی (TEC) یونسفر با مدلهای یادگیری ماشین (ML)، بهصورت مکانی-زمانی، مدلسازی شده و مورد ارزیابی و مقایسه قرار میگیرد. روشهای رگرسیون بردار پشتیبان (SVR) و شبکه عصبی مصنوعی (ANN) جهت مدلسازی محلی TEC استفاده میشوند. نوآوری اصلی این مقاله در ارزیابی تأثیر پارامترهای فیزیکی مختلف (KP، AP، DST و F10.7) در دقت خروجی مدلهای یادگیری ماشین است. نتایج بهدستآمده از دو مدل جدید با نتایج مدل جهانی یونسفری (GIM)، مدلهای تجربی IRI2016 و NeQuick در دو ایستگاه کنترل داخلی و یک ایستگاه کنترل خارجی مورد مقایسه قرار گرفتهاند. شاخصهای آماری جذر خطای مربعی میانگین (RMSE)، خطای نسبی، dVTEC=|VTECGPS-VECmodel|و ضریب همبستگی برای ارزیابی خطای مدلها، بهکار گرفته شده است. ارزیابی تأثیر پارامترهای ژئومغناطیسی و خورشیدی در خروجی مدلهای SVR و ANN نسبت به پارامترهای ورودی انجام و اهمیت هرکدام از پارامترهای فیزیکی در مدلسازی مکانی-زمانی یونسفر مورد بررسی قرار گرفته است. میانگین RMSE محاسبه شده در دو ایستگاه کنترل داخلی برای مدلهای SVR، ANN، GIM، IRI2016 و NeQuick به ترتیب برابر با 04/1، 91/3، 0.2/3، 90/6 و 65/7 TECU شده است. همچنین میانگین ضریب همبستگی مدلها در دو ایستگاه کنترل داخلی به ترتیب برابر با 97/0، 72/0، 84/0، 68/0 و 60/0 محاسبه شده است. نتایج بهدستآمده از این مقاله نشان میدهد که در هر دو حالت فعالیتهای ژئومغناطیسی و خورشیدی بالا و پایین، مدل SVR در ایستگاههای کنترل داخلی از دقت و صحت بالاتری نسبت به سایر مدلها برخوردار است. | ||
کلیدواژهها | ||
پارامترهای فیزیکی؛ یونسفر؛ GPS؛ SVR | ||
مراجع | ||
Amerian, Y., Voosoghi, B., & Mashhadi Hossainali, M. (2013). Regional Ionosphere Modeling in Support of IRI and Wavelet Using GPS Observations. Acta Geophysica, 61(5), 1246-1261, DOI: 10.2478/s11600-013-0121-5. Bilitza, D., & Reinisch, B. W. (2008). International reference ionosphere 2007: Improvements and new parameters. Advances in space research, 42(4), 599-609. Browne, S., Hargreaves, J., & Honary, B. (1995). An imaging riometer for ionospheric studies. Electronics & communication engineering journal, 7(5), 209-217. Cander. R (1998), Artificial neural network applications in ionospheric studies. Annali di Geofisica, 5-6(1998), 757-766. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. Etemadfard, H., & Mashhadi Hossainali, M. (2016). Application of Slepian theory for improving the accuracy of SH‐based global ionosphere models in the Arctic region. Journal of Geophysical Research: Space Physics, 121(3), 2583-2594. Feizi R, Voosoghi B, & Ghaffari Razin M. R. (2020). Regional modeling of the ionosphere using adaptive neuro-fuzzy inference system in Iran. Advances in Space Research, 65, 2515–2528. Ghaffari Razin, M. R., & Voosoghi, B. (2017). Ionosphere tomography using wavelet neural network and particle swarm optimization training algorithm in Iranian case study. GPS Solutions, 21(3), 1301-1314. Ghaffari-Razin, M. R., & Voosoghi, B. (2018). Application of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran. Journal of the Earth and Space Physics, 44(4), 99-114. Ghaffari Razin, M. R., & Voosoghi, B. (2016a). Modeling of ionosphere time series using wavelet neural networks (case study: NW of Iran). Advances in Space Research, 58(1), 74-83. Ghaffari Razin, M. R., & Voosoghi, B. (2016b). Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content. Journal of Atmospheric and Solar-Terrestrial Physics, 149, 21-30. Habarulema, J. B., McKinnell, L. A., & Opperman, B. D. (2011). Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks. Journal of Geophysical Research: Space Physics, 116(A4), 1-14. Huang, Z., Li, Q., & Yuan, H. (2015). Forecasting of ionospheric vertical TEC 1-h ahead using a genetic algorithm and neural network. Adv. Space Res. 55, 1775–1783. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation, MacMillan College Publishing Co. New York. Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more: Springer Science & Business Media. Inyurt, S., & Sekertekin, A. (2019). Modeling and predicting seasonal ionospheric variations in Turkey using artificial neural network (ANN). Astrophysics and Space Science, 364(4), 1-8. Jang, H., & Topal, E. (2014). A review of soft computing technology applications in several mining problems. Applied Soft Computing, 22, 638-651. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685. Komjathy, A. (1997). Global ionospheric total electron content mapping using the Global Positioning System. University of New Brunswick Fredericton. Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying: John Wiley & Sons. Mars, P., Chen, J., Nambiar, R., & Fidler, J. (1996). Learning Algorithms: Theory and Applications in Signal Processing: CRC Press, Inc. Muhtarov, P., Kutiev, I., & Cander, L., (2002). Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters. Inverse Problems. 18(1), 49. Mautz, R., Ping, J., Heki, K., Schaffrin, B., Shum, C., & Potts, L. (2005). Efficient spatial and temporal representations of global ionosphere maps over Japan using B-spline wavelets. Journal of Geodesy, 78(11), 662-667. Nava, B., Coisson, P., & Radicella, S. (2008). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 1856-1862. Nematipour, P., Raoofian-Naeeni, M., & Ghaffari Razin, M. R. (2021). Regional application of C1 finite element interpolation method in modeling of ionosphere total electron content over Europe. Advances in Space Research, 69(3), 1351-1365. Sayin, I., Arikan, F., Arikan, O. (2008). Regional TEC mapping with random field priors and kriging. Radio Science, 43(5), 1-14. Schunk, R.W., & Nagy, A.F. (2000). Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge University Press, 554. Seeber, G. (2003). satellite geodesy: foundations. Methods and applications, Walter de Gruyter, Berlin and New York, 53. Sharifi, M. A., & Farzaneh, S. (2015). Regional TEC dynamic modeling based on Slepian functions. Advances in Space Research, 56(5), 907-915. Simpson, P. (1990). Artificial neural system-foundation, paradigm, application and implementation Pergamon Press New York. Smola, A. J., & Schölkopf, B. (1998). On a kernel-based method for pattern recognition, regression, approximation, and operator inversion. Algorithmica, 22(1), 211-231. Tebabal, A., Radicella, S., Damtie, B., Migoya-Orue, Y., Nigussie, M., & Nava, B. (2019). Feed forward neural network based ionospheric model for the East African region. Journal of Atmospheric and Solar-Terrestrial Physics, 191, 105052. Vapnik, V. (1995). Support-vector Networks. Machine Learning, 20, 273-297. Xia, G., Liu, Y., Wei, T., Wang, Z., Huang, W., Du, Z., Zhang, Z., Wang, X., & Zhou, C. (2021). Ionospheric TEC forecast model based on support vector machine with GPU acceleration in the China region. Advances in Space Research, 68(3), 1377-1389. Yeganeh, B., Motlagh, M. S. P., Rashidi, Y., & Kamalan, H. (2012). Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model. Atmospheric Environment, 55, 357-365. | ||
آمار تعداد مشاهده مقاله: 836 تعداد دریافت فایل اصل مقاله: 620 |