تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,504,800 |
تعداد دریافت فایل اصل مقاله | 98,768,888 |
بررسی اثر اصلاح چگالی و کوواریانس بهبودیافته در مدلسازی محلی میدان گرانی بهروش کالوکیشن کمترینمربعات در ایران | ||
فیزیک زمین و فضا | ||
مقاله 6، دوره 49، شماره 2، شهریور 1402، صفحه 371-388 اصل مقاله (2.9 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2023.348002.1007454 | ||
نویسندگان | ||
مهکامه قاسمی* ؛ صباح راموز؛ عبدالرضا صفری | ||
گروه مهندسی نقشهبرداری و ژئوماتیک، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
بهدلیل عدموجود اطلاعات کافی در مورد چگالی اجرام زیرسطحی، در مدلسازی میدان گرانی زمین، معمولاً از میانگین جهانی چگالی بهصورت عددی ثابت در کل منطقه موردمطالعه استفاده میشود. در حالیکه، افزایش دقت تقریب چگالی در مدلسازی اثر گرانش ناشی از جرم توپوگرافی، دقت مدلسازی میدان گرانی را بالاتر خواهد برد. برای امکانسنجی این موضوع، از یک مدل چگالی توپوگرافی با قدرت تفکیک "30×"30 که از پردازش نقشههای لرزهنگاری و اطلاعات ماهوارهای لایههای لیتوسفر تهیه شده، برای افزایش دقت تقریب چگالی ثابت در چهار منطقه مطالعاتی درون ایران با وضعیت توپوگرافی و پراکندگی داده متفاوت استفاده شده است. به این ترتیب که، علاوهبر مقدار میانگین جهانی، مقدار میانگین چگالی در ایران و منطقه نیز در مدلسازی اثر گرانش ناشی از جرم توپوگرافی لحاظ شد. در مدلسازی میدان گرانی، روش کالوکیشن کمترینمربعات و بهتبع، تکنیک RTM در مدلسازی اثر گرانش ناشی از جرم توپوگرافی بهکار گرفته شد. همچنین، افزون بر اصلاح چگالی، استفاده از رویکرد کوواریانس بهبودیافته در مدلسازی میدان گرانی نیز مورد ارزیابی واقع شد. نتایج مقایسه با نقاط کنترلی این پژوهش نشان میدهد، بهکارگیری اصلاح چگالی و رویکرد کوواریانس بهبودیافته در مناطق با توپوگرافی خشن و فاقد داده گرانیسنجی کافی و پراکندگی مناسب، بهشکل قابلاعتنایی (88/1 میلیگال معادل %6/15 در منطقه مطالعاتی این پژوهش) باعث افزایش دقت مدلسازی میدان گرانی میشود. | ||
کلیدواژهها | ||
توپوگرافی؛ تکنیک حذف و محاسبه؛ زمین باقیمانده؛ انحرافمعیار؛ تراکم داده | ||
مراجع | ||
Foroughi, I., Afrasteh, Y., Ramouz, S., & Safari, A. (2017). Local evaluation of earth gravitational models, case study: Iran. Geodesy, 43, 1-13. Forsberg, R. (1984). A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. In.: Ohio State Univ Columbus Dept Of Geodetic Science and Surveying. Forsberg, R., & Tscherning, C. C. (1981). The use of height data in gravity field approximation by collocation. Journal of Geophysical Research: Solid Earth, 86, 7843-54. Förste, C., Bruinsma, S., Abrikosov, O., Marty, J., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. Goli, M., & Moosavi Alkazemi, H. (2018). The role of topographic-isostatic effects on smoothing of the gravity anomaly. Iranian Journal of Geophysics, 12, 141-153 (in Persian). Heydarizadeh Shali, H., Ramouz, S., Safari, A., & Barzaghi, R. (2020). Assessment of Tscherning-Rapp covariance in Earth gravity modeling using gravity gradient and GPS/leveling observations. In EGU General Assembly Conference Abstracts, 1059. Hirt, C., & Flury, J. (2008). Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. Journal of Geodesy, 82, 231-48. Hirt, C., Yang, M., Kuhn, M., Bucha, B., Kurzmann, A., & Pail, R. (2019). SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophysical Research Letters, 46, 4618-27. Kuhn, M. (2000). GeoidBestimmung unter verwendung verschiedener dichtehypothesen. Deutsche Geodatische Kommission', Dissertationen, Munchen. Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2012). CRUST1. 0: An updated global model of Earth’s crust. Geophys Res Abs, 14, 743. Martinec, Z. (1993). Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada. Contract report for Geodetic Survey of Canada. Moritz, H. (1980). Advanced Physical Geodesy'Herbert Wichmann Verlag. Karlsruhe, 500. Nasa, J. (2013). NASA shuttle radar topography mission global 1 arc second. NASA EOSDIS Land Processes DAAC, 10. Omang, O., & Forsberg, R. (2000). How to handle topography in practical geoid determination: three examples. Journal of Geodesy, 74, 458-66. Ramouz, S., & Safari, A. (2020). Assessment of the Improved Covariance in Local Geoid Modeling Using Least Squares Collocation-Case study: Tehran Province. Journal of the Earth Space Physics, 46, 517-35. Ramouz, S., Afrasteh, Y., Reguzzoni, M., & Safari, A. (2020). Assessment of local covariance estimation through Least Squares Collocation over Iran. Advances in Geosciences, 50, 65-75. Rexer, M., Hirt, C., Bucha, B., & Holmes, S. (2018). Solution to the spectral filter problem of residual terrain modelling (RTM). Journal of Geodesy, 92, 675-90. Safari, A., Ramouz, S., & Jomegi, A. (2014). Improvement in gravity field modeling using collocation by means of crust density, global geopotential models and combination of heterogeneous observations. Journal of the Earth Space Physics, 40(4), 83-98. Sanso, F. (1986). Statistical methods in physical geodesy. in, Mathematical and numerical techniques in physical geodesy (Springer). Sheng, M., Shaw, C., Vaníček, P., Kingdon, R., Santos, M., & Foroughi, I. (2019). Formulation and validation of a global laterally varying topographical density model. Tectonophysics, 762, 45-60. Tenzer, R., & Vaníček, P. (2003). Correction to Helmert’s orthometric height due to actual lateral variation of topographical density. Brazilian Journal of Cartography-Revista Brasileira de Cartografia, 55, 44-47. Vergos, G. S., Erol, B., Natsi, D. A., Grigoriadis, V. N., Işık, M. S., & Ilias, T. N. (2018). Preliminary results of GOCE-based height system unification between Greece and Turkey over marine and land areas. Acta Geodaetica Et Geophysica, 53, 61-79. Yang, M., Hirt, C., Robert, T., & Pail, R. (2018). Experiences with the use of mass-density maps in residual gravity forward modelling. Studia Geophysica et Geodaetica, 62, 596-623. Yildiz, H., Forsberg, R., Ågren, J., Tscherning, C., & Sjöberg, L. (2012). Comparison of remove-compute-restore and least squares modification of Stokes' formula techniques to quasi-geoid determination over the Auvergne test area. Journal of Geodetic Science, 2, 53-64. | ||
آمار تعداد مشاهده مقاله: 786 تعداد دریافت فایل اصل مقاله: 605 |