تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,769 |
تعداد دریافت فایل اصل مقاله | 97,221,556 |
A Review of the Application of Nanoparticles Biosynthesized by Microalgae and Cyanobacteria in Medical and Veterinary Sciences | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 1، دوره 17، شماره 1، فروردین 2023، صفحه 1-18 اصل مقاله (1.4 M) | ||
نوع مقاله: Review article | ||
شناسه دیجیتال (DOI): 10.22059/ijvm.17.1.1005309 | ||
نویسندگان | ||
Seyed Amir Ali Anvar1؛ Bahareh Nowruzi* 2؛ Ghazal Afshari3 | ||
1Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
2Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Sciences and Research Branch, Tehran, Iran. | ||
3Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. | ||
چکیده | ||
Green synthesis of nanoparticles is an environmentally friendly method to produce nanoparticles with unique biological, physical, and chemical properties. Today, biological synthesis methods have drawn significant attention because of the drawbacks of physical and chemical synthesis, such as poisonous side effects, time and power usage, and heavy price. Among different microorganisms, cyanobacteria are suitable candidates as regenerating and stabilizing agents because of their capability to collect heavy metals from the environment and produce various bioactive compounds such as colorants and enzymes. The green synthesis of nanoparticles by cyanobacteria has captivated extensive consideration as a secure, easy, stable, economical, and environmentally friendly resolution for biomedical and veterinary applications. Meanwhile, the secondary metabolites synthesized by cyanobacteria with the ability of extracellular and extracellular metals reduction and oxidation are very noteworthy and have antibacterial, antifungal, anti-algae, anticancer, and photocatalytic activities. This study considers the properties, as well as biomedical and veterinary applications of nanoparticles generated by cyanobacteria. | ||
کلیدواژهها | ||
Biomedical and veterinary applications؛ Cyanobacteria؛ Green synthesis؛ Microalgae؛ Nanoparticles | ||
اصل مقاله | ||
1. Introduction
| ||
مراجع | ||
Afzal, B., Yasin, D., Husain, S., Zaki, A., Srivastava, P., & Kumar, R., et al. (2019). Screening of cyanobacterial strains for the selenium nanoparticles synthesis and their antioxidant activity. Biocatalysis and Agricultural Biotechnology, 21, 101307. [DOI:10.1016/j.bcab.2019.101307] Ahari, H., Nowruzi, B., Anvar, A. A., & Porzani, S. J. (2022). The toxicity testing of cyanobacterial toxins in vivo and in vitro by mouse bioassay: A review. Mini Reviews in Medicinal Chemistry, 22(8), 1131-1151. [PMID] Ahmed, F., Soliman, F. M., Adly, M. A., Soliman, H., El-Matbouli, M., & Saleh, M. (2020). In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. Journal of Fish Diseases, 43(9), 1049-1063. [DOI:10.1111/jfd.13212] [PMID] [PMCID] Ahmed, E. A., Hafez, E. H. A., Ismail, A. F. M., Elsonbaty, S. M., Abbas, H., & Eldin, R. A. S. (2015). Biosynthesis of silver nanoparticles by Spirulina platensis and Nostoc sp. Global Advanced Research Journal of Microbiology, 4(4), 36-49. [Link] Al-Dhafri, K., & Ching, C. L. (2019). Phyto-synthesis of silver nanoparticles and its bioactivity response towards nosocomial bacterial pathogens. Biocatalysis and Agricultural Biotechnology, 18, 101075. [DOI:10.1016/j.bcab.2019.101075] Ali, S., Paul Peter, A., Chew, K. W., Munawaroh, H., & Show, P. L. (2021). Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresource Technology, 337, 125461. [DOI:10.1016/j.biortech.2021.125461] [PMID] Alipour, S., Kalari, S., Morowvat, M. H., Sabahi, Z., & Dehshahri, A. (2021). Green synthesis of selenium nanoparticles by cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls. Biomed Research International, 2021, 6635297. [DOI:10.1155/2021/6635297] [PMID] [PMCID] Anvar, A. A., & Nowruzi, B. (2021). Bioactive properties of spirulina: A review. Microbial Bioactives, 4(1), 134-142. [DOI:10.25163/microbbioacts.412117B0719110521] Anvar, S. A. A., & Nowruzi, B. (2021). [A review of phycobiliproteins of cyanobacteria: structure, function and industrial applications in food and pharmaceutical industries (Persian)]. Research and Innovation in Food Science and Technology, 10(2), 181-198. [DOI:10.22101/JRIFST.2021.288378.1247] Anvar, S. A. A., Nowruzi, B., & Tala, M. (2021). [Products of cyanobacteria and microalgae as valuable dietary and medicinal supplements (Persian)]. Food Hygiene, 11(1), 99-118. [DOI:10.30495/JFH.2021.1925461.1310] Aziz, N., Zaki, A., Ahamad, I., & Fatma, T. (2021). Silver nanoparticle synthesis from cyanobacteria: Environmental and biomedical applications. In J. K. Patel, & Y. N. Pathak (Eds.), Emerging technologies for nanoparticle manufacturing (pp. 461-472). Cham: Springer. [DOI:10.1007/978-3-030-50703-9_21] Bakir, E., & ElSemary, N. (2020). Cyanobacteria as nanogold Factories: The chemical validation and perspective of the association between gold nanoparticles and cyanobacterial glycogen. 2020; 1-15. [Unpublished] [DOI:10.21203/rs.3.rs-45902/v1] Bin-Meferij, M. M., & Hamida, R. S. (2019). Biofabrication and antitumor activity of silver nanoparticles utilizing novel nostoc sp. Bahar M. International Journal of Nanomedicine, 14, 9019–9029. [PMID] [PMCID] Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yéprémian, C., & Coradin, T., et al. (2007). Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. Journal of Nanoscience and Nanotechnology, 7(8), 2696-2708. [DOI:10.1166/jnn.2007.600] [PMID] Chaudhary, R., Nawaz, K., Khan, A. K., Hano, C., Abbasi, B. H., & Anjum, S. (2020). An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules, 10(11), 1498. [DOI:10.3390/biom10111498] [PMID] [PMCID] Choi, B., Park, W., Park, S. B., Rhim, W. K., & Han, D. K. (2020). Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications. Methods (San Diego, Calif.), 177, 2–14. [DOI:10.1016/j.ymeth.2019.12.004] [PMID] Cicci, A., Sed, G., Tirillò, J., Stoller, M., & Bravi, M. (2017). Production and characterization of silver nanoparticles in cultures of the cyanobacterium A. platensis (Spirulina). Chemical Engineering Transactions, 57, 1405-1410. [Link] Faramarzi, M. A., & Sadighi, A. (2013). Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Advances in Colloid and Interface Science, 189-190, 1-20. [DOI:10.1016/j.cis.2012.12.001] [PMID] Ghasemipour, T., Salehzadeh, A., & S adat Shandiz, S. A. (2017). [Biosynthesis of silver nanoparticles using oscillatoria extract and evaluation the anticancer and antibacterial activities (Persian)]. Armaghane Danesh, 22(4), 459-471. [Link] Geetha, S., Vijayakumar, K., Aranganayagam, K. R., & Thiruneelakandan, G. (2020). Biosynthesis, characterization of silver nanoparticles and antimicrobial screening by Oscillatoria Annae. AIP Conference Proceedings, 2270( 1), 110026. [DOI:10.1063/5.0024262] Ghobashy, R. S., Elsheekh, M. M., Ismail, G. A., & Gheda, S. F. (2021). Biosynthesis of metal nanoparticles using blue-green algae (Cyanobacteria) and their possible applications: Thesis Abstract. International Journal of Cancer and Biomedical Research, 5(0), 6-6. [DOI:10.21608/jcbr.2021.59664.1133] Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferij, M. M., & Khalil, M. I. (2020). Synthesis of silver nanoparticles using a novel cyanobacteria desertifilum sp. extract: Their antibacterial and cytotoxicity effects. International Journal of Nanomedicine, 15, 49-63. [PMID] [PMCID] Hamida, R. S., Ali, M. A., Redhwan, A., & Bin-Meferij, M. M. (2020). Cyanobacteria-A promising platform in green nanotechnology: A review on nanoparticles fabrication and their prospective applications. International Journal of Nanomedicine, 15, 6033–6066. [PMID] [PMCID] Hamida, R. S., Ali, M. A., Goda, D. A., & Redhwan, A. (2021). Anticandidal potential of two cyanobacteria-synthesized silver nanoparticles: Effects on growth, cell morphology, and key virulence attributes of Candida albicans. Pharmaceutics, 13(10), 1688. [PMID] [PMCID] Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Scientific Reports, 9(1), 13071. [DOI:10.1038/s41598-019-49444-y] [PMID] [PMCID] Hanna, A. L., Hamouda, H. M., Goda, H. A., Sadik, M. W., Moghanm, F. S., & Ghoneim, A. M., et al. (2022). Biosynthesis and characterization of silver nanoparticles produced by phormidium ambiguum and desertifilum tharense cyanobacteria. Bioinorganic Chemistry and Applications, 2022, 9072508. [DOI:10.1155/2022/9072508] [PMID] [PMCID] Husain, S., Sardar, M., & Fatma, T. (2015). Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World Journal of Microbiology and Biotechnology, 31(8), 1279-1283. [DOI:10.1007/s11274-015-1869-3] [PMID] Ishiguro, S., Gbore, D., Calo, G., & Tamura, M. (2021). A potential application of algae as a complementary/integrative therapy in veterinary medicine. Journal of Veterinary Sciences, 2581-3897, 1-10. [Link] Ismail, G. A., Allam, N. G., El-Gemizy, W. M., & Salem, M. A. (2021). The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater. Environmental Technology, 42(28), 4475-4489. [PMID] LewisOscar, F., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D., & Nithya, C. (2016). Algal nanoparticles: Synthesis and biotechnological potentials. In N. Thajuddin, & D. Dhanasekaran (Eds), Algae-organisms for imminent biotechnology (pp. 157-182). London: IntechOpen. [DOI:10.5772/62909] Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 1-8. [DOI:10.1155/2011/270974] Madadi, R., Maljaee, H., Serafim, L. S., & Ventura, S. P. (2021). Microalgae as contributors to produce biopolymers. Marine Drugs, 19(8), 466. [DOI:10.3390/md19080466] [PMID] [PMCID] Mandhata, C. P., Sahoo, C. R., & Padhy, R. N. (2022). Biomedical applications of biosynthesized gold nanoparticles from cyanobacteria: An overview. Biological Trace Element Research, 200(12), 5307–5327. [DOI:10.1007/s12011-021-03078-2] [PMID] Moraes, L. C., Figueiredo, R. C., Ribeiro-Andrade, R., Pontes-Silva, A. V., Arantes, M. L., & Giani, A., et al. (2021). High diversity of microalgae as a tool for the synthesis of different silver nanoparticles: A species-specific green synthesis. Colloid and Interface Science Communications, 42, 100420. [DOI:10.1016/j.colcom.2021.100420] Moritz, M., & Geszke-Moritz, M. (2013). The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 228, 596-613. [DOI:10.1016/j.cej.2013.05.046] MubarakAli, D., Gopinath, V., Rameshbabu, N., & Thajuddin, N. (2012). Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Materials Letters, 74, 8-11. [DOI:10.1016/j.matlet.2012.01.026] Nowruzi, B. (2022). [A review of bioactive compounds of cyanobacteria and microalgae as cosmetically useful supplements (Persian)]. Journal of Dermatology and Cosmetic, 12(4), 256-269. [Link] Nowruzi, B., Bouaïcha, N., Metcalf, J. S., Porzani, S. J., & Konur, O. (2021). Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry, 192, 112959. [DOI:10.1016/j.phytochem.2021.112959] [PMID] Nowruzi, B., Fahimi, H., & Lorenzi, A. S. (2020). Recovery of pure C-phycoerythrin from a limestone drought tolerant cyanobacterium Nostoc sp. and evaluation of its biological activity. Anales de Biología, 42, 115-128. [DOI:10.6018/analesbio.42.13] Nowruzi, B., Haghighat, S., Fahimi, H., & Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5-12. [DOI:10.1111/jphs.12202] Nowruzi, B., Jafari, M., Babaie, S., Motamedi, A., & Anvar, A. (2020). [Spirulina: A healthy green sun with bioactive properties (Persian)]. Journal of Microbial World, 13(4), 322-348. [Link] Nowruzi, B., Konur, O., & Anvar, S. A. A. (2022). The stability of the phycobiliproteins in the adverse environmental conditions relevant to the food storage. Food and Bioprocess Technology, 15, 2646-2663. [DOI:10.1007/s11947-022-02855-8] Nowruzi, B., & Porzani, S. J. (2020). Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. Journal of Applied Toxicology, 41(4), 510-548. [DOI:10.1002/jat.4088] [PMID] Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. [DOI:10.1016/j.algal.2020.101959] Peidaei, F., Ahari, H., Anvar, S. A. A., & Ataee, M. (2021). Nanotechnology in food packaging and storage: A review. Iranian Journal of Veterinary Medicine, 15(2), 123-153. [Link] Pandey, S. N., Verma, I., & Kumar, M. (2020). Cyanobacteria: Potential source of biofertilizer and synthesizer of metallic nanoparticles. In P. Kumar, & A. Kumar (Eds.), Advances in cyanobacterial biology (pp. 351-367). Cambridge: Academic Press. [DOI:10.1016/B978-0-12-819311-2.00023-1] Patel, V., Berthold, D., Puranik, P., & Gantar, M. (2014). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112-119. [DOI:10.1016/j.btre.2014.12.001] [PMID] [PMCID] Porzani, S. J., Lima, S. T., Metcalf, J. S., & Nowruzi, B. (2021). In vivo and in vitro toxicity testing of cyanobacterial toxins: A mini-review. Reviews of Environmental Contamination and Toxicology, 258, 109-150. [DOI:10.1007/398_2021_74] [PMID] Priyadarshini, E., Priyadarshini, S. S., & Pradhan, N. (2019). Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Applied Microbiology and Biotechnology, 103(8), 3297-3316. [DOI:10.1007/s00253-019-09685-3] [PMID] Rahman, A., Ismail, A., Jumbianti, D., Magdalena, S., & Sudrajat, H. (2009). Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indonesian Journal of Chemistry, 9(3), 355-360. [DOI:10.22146/ijc.21498] Rai, M., Ingle, A. P., Gupta, I., Pandit, R., Paralikar, P., & Gade, A., et al. (2019). Smart nanopackaging for the enhancement of food shelf life. Environmental Chemistry Letters, 17, 277-290. [DOI:10.1007/s10311-018-0794-8] Rai, S., Wenjing, W., Shrivastava, A. K., & Singh, P. K. (2019). Cyanobacteria as a source of nanoparticles and their applications. In A. Kumar, A. Kishore Singh,& K. Kumar Choudhary (Eds.), Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology (pp. 183-198). Sawston: Woodhead Publishing. [DOI:10.1016/B978-0-12-817004-5.00011-7] Rajeshkumar, S., Tharani, M., Rajeswari, V. D., Alharbi, N. S., Kadaikunnan, S., & Khaled, J. M., et al. (2021). Synthesis of greener silver nanoparticle-based chitosan nanocomposites and their potential antimicrobial activity against oral pathogens. Green Processing and Synthesis, 10(1), 658-665. [DOI:10.1515/gps-2021-0060] Rashad, S., A El-Chaghaby, G. A., & Elchaghaby, M. A. (2019). Antibacterial activity of silver nanoparticles biosynthesized using Spirulina platensis microalgae extract against oral pathogens. Egyptian Journal of Aquatic Biology and Fisheries, 23(5 Special Issue), 261-266. [DOI:10.21608/ejabf.2019.65907] Ravikumar, S., Gokulakrishnan, R., & Raj, J. A. (2012). Nanoparticles as a source for the treatment of fish diseases. Asian Pacific Journal of Tropical Disease, 2(Supplement 2), S703-S706. [DOI:10.1016/S2222-1808(12)60247-3] Roychoudhury, P., Ghosh, S., & Pal, R. (2016). Cyanobacteria mediated green synthesis of gold-silver nanoalloy. Journal of Plant Biochemistry and Biotechnology, 25(1), 73-78. [DOI:10.1007/s13562-015-0311-0] Sahoo, C. R., Maharana, S., Mandhata, C. P., Bishoyi, A. K., Paidesetty, S. K., & Padhy, R. N. (2020). Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi Journal of Biological Sciences, 27(6), 1580-1586. [DOI:10.1016/j.sjbs.2020.03.020] [PMID] [PMCID] San Keskin, N. O., Koçberber Kılıç, N., Dönmez, G., & Tekinay, T. (2016). Green synthesis of silver nanoparticles using cyanobacteria and evaluation of their photocatalytic and antimicrobial activity. Journal of Nano Research, 40, 120-127. [DOI:10.4028/www.scientific.net/JNanoR.40.120] Saleh, M., Soliman, H., & El-Matbouli, M. (2015). Gold nanoparticles as a potential tool for diagnosis of fish diseases. Methods in Molecular Biology (Clifton, N.J.), 1247, 245-252. [DOI:10.1007/978-1-4939-2004-4_19][PMID] Shaalan, M. I., El-Mahdy, M. M., Theiner, S., El-Matbouli, M., & Saleh, M. (2017). In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Veterinaria Scandinavica, 59(1), 49. [DOI:10.1186/s13028-017-0317-9] [PMID] [PMCID] Singh, Y., Kaushal, S., & Sodhi, R. S. (2020). Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Advances, 2(9), 3972-3982. [DOI:10.1039/D0NA00357C] [PMID] [PMCID] Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., & Thiripuranathar, G., et al. (2020). Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering, 7(4), 129. [DOI:10.3390/bioengineering7040129] [PMID] [PMCID] Velusamy, P., Kumar, G. V., Jeyanthi, V., Das, J., & Pachaiappan, R. (2016). Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicological Research, 32(2), 95-102. [DOI:10.5487/TR.2016.32.2.095] [PMID] [PMCID] Yalçın, D., Erkaya, İ. A., & Erdem, B. (2022). Antimicrobial, antibiofilm potential, and anti-quorum sensing activity of silver nanoparticles synthesized from Cyanobacteria Oscillatoria princeps. Environmental Science and Pollution Research, 1-15. [DOI:10.1007/s11356-022-22068-y] Younis, N. S., Mohamed, M. E., & El Semary, N. A. (2022). Green synthesis of silver nanoparticles by the cyanobacteria synechocystis sp.: Characterization, antimicrobial and diabetic wound-healing actions. Marine Drugs, 20(1), 56. [DOI:10.3390/md20010056] [PMID] [PMCID] Zinicovscaia, I., Rudi, L., Valuta, A., Cepoi, L., Vergel, K., & Frontasyeva, M. V., et al. (2016). Biochemical changes in Nostoc linckia associated with selenium nanoparticles biosynthesis. Ecological Chemistry and Engineering, 23(4), 559-569. [DOI:10.1515/eces-2016-0039] | ||
آمار تعداد مشاهده مقاله: 1,103 تعداد دریافت فایل اصل مقاله: 1,304 |