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Abstract 

This main script is concerned with the study of MHD natural convective 

non-newtonian Jeffrey fluid flow with Hall current, heat source and variable 

suction towards a vertical plate. By using similarity variables the governing 

non-linear partial differential equations are transformed into linear partial 

differential equations and these equations together with associated boundary 

conditions are solved numerically by using versatile, extensively validated, 

variational finite element method. The sway of key parameters, on 

hydrodynamic and thermal boundary layers are examined in detail and the 

results are shown graphically. A comparative study is also provided in sense 

of limiting cases for verification and an excellent agreement is found. This 

model has important applications in industrial thermal management, 

geological flows in the earth mantle, MHD pumps, accelerators and flow 

meters, geothermal reservoirs and underground energy transport, etc  
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1. Main text 

Non-Newtonian fluids have gained interest because of their numerous technological applications, including 

manufacturing of plastic sheets, performance of lubricants, and movement of biological fluids. In particular, the 

boundary layer flow of an incompressible non-Newtonian fluid over a stretching sheet has several industrial 

applications, for few examples of industrial applications for boundary layer flow of an incompressible non-

Newtonian fluid across a stretching sheet include the extrusion of a polymer sheet from a dye, drawing of plastic 

films, oil recovery, food processing, and paper manufacture. Jeffrey fluid is a subclass of fluids, namely, has 

attracted a lot of attention in the last few years.  Because its constitutive equation can be reduced to that of the 

Newtonian model as a specific case, the Jeffrey model is considered as an extension of the widely used Newtonian 

fluid model. In recent researchers during the past (Some recent studies dealing with the Jeffrey fluid [1-4] and 

several refs. therein).Jeffrey fluid is not just a basic theoretical concept, but this is also used to solve a variety of 

practical difficulties, such as clay rotational motion and heart vessel pumping. Also, many scientists and researchers 

looked at how porosity and magnetic fields affected flow behavior in many forms of Jeffrey fluid. Recently, this 

model of fluid has prompted dynamic discussion (Some of the studies can be observed in [5-8]) investigated the 

melting effects on stagnation point flow of a Jeffrey fluid in the presence of magnetic field. Akbar, N., Z.H. Khan, 

and S. Nadeem [9]  described , Influence of magnetic field and slip on Jeffrey fluid in a ciliated symmetric channel 

with metachronal wave pattern. Bhatti, M. and M.A. Abbas [10] investigated the Simultaneous effects of slip and 

MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Sandeep, N. and C. Sulochana [11] 

have analyzed the Momentum and heat transfer behaviour of Jeffrey, Maxwell and Oldroyd-B nanofluids past a 

stretching surface with non-uniform heat source/sink. Sandeep et al. [12] studied the Stagnation-point flow of a 
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Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction by similarity 

transformation.Hayat, T, et al. [13] examined the Three-dimensional flow of Jeffrey nanofluid with a new mass flux 

condition used by Homotopy analysis method. Soon after on, Shehzad, S.A., et al. [14], Hayat, T., M. Imtiaz, and A. 

Alsaedi. [15], Dalir, N., M. Dehsara, and S.S. Nourazar [16] investigated a magnetic field effect on the flow of 

Jeffrey nanofluid in various aspects.  

The research regarding interaction between fluid conductors of electricity and magnetic field are concerned with 

Magnetohydrodynamics. Exact examples of such liquids comprise salt water, liquid metals, plasmas etc. 

significance and complexity to this interaction between the field and the fluid motion. Reddy M.G., Reddy N.B. [17],  

proposed, Radiation and mass transfer effects on unsteady MHD free convection flow past a vertical porous plate 

with viscous dissipation.MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to 

velocity and thermal slip effects are computed by Dhanai, R., P. Rana [18]. Sheikholeslami, M. and D. Ganji [19] 

examined Nanofluid hydrothermal behavior in existence of Lorentz forces over Joule heating effect. 

Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet 

with variable thickness is scrutinized by Hayat, T., et al. [20]. Waqas, M., et al. [21] formulated micropolar, Carreau 

and Williamson liquids flow subject to Joule heating. Magnetohydrodynamic (MHD) stratified bioconvective flow 

of nanofluid due to gyrotactic microorganisms are presented by Alsaedi, A., et al. [22]. Khan, M.I., et al. [23], 

Qayyum, S., T. Hayat, [24] addressed chemically reacting stretchable flow of magneto third-grade nanoliquid. Kar, 

M., et al. [25] examined the heat and mass transfer effects on a dissipative and radiative viscoelastic 

magnetohydrodynamic (MHD) flow over a stretching porous sheet. Basiri Parsa, A., M. Rashidi, and T. Hayat, [26]  

described  the MHD boundary-layer flow over a stretching surface with internal heat generation or absorption. 

Gupta, P. and A. Gupta [27] have investigated heat and mass transfer in hydrodynamic fluid flow over an 

isothermalstretching sheet with suction/blowing effects.Devi, S.A., K. Shailendhra, and P. Hemamalini study’s [28, 

29] focused on Pulsated convective MHD flow with Hall current, heat source and viscous dissipation along a vertical 

porous plate. The effects of heat and mass transport on an unstable over an infinite vertical plate, hydromagnetic free 

convection is imbedded in a porous material with heat absorption were examined by Murali, G., A. Paul, and N. 

Babu [30]. Takhar, H.l.et al. [31, 32], Hall effects on heat and mass transfer flow with variable suction and heat 

generation. Ahmed, N. and U. Das [33], proposed studied the Convective MHD oscillatory flow past a uniformly 

moving infinite vertical plate.Caisson fluid performance on natural convective dissipative couette flow past an 

infinite vertically inclined plate filled in porous medium with heat transfer, mhd and hall current effects. Examined 

by Babu, N., G. Murali, and S. Bhati [34]. Thermo-Mechanical Vibration embedded in an elastic mediums presented 

byMohammadi, M., et al. [35-75] investigated Primary and secondary resonance analysis of FG/lipid nanoplate with 

considering porosity distribution based on a nonlinear elastic medium.  

The objective of this study is to look into how a heat source and viscous dissipation affect the flow of the Jeffrey 

current in a conductor's boundary layer on a vertical plate at high temperatures. Events include things like mass 

transfers, heat, and magnetic fields. The finite element approach is used to present and solve mathematically 

Jeffrey's fluid flow model. Effects of each physical parameter are shown and described. A comparative study is also 

presented the limiting cases and excellent agreement is found. Mathematical study regarding problem formulation is 

presented in Section 2. Sections 3 and 4 comprise the method of solution and code verification respectively. 

Discussion related to plots is presented in Section 5. Section 6 lists the main observations. 

 

3.Mathematical Formulation  

In this study, we consider the convective motion of a viscous, incompressible, electrically conducting flow of a 

Jeffrey fluid past a uniformly moving porous plate, with the effects of Hall current and viscous dissipation. Here we 

assume 

 (i). The plate is subjected to variable suction velocity; 

 (ii). The free stream velocity of the fluid oscillates around a constant mean value; 

(iii). Except for density, all fluid characteristics remain constant in the buoyancy term (Boussinesq 

approximation).  

(iv). The magnetic dissipation term in the energy equation is negligible; 

 (v). The low magnetic Reynold number is taken so that the induced magnetic field is negligible. 

 It uses the Cartesian coordinate system (x', y', z'). The x-axis is measured along the plate in the upward direction 

and the y-axis is measured normal to the plate in the outward direction. All values are independent of x', with the 

exception of pressure p'. Within the y'-direction, a magnetic field of constant Bo magnitude is applied. The flow 

becomes 3-dimensional as the Hall current generates a force in the z'- direction, which results in a cross current in 
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that direction. The geometry of the problem is shown in Figure 1. 

Let (u', v', w') being the velocity's component along the coordinate axes and vo be the steady suction velocity, 

therefore section velocity is calculated
( )( )ti

o evv
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+= 1 , here 1>>ε. The Cauchy stress tensor S for 

non-Newtonian Jeffreys fluids [29] The Cauchy stress tensor has the below form: 
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Figure 1. The geometry of the problem. 

 

Here   is the dynamic viscosity, 1 which is the delay relaxation time ratio, and the dot above the number 

represents the time derivative of the material,  which is the shear rate. For modelling the effects of retardation and 

relaxation that take place in a nonNewtonian polymer flow, model provides an elegant formulation. Following is a 

definition of the shear rate and shear rate gradient in terms of the velocity vectorV : 
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The basic physical governing equation for this problem is given in ( [28] ). 

 

Continuity Equation.: 
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Momentum Equation.: 
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Equation of Conservation of Energy.: 
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Here using the formula 
( )( )ti

o eUU
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+= 1  to get the free stream U' velocity, where Uo' stands for 

mean stream velocity. 

The equivalent boundary conditions ( [28] )  are   
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Equation (4.) it means that, v' = v'(t'). In a thin thermal boundary layer
y

v


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is extremely tinythus that can 
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o evv
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To make the system dimensionless, the following non-dimensional quantities were established. 
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The coupled partial differential equations that follow from substituting the above relations (9) into equations (5) 

through (7) are 
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The equivalent boundary conditions are   
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4.Method of Solution  
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Finite Element Technique:  

The finite element procedure (FEM) is a numerical and computer based method of solving a collection of 

practical engineering problems that happen in different fields such as, in heat transfer, fluid mechanics and many 

other fields. It is recognized by developers and consumers as one of the most influential numerical analysis tools 

ever devised to analyze complex problems of engineering. The superiority of the method, its accuracy, simplicity, 

and computability all make it a widely used apparatus in the engineering modeling and design process. It has been 

applied to a number of substantial mathematical models, whose differential equations are solved by converting them 

into a matrix equation. The primary feature of FEM [32] is its ability to describe the geometry or the media of the 

problem being analyzed with huge flexibility. This is because the discretization of the region of the problem is 

performed using highly flexible uniform or non-uniform pieces or elements that can easily describe complex shapes. 

The method essentially consists in assuming the piecewise continuous function for the results and getting the 

parameters of the functions in a manner that reduces the fault in the solution. The steps occupied in the finite 

element analysis areas follows. 

Step-1: Discretization of the Domain:  

The fundamental concept of the FEM is to divide the region of the problem into small connected pieces, called 

finite elements. The group of elements is called the finite element mesh. These finite elements are associated in a 

non-overlapping manner, such that they completely cover the entire space of the problem. 

Step-2: Invention of the Element Equations: 

i) A representative element is secluded from the mesh and the variational formulation of the given problem is 

created over the typical element. 

ii) Over an element, an approximate solution of the variational problem is invented, and by surrogating this in 

the system, the element equations are generated. 

iii) The element matrix, which is also known as stiffness matrix, is erected by using the element interpolation 

functions. 

Step-3: Assembly of the Element Equations:  

The algebraic equations so achieved are assembled by imposing the inter element continuity conditions. This 

yields a large number of mathematical equations known as the global finite element model, which governs the whole 

domain. 

Step-4: Imposition of the Boundary Conditions: 

 On the accumulated equations, the Dirichlet's and Neumann boundary conditions [13] are imposed. 

Step-5: Solution of Assembled Equations: 

 The assembled equations so obtained can be solved by any of the numerical methods, namely, Gauss 

elimination technique, LU decomposition technique, and the final matrix equation can be solved by iterative 
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technique. For computational purposes, the coordinate y varies from 0 to 10, where ymax represents infinity  external 

to the momentum, energy and concentration edge layers.  

4. 1. 1.Variational formulation   

Variation formulation (16)-(18) For a typical linear element ( )1, +ee yy  with two nodes, it is given by  
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Here ( )tixpB +=1  and ,1w ,2w 3w  are arbitrary test functions, which can viewed whenvariations 

of ,u w  and    respectively. The following system of equations results from leaving out the order of integration 

and nonlinearity: 
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4.1.2. Finite Element formulation:                                                                                                                                                                                         
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 Equations (17) through (19) can be used to derive a finite element model by replace with the finite element 

approximation of the form. 
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The finite element model of the 
the element equation hence formed is given here 
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Linear components are comparable to tin in 1-dimensional space. The area of the stream  is divided into 11,000 

equal-sized square cells. The total domain consists of his 21001 nodes because each element has 3 nodes. Each node 

needs to evaluate four functions. As a result, after merging the finite element equations, we obtain an 8100 equation 

nonlinear system.so, you should develop an iterative scheme  within your solution. When the boundary conditions 

are satisfied, we obtain a system of equations that is mathematically solved using Gaussian elimination with an 

accuracy of 0.00001. The relative dissimilarity between this iteration and the preceding iteration it is employed as a 

convergence criterion. 

When these discrepancies are as accurate as desired, The iterative process is deemed to have ended when the 

solution has converged.The integral be resolved using Gaussian quadrature. His computer's MATLAB function is 

running an algorithmic computer script. Achieving good convergence for each outcome. 

4.1.3. Program Code Validation: 

i. In conclusion, Fig. 2 shows a qualitative comparison of these results in the absence of Jeffrey fluid within the 

puIlished results of Anjali Devi et al. [28.].The current results for some flow parameters differ significantly in 

both qualitative and quantitative terms. 

ii. At first, the numerical results are similar to Takhar et al. [32] when viscous dissipation is ignored, as 

personalizedGrashofGc = 0 and Schmidt number Sc = 0. 

iii. Furthermore, by ignoring Hall effect,be recoverable from our numerical results, and the conclusions of Ahmed 

and Das [33.],and such a similarity is probableby profiles with m = 0. 

5.Results and Discussion: 

 To examine the results, numerical calculationsbemade for the variations of the governing parameters,for 

exampleGr, M 2, Pr, Ec, S, m, γ. The following default parameter values are used in the calculations in this study.:Gr 

= 2.0, m = 1.0; S = 1.0; M2 = 1.0; Pr = 0.71; Ec = 0.001; γ = 1.0; and V= 1.0.The following default parameter values 

are used in the calculations in this study. 

The influence The influence of primary velocity profiles u for different values of Grashof number for heat 

transfer Gr, and Magnetic field parameter 
2M  in Fig. 3. It is observed that the dimensionless primary velocity 
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profiles increase and decreases with Gr and 
2M , respectively. This is due to the fact that the introduction of a 

transverse magnetic field, normal to the flow direction, has a tendency to create the drag known as the Lorentz force 

which tends to resist the flow. It is revealed from Fig. 5 that, secondary fluid velocity w increases on increasing Gr 

and 
2M  throughout the boundary layer region. The Eckert number Ec is the ratio of kinetic energy to the thermal 

energy. When Ec is increased, it is seen from Figs. 4 and 6 that both the velocity components u and w increase, 

which is physically expected. Further, an increase in Eckert number Ec also increases the temperature as can be seen 

from Fig. 4. This is because convection dominates over conduction in such a case. Figs. 3 and 4 demonstrate the 

effect of Hall current on the primary velocity u and secondary velocity w respectively. It is perceived from Figs. 3 

and 5 that, the primary velocity u decreases on increasing m throughout the boundary layer region whereas 

secondary velocity w increases on increasing m throughout the boundary layer region. This implies that, Hall current 

tends to accelerate secondary fluid velocity throughout the boundary layer region which is consistent with the fact 

that Hall current induces secondary flow in the flow-field whereas it has a reverse effect on primary fluid velocity 

throughout the boundary layer region. Fig. 3 is made to see the variation of primary velocity profiles u for different 

values of Jeffrey fluid parameter. As depicted in this figure, the effect of increasing γ lead to enhance the fluid 

velocity gradually in the right half of the channel. From Figs. 4 and 6, it is clear that the effect of the heat source 

parameter on the velocity components u and w is to modify the flow away from the plate so as to decrease them and 

its effect within the boundary layer is not very significant. Further, is found to decrease temperature uniformly 

throughout the flow region (Fig. 7). It is obvious from Figs. 4 and 5 that the velocity components u as well as w are 

reduced by Prandtl number Pr. In Fig. 7, it is observed that the temperature decreases with increasing values of 

Prandtl number. It is also observed that the thermal boundary layer thickness is maximum near the surface of the 

cone and decreases with increasing distances from the leading edge and finally approaches to zero. It is justified due 

to the fact that thermal conductivity of fluid decreases with increasing Prandtl number and hence decreases the 

thermal boundary layer thickness and the temperature profiles. The parameter V is the ratio of the velocity of the 

plate and the mean free stream velocity of the fluid. In general, u increases when V is increased and the flow pattern 

within the boundary layer is significantly modified when V is greater than unity (Fig. 3) and this is in good 

agreement with the no-slip boundary condition of viscous fluids. An increase in temperature and thermal boundary 

layer thickness is observed for the larger values of Eckert number. Here the increasing values of Eckert number give 

rise to the temperature difference that leads to higher temperature and thermal boundary layer thickness (see  Fig.7 ). 

 

5.Conclusions 

This research work presents free convective magnetohydrodynamic non-newtonian Jeffrey fluid flow with Hall 

current, heat source and variable suction towards a vertical plate. The governing coupled non-linear partial 

differential equations of the problem is reduced to linear partial differential equations have been obtained using the 

finite element method. The primary velocity profiles, secondary velocity profiles and temperature fields are 

discussed with the help of graphs. The main points of this paper may be summarized and the following 

characteristics have been observed. 

1. As raising Magnetic field parameter, heat source parameter and Prandtl number tends to suppress the fluid 

primary velocity profiles whereas reverse is true with Grashof number for heat transfer, Eckert number, Jeffrey fluid 

and Hall parameters. 

2. As increasing the magnetic parameter, the Grash of heat transfer number, and the Eckert number produce a 

quadratic velocity field, while increasing the Prandtl number, the Hall parameter, and the heat source parameter the 

opposite effect is observed 

3. When the values of Prandtl number increase, the temperature field getting down and an increase in Eckert 

number gives rise to the temperature field. 
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