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Abstract 

In this paper, a new approach is proposed for the couple stress analysis of 

micro-beams. As the main assumption, power series expansions are assumed 

for the axial displacement. The lateral and transverse displacements are 

adopted according to the classical beam theories. It is demonstrated that this 

consideration imposes a decisive constraint of skew-symmetry on the couple-

stress tensor. So, in the case of micro-beams, there is no need for referring to 

the main arguments in modified couple stress theory (M-CST). This 

approach also allows for revising the conventional boundary conditions in 

couple stress analysis of micro-beams. For the special case of Timoshenko 

micro-beams, the axial displacement is approximated by a first-order 

polynomial and a new set of boundary conditions similar to the classical 

model is developed. Benchmark problems are then considered for 

demonstrating the advantages of the proposed model. 

Keywords: size effect, microstructure, skew-symmetric couple-stress tensor, structural theories, 

variational principle. 

1. Introduction 

The beam-like elements have widespread use in modern micro- and nano-electromechanical systems [1]. A 

series of experiments [2, 3] showed that the mechanical behavior of thin beams in micron and sub-micron scales is 

strongly size-dependent and cannot be described by the classical elasticity theory. So, the higher-order theories with 
additional degrees of freedom and intrinsic length-related parameters are developed for the analysis of small-scale 

structures. Shariati et al. 2021 [4] developed a molecular dynamic analysis for calibration of length-related 

parameters in the non-classical theories. 

The nonlocal elasticity theory [5] has been widely used investigating the size-dependent mechanical behavior of 

nano-beams [6, 7], nano-disks [8] and nano-plates [9]. So, the strain gradient theory [10] is also used for the analysis 

of small-scale structures [11-13]. In order to reduce the additional variables and the number of required length-

related constants, the original couple stress theory [14-16] developed based on a general non-symmetric couple-

stress tensor. In special case of linear isotropic materials, only two extra length-related constants were required in 

the original couple stress theory to capture the size effect of microstructures.  

Yang et al. [17] proposed an artificial equilibrium equation for couple moments and developed the modified 

couple stress theory (M-CST) based on a symmetric couple-stress tensor and only one required length scale 
parameter. Therefore, M-CST has been widely used for the analysis of microstructures. (see e.g., [18-21]). However, 

the equilibrium of couple moments which is used to imply the symmetry of the couple-stress tensor is not deduced 

from any accepted principle in continuum mechanics [22]. Hadjesfandiari and Dargush [23] proposed an alternative 

consistent couple stress theory (C-CST) based on a skew-symmetric couple-stress tensor. Recently, C-CST has been 

widely used for the analysis of isotropic and FGM micro/nano-beams [24-27]. However, Münch, Neff et al. [28] 
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raised serious doubts on validity of the main arguments proposed by [23].  

In order to develop a simplified micropolar beam theory, Ramezani et al. [29] assumed power series expansions 

for both axial displacement and the non-zero micro-rotation. It is noted that in the couple stress theory, the rotation 

vector is completely dependent on the displacement field and any approximation considered for the displacements, 

may affect the characteristics of the rotational degree of freedom as well as the couple-stress tensor. Similar to [29], 

in this study, a general power series expansion is assumed for the axial displacement and two other displacements, 

i.e. the lateral and transverse displacements are approximated according to the classical beam theories. These 

assumptions may crucially contribute towards revealing the true nature of couple-stress tensor and revising the 

boundary conditions. 

It is noted that in modified couple stress analysis of Timoshenko micro-beams, the slope also appeared as a 

natural boundary condition [21]. Based on these boundary conditions, [24] derived two distinct closed-form 

solutions for the micro-cantilever beams, namely the partially clamped solution and the fully clamped solution. They 
also ignored the contribution of couple stresses to the slope variation and developed an approximate model by 

discarding a slope from the analysis. However, Dehrouyeh-Semnani and Bahrami [30] showed that such a model 

cannot provide accurate results when the size of a micro-beam becomes comparable with the material length scale 

parameter. The second novelty of this study is discarding the slope variation without considering any approximation. 

As a result, a more convenient form of boundary conditions is developed for Timoshenko micro-beams.  Through 

numerical examples, the results of this model are compared with the results of conventional modified couple stress 

and classical models and the accuracy of the model is demonstrated.  

 

Here introduces the paper, and put a nomenclature if necessary, with the same font size as the rest of the paper. 

The paragraphs continue from here and are only separated by headings, subheadings, images and formulae. The 

section headings are arranged by numbers, bold and 10 pt. Here follows further instructions for authors. 

2. The basic arguments in couple stress theory  

The beam-like elements have widespread use in modern micro- and nano-electromechanical systems [1]. A series 

of experiments [2, 3] showed that the mechanical behavior of thin beams in micron and sub-micron scales is 

strongly size-dependent and cannot be described by the classical elasticity theory. So, the higher-order theories with 

additional degrees of freedom and intrinsic length-related parameters are developed for the analysis of small-scale 

structures. Shariati et al. 2021 [4] developed a molecular dynamic analysis for calibration of length-related 

parameters in the non-classical theories. 

The nonlocal elasticity theory [5] has been widely used investigating the size-dependent mechanical behavior of 

nano-beams [6, 7], nano-disks [8] and nano-plates [9]. So, the strain gradient theory [10] is also used for the analysis 

of small-scale structures [11-13]. In order to reduce the additional variables and the number of required length-

related constants, the original couple stress theory [14-16] developed based on a general non-symmetric couple-

stress tensor. In special case of linear isotropic materials, only two extra length-related constants were required in 

the original couple stress theory to capture the size effect of microstructures.  

Yang et al. [17] proposed an artificial equilibrium equation for couple moments and developed the modified 

couple stress theory (M-CST) based on a symmetric couple-stress tensor and only one required length scale 

parameter. Therefore, M-CST has been widely used for the analysis of microstructures. (see e.g., [18-21]). However, 

the equilibrium of couple moments which is used to imply the symmetry of the couple-stress tensor is not deduced 

from any accepted principle in continuum mechanics [22]. Hadjesfandiari and Dargush [23] proposed an alternative 

consistent couple stress theory (C-CST) based on a skew-symmetric couple-stress tensor. Recently, C-CST has been 

widely used for the analysis of isotropic and FGM micro/nano-beams [24-27]. However, Münch, Neff et al. [28] 

raised serious doubts on validity of the main arguments proposed by [23].  

In order to develop a simplified micropolar beam theory, Ramezani et al. [29] assumed power series expansions 

for both axial displacement and the non-zero micro-rotation. It is noted that in the couple stress theory, the rotation 

vector is completely dependent on the displacement field and any approximation considered for the displacements, 

may affect the characteristics of the rotational degree of freedom as well as the couple-stress tensor. Similar to [29], 

in this study, a general power series expansion is assumed for the axial displacement and two other displacements, 

i.e., the lateral and transverse displacements are approximated according to the classical beam theories. These 

assumptions may crucially contribute towards revealing the true nature of couple-stress tensor and revising the 

boundary conditions. 

It is noted that in modified couple stress analysis of Timoshenko micro-beams, the slope also appeared as a 

natural boundary condition [21]. Based on these boundary conditions, [24] derived two distinct closed-form 

solutions for the micro-cantilever beams, namely the partially clamped solution and the fully clamped solution. They 
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also ignored the contribution of couple stresses to the slope variation and developed an approximate model by 

discarding a slope from the analysis. However, Dehrouyeh-Semnani and Bahrami [30] showed that such a model 

cannot provide accurate results when the size of a micro-beam becomes comparable with the material length scale 

parameter. The second novelty of this study is discarding the slope variation without considering any approximation. 

As a result, a more convenient form of boundary conditions is developed for Timoshenko micro-beams.  Through 

numerical examples, the results of this model are compared with the results of conventional modified couple stress 

and classical models and the accuracy of the model is demonstrated.  

3. The basic arguments in couple stress theory 

As the main hypothesis in the couple stress theory, both displacements iu
 and rotations i  are considered as the 

degrees of freedom for the material points within a microstructure. The rotation vector in this theory is defined as 

,

1

2
i ijk k je u =  

(1) 

where 
ijke  is the alternating tensor and the comma denotes the spatial derivation. 

From the kinetic point of view, the surface interaction of the material points is resulted from the force traction 

vector it  and couple traction vector im
 
given by  

i ji jt n=  (2) 

i ji jm n=  (3) 

where ji
 
and ji  are general non-symmetric force-stress and couple-stress tensors, respectively,  and in is the 

normal unit vector to the bounding surface of material points. 

For a continuum of volume V  and boundary surface S , the principle of virtual work gives the following 

equation for couple stress theory [1] 

( ) ,ij ji i j i i i i i iji

V V V S S

dV dV F u dV t u dS m dS      + = + +    

 

(4) 

where iF  is the body force vector, ij  is the conventional strain tensor, and ( )ji
  is the symmetric part of the 

general force-stress tensor ji  . 

It is noted from Eq.(4) that the boundary conditions in the couple stress theory are expressed in terms of 

displacements iu , rotations i  and the traction vectors it  and im  , respectively. However, Koiter [2] showed that 

the normal component of the rotation vector cannot be considered an independent natural boundary condition, and 

the rotation vector should be decomposed to the following normal part 
( )n

i  and the tangential part 
( )t
i   

( ) ( )n

i k k in n =  
(5) 

( ) ( )t

i i k k in n  = −  
(6) 

As a result, the surface integral corresponding to the rotational degree of freedom can be rewritten as  
( ) ( )n t

i i i i i i

S S S

m dS m ds m dS  = +    

                       ( ) ( )t

ji j i k k i i

S S

n n n ds m dS  = +   

 

 

(7) 

where im  and 
( )n

i are replaced, according to Eqs. (3) and (5). Then Eq. (1) and Stoke’s theorem are used to 

show  
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( ) ( ) ,

1

2
ji j i k k ji j i k kmn n

S

m

S

Sn n n n n n e udS d   = 
 

( ) ( )
,

1 1

2 2
ji j i k k kmn k ji j i nm

C S

n n v u dc e n n n u dS   = −   

 

 

(8) 

where 
nv is the unit vector tangent to the curve C that bounds the boundary surface S  [3]. This is a very 

important equation and its contribution to the couple stress analysis of micro-beams will be discussed in the next 
section. 

3. A new approach for couple stress analysis for the micro-beams 

As observed in the previous section, only symmetrical part of the force-stress tensor contributes the Eq. (4). 

However, in original couple stress theory [2, 4, 5] a general non-symmetrical couple-stress tensor ji  appears in the 

virtual work formulation. So, in order to develop a feasible theory, some restrictions should be plausibly imposed on 

ji .  

In engineering literature, microstructure models are frequently developed based on an approximate form of 

deformation. Eringen [6] and Ramezani et al. [7] approximated the displacement components by the power series 
expansion method and derived the first-order micropolar plate and beam models. In this analysis, we followed this 

approach for couple stress beam theory and approximated the axial component of the displacement field by the 

following power series expansion 

( ) ( ) ( )
0

, , ,
N

j

x j
j

u x z t z x t
=

  
(9) 

where ( )j are undetermined basic functions which depend on the kinematics of deformation, N  is the number 

of terms considered for approximation, and z  is the distance from the mid-plane (See Fig. 1). Similar to classical 

beam theories, the transverse displacement component 
zu is simply approximated with only one term, that is 

( ) ( ), , ,zu x z t w x t

 

(10) 

 
Fig. 1. The cross-section of the deformed structure 

Based on the approximated displacements (9) and (10), the non-zero components of the strain tensor ij  are  

( )

0

N
jj

xx

j

z
x




=


=




  

(11) 

( ) ( )
1

0

1 1

2 2

N
j

xz j
j

w
j z

x
 −

=

  
= + 

 
  

(12) 
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Fig. 2. One-dimensional analysis of beam-like structures 

Unlike the micropolar theory, in couple stress theory the rotations i , as another degree of freedom, are 

dependent on the displacement field iu  (see Eq. (1)). As a result, other than the strain tensor 
ij , the rotation 

gradient tensor 
,i j  and the couple-stress tensor ji  are also affected by the approximations (9) and (10). So, 

considering some specific kinematical assumptions for the deformation, may impose plausible constraints on general 

non-symmetric couple-stress tensor ji .  

According to Eqs (1), (9) and (10), components of the rotation vector are 

( ) ( )
1

0

1 1
, 0

2 2

N
j

y x zj
j

w
j z

x
   −

=

  
= − = = 

 


 

(13) 

In the one-dimensional analysis of beams, the normal vectors to the cross-sections are assumed only directed 

along the x –axis (see Fig. 2), i.e., 1 0x y zn n n=  = = . So, one can easily show that 

0k kn =  (14) 

It is noted from Eq. (5) the normal part of the rotation vector vanishes, and according to Eq. (8) the following 

equation is obtained for the micro-beams 

( ) ( )
,

1 1
0

2 2
ji j i k k kmn k ji j i nm

C S

n n v u dc e n n n u dS   − = 

 

 

(15) 

Thus, the following equation should be satisfied on the boundary sections 

0ji j in n =  (16) 

It is noted also that by adopting displacements in form of (9) and (10), the couple-stress tensor ji cannot 

generate the normal rotation 
( )n

i on any arbitrary bounding surface inside the domain. As a result, Eq. (16) is also 

valid inside the volume. Since the second-order tensor i jn n  is symmetric, it is concluded that the couple-stress 

tensor “in analysis of micro-beams” is skew-symmetric, i.e., 

ji ij = −  (17) 

In this approach, without considering any special material behavior, the skew-symmetry of the couple-stress 

tensor is concluded from Eqs. (9) and (10). Based on a skew-symmetric couple-stress tensor, Hadjesfandiari and 

Dargush [1] derived the variation in internal energy U , and the constitutive equations as 

( )( )ij ji ijji

V

U dV    = +  
(18) 

( )
2kk ij ijji
G   = +  (19) 

22ji ijGl =  (20) 

where   and G  are the Lame constants, l  is the only material length scale parameter, and ij  is the skew-

symmetric curvature tensor, defined as 
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( ), ,

1

2
ij i j j i  = −  

(21) 

It is also noted from Eqs. (12) and (13) that the slope at each section of the beam, can be expressed in the 

following form 

xz y

w

x
 


= −


 

(22) 

It is shown in the next section that Eq. (22) may be used to revise the boundary conditions of couple stress beam 

models into a more convenient form. 

3.1.  A couple stress Timoshenko beam model with new boundary conditions 

In this section, a couple stress model is developed based only on two first terms of power series expansions (9), 

corresponding to 0j =  and 1j = . As a result, the displacement components, which are identical to those in 

classical Timoshenko beam theory, are noted to be 

( ) ( ), ,xu u x t z x t−=  ( ),zu w x t=  (23a,b) 

where 
( )0

u = , 
( )1
 = −  and w , are the essential variables of the problem. The non-zero components of 

the strain tensor and rotation vector are: 

1 1
, ,

2 2
xx xz y

u w w
z

x x x x


    

      
= − = − + = − +   
      

 

(24a-c) 

For the special case of the displacement field (23), the non-zero components of tensor ij  are found to be   

2

2

1

4
xy yx

w

x x


 

  
= − = + 

  
 

(25) 

It is noted from (24) and (25) that Eq. (18) takes the following form for a Timoshenko micro-beam  

( ) ( )( )

( )

2

2

0

2 2

1 1

2 2

1 1 1

2 2 2
0

xx xz xy yxxx xz

V

L

U dV

M MN M Q
u Q w dx

x x x x x

x L
Mw

N u M M M Q w
x x

x

   




    

      

  

   

= + +

       
= − + − − − + − +                

=
     

+ + + + + −     
        =



  

 

 

(26) 

where L  is the length of the beam, and the stress resultants across the cross-section A  are defined as 

( ), , ,
A

xx xx s xyxz

A A A

N dA M z dA Q k dA M dA      = = − = = −   

 

(27a-d) 

In Eq. (27c), sk  is the shear correction factor corresponding to the improper distribution of shear strains over 

the beam thickness. The virtual work done by external loads W takes the following form for the micro-beams [8]  

( ) ( )
0

, ,
0

L x L
W f x t u q x t w dx N u M Q w

x
     

=
 = + + + +     =

 

 

(28) 

where f and q  are the components of distributed body force per unit length along the x −  and z − axis, and 

N , Q  , M  are the external axial force, transverse force and bending moment at the boundary points, respectively. 

According to the principle of minimum total potential energy [9] 

0U W − =  (29) 

Substituting (26) and (28) into Eq. (29), gives the following equation  
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2

2

0

1 1

2 2

L MN M Q
f u Q q w

M
dx

x x x x x

   
  

      
− − + − − − + − + − +              



  
  

( ) 0

0

1

2 2 2

M Mw
N

M
N

x

u M M Q Q w
x x

L

x





 

    

=
  

+


− =  


+


   
− + − + −   

   =
 

 

 

 

 

(

30) 

3.2. Deriving new boundary conditions 

In this study, the deformation is described by the basic functions u , w and  , which are the essential 

variables defined in Eq. (23). However in Eq. (30) the inessential slope variation ( )w x   , is also appeared as a 

natural boundary condition. This implies that Eq. (30) may be revised into a more convenient form. It is noted from 

Eq. (22) that the slope w x   at each section of the beam can be expressed in terms of shear strain xz and 

bending rotation y . The strain tensor ij  and the rotation vector 
i  (as the symmetric and skew-symmetric parts 

of displacement gradient tensor ,i ju , respectively) are completely independent tensors. So, zero slope variation, 

(i.e., ( ) 0w x   = ), requires 

0,0y xz = =
 

(31a,b) 

 

However, according to Eq. (24), and for ( ) 0w x   = , the following set of equations is obtained  

( )
1 1

0 0
2 2

y

w

x
   

 
= − + = − + = 

   

(32) 

 

( )
1 1

0 0
2 2

xz

w

x
   

 
= − + = − + = 

 
 

(33) 

As can be seen, both y and 
xz vanish, if the constraint 0 =  is satisfied. This means that in sections 

with zero slopes, no rotation occurs. As a result, the boundary condition ( )w x    can be replaced by   and 

the rotational boundary conditions that appeared in Eq. (30), may be written in the following form 

( )
0 0

2 2

M w
M M M M M

x

x L x L
M

x x



  


  

= =
  

 + = +    
  

  
− + −

=

 
 

=


 

 

(34) 

For the arbitrary amounts of u , 
 
and w , the equilibrium equations are noted to be  

( ), 0
N

f x t
x


− − =

  

(35) 

( )
( )

,
, 0

M x t
Q x t

x


− − =

  

(36) 

( )
( )

,
, 0

Q x t
q x t

x


− − =


 

(37) 

where Q  and M  as the total transverse force and bending moment at each arbitrary section of the beam, 

respectively, are  

1
,

2

M
Q Q M M M

x



  


= − = +

  

(38a,b) 

and the boundary conditions are noted to be 
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0 0 LN au xN or t d xan  == = =

 

 

0 0 LM M or at anx d x == = =

 

 

0 0 LQ Q or at aw x n xd == = =

 

(39a-c) 

 

4. Numerical investigations 

In this section, the new model with revised boundary conditions is used to for the analysis of micro-beams. In 
some examples, micro-beams with different loadings and support conditions are investigated to show the accuracy 

and effectiveness of the proposed model. Then, some insufficiencies in M-CST models are discussed and it is shown 

that the current study provides more convenient tool for size-dependent analysis of micro-beams. 

According to the basic arguments considered in this study, total bending moment and transverse shear force at 

each section are given in Eq. (38). Substituting (19), (20), (24) and (25), into Eq. (38) gives the following equation 

for the bending moment and the transverse force in terms of generalized displacements  and  w   

( )
2

2

2

1

2

d d w d
M x EI GAl

dx dx dx

  
= + + 

   

(40) 

( )
3 2

2

3 2

1

4
s

dw d w d
Q x k GA GAl

dx dx dx




  
= − − +  

   
 

(41) 

where I denotes the second-moment area of the cross-section. 

4.1. micro-cantilever Timoshenko loaded at free end 

For the loading and coordinates system shown in Fig. 3, the transverse force and bending moment at each section 

of the micro-cantilever beam, are P  and ( )P L x− , respectively. As a result, the following differential equations 

are obtained for the problem 

 
Fig. 3. The micro-cantilever beam clamped at 0x =  and subjected to a concentrated load at its free end. 

( ) ( )
2

Θ Θ
2 2

EI GAl
P L x + =− −

 

(42) 

2

Θ
4

s

GAl
k GA P − =  

(43) 

where 

( )
dw

x
dx

 = −
 

( )Θ
dw

x
dx

= +  
(44a,b) 

and prime symbol represents the derivation with respect to x .  

For the clamped end, the section cannot endure any shear or rigid rotation. So, it can be easily concluded that 

( ) ( )Θ 0 0 0= =  (45) 

At the free end of the beam, the total bending moment is zero. So, it is noted from Eq. (42) that the necessary 
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conditions for satisfaction of ( ) 0M L = , are 

( ) ( )Θ 0L L = =  (46) 

Using the boundary conditions (45) and (46), the following closed-form solutions can be found for the set of 

Eqs. (42) and (43) 

( )
( )cosh

  1
cosh

p

L x
x

L
 

 − 
= − − 

 
 

(47) 

( )
( ) 2

2 2

cosh 2 1
  1

cosh 2
p

L xEI P
x Lx x

EI GAl L EI GAl


 −   
 = − − + −   

+  +   
 

(48) 

where 

( )2

2
Π

sk EI GAl

l EI

+
=

 
( )( )

2

2

2

2
p

s

P EI GAl

k G GAl EI


+
=  

(49a,b) 

The rotation   and the slope dw dx  can then be obtained from Eq. (44). It is noted from Fig. 3 that 

( )0 0w = . So, the rotation and transverse deflection at each section of the beam is found in the following forms 

( )
( )2 2

2 2

coshΠ1
1

2 coshΠ 2
p

L xGAl P x
x Lx

EI GAl L EI GAl


−   
= − + −   

+ +   
 

(50) 
 

( )
( )2 2 3

2 2

sinhΠ1 2 tanhΠ 1

2 Π Π coshΠ 2 6
p

L xEI GAl L P x x
w x x L

EI GAl L EI GAl


−   +
= − + + −   

+ +   
 

(51) 

As an example, a circular micro-beam of diameter d  and length 5L d=  is assumed to be loaded with a 

concentrated load 100P N=  at its free end. The mechanical properties of constructing material are 

1.44 E GPa= , 0.38 =  and 17.6 l m=   [10]. In this case, the shear correction factor, introduced in Eq. 

(27c), takes values close to unity, i.e. 1sk =
 
 [11].  

For different ratios of diameter to material length scale parameter d l , results of the present model for the 

maximum deflection at the tip point are illustrated in Fig. 4 and compared with results of the classical Timoshenko 

theory. It can be seen that for lower diameters, there is a considerable difference between the results of the presented 

model and the classical solution. However, as the diameter increases, the deviation of couple stress solution from the 

classical solution diminishes. This indicates that the size effect is significant when the diameter is close to the 

amount of material length scale parameter l .  

Fig. 5 shows the results of the present model and classical solution for the rotations at the tip point. Similar to 

what was observed for the deflections; the presented couple stress model predicts fewer rotations for the beams with 

lower diameters. It is also observed that the deviation from classical predictions diminishes as the diameter 

increases. So the model can properly capture the size effects.  

In order to justify the presented model, the deflections obtained from Eq. (51) are compared in Fig. 6 with the 

results of M-CST Timoshenko model [12] and the results of the M-CST Euler-Bernoulli model [13]. As can be seen, 
results of the current study are in complete agreement with the results of the first-order shear deformation model. 

However, a slight difference is observed between the results of current study and those given by the non-shear 

model. This demonstrates the validity of the presented model. As another example, a rectangular micro-cantilever 

beam of width b  and thickness h  is considered. For the loading condition shown in Fig. 3, results of the present 

model for the bending rigidity are shown in Fig. 7. The bending rigidity is defined as the ratio of maximum 

defection maxw  to the applied load P . Since a variety of dimensionless thicknesses h l  are considered, the cross-

sectional aspect ratio and the length of the beam are set to be 2b h =  and 20L h= , respectively, for keeping the 

shape of the micro-beam.  By ignoring the Poisson effect, the shear correction factor is considered to be 5 6sk =
 
 

[14]. The results of a strain gradient model developed by [10] are also given in Fig. 7 for the sake of comparison. It 
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can be observed that the present model provides sufficiently accurate results compared with a more sophisticated 

strain gradient model. The difference between the results is significant only when the thickness is near the material 

length scale parameter, i.e., h l . However, the results of both models become convergent for 4h l . This is an 

important limit and if the thickness of the beam is less than that, the analysis should be done by the classical theory. 
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Fig. 4. The results of present model and the classical solution for normalized deflection at tip point. 
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Fig. 5. The results of the present model and the classical solution for the maximum rotation at the tip point. 

 

4.2. Insufficiencies of M-CST boundary conditions at clamped ends 

In this section, we show that the boundary conditions in modified couple stress may result in unacceptable 

solutions for Timoshenko micro-cantilever beams. According to a model developed by [8], the following boundary 

equation appeared in the variational formulation of the Timoshenko micro-beam (see also Eq. (30)) 

1
0

2
0

x L
w

M
x

x



=
   

=    
=

 

(52) 

Based on Eq. (52), Alavi et al. [11] derived two distinct solutions for the micro-beam shown in Fig. 3; the “fully 

clamped solution” corresponding to the following boundary condition 

( )0 0
w

x


=


 

(53) 

and the “partially clamped solution” for  

( )0 0M  =  (54) 
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Fig. 6. Comparison of normalized deflection of a micro-beam under a concentrated shear force 
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Fig. 7. Bending rigidity of the rectangular micro-beam obtained from the present model and strain gradient 

theory. 
 

  

However in this study, a different set of boundary conditions are proposed in Eq. (39). As a result, the present 

model gives a unique solution for the beams with clamped ends. For a circular micro-beam of length 5L d= and 

diameter 5d l= , the results of fully and partially clamped solutions derived in [11] are illustrated in Fig. 8. Results 

of the present model and the classical solution are also given for comparison. As can be seen, for a beam of length 

5L d=  and diameter 5d l= , the size effects are negligible and the results of all models are very close to each 

other. So, both fully and partially clamped solutions give almost the same results in this case. 

According to Figs 6 and 7, we consider a case with severe size-dependent effects. For a micro-beam of diameter 

d l= , the results of the fully clamped solution, partially clamped solution and present model are depicted in Fig. 

9. It can be observed that the results of the present model are completely identical to the fully clamped solution, but 

results of the partially clamped solution are found to be significantly different. Now we examine the acceptability of 
the partially clamped solution. It is also observed that for the points near the fixed end, the partially clamped 

solution predicts higher deflections even than those in the classical Timoshenko beam model. It seems that there is 

something wrong with the assumption of partially clamped. For different diameters, the results of the partially 

clamped solution and the classical solution for deflections are given in Table 1. It is noted that for all considered 

diameters, the partially clamped solutions give higher values of deflection for the points near the fixed end. 

However, it is well known that the microstructures endure lower deflections compared with the predictions of the 



30 Hossein Golbakhshi et al. 

classical solution. This clearly indicates that the partially clamped solution gives erroneous results. As a result, our 

basic idea for discarding the slope ( )w x   from the natural boundary conditions seems to be reasonable and 

leads to a solution with more reliable and acceptable results. 

4.3. The models with reduced degrees of freedom 

In a series of works, authors tried to discard the boundary equation (52) and consider only the deflection  w  and 

the rotation   as the natural boundary conditions [11, 15-30]. It is noted that by considering fewer degrees of 

freedom at each node, the complexity and computational cost will reduce considerably. Alavi et al, [11] made an 

approximation in Eq. (30) and by ignoring the contribution of M   to the slope, discarded ( )w x    and 

derived a two primary variables (2 PV) couple stress model.  

For a circular beam of length 0.001L m=  and length-to-diameter ratio 5L d= , the results of the 2 PV 

model developed by [11] and the present model are depicted in Fig. 10. The results of an exact solution developed in 

[12] are also given for evaluating the accuracy of the models. It is noted that the results of the current study and the 2 

PV model are very close to the results of the exact solution. The deflection of a micro-beam with 0.0001L m=  

and the same length-to-diameter ratio is shown in Fig. 11. In this case the results of the 2 PV model have a great 

deviation, but the present model still preserves its accuracy. For better comparison, the maximum deflections of 
beams with various lengths are given in Table 2. It is noted that the approximate 2 PV model gives accurate results 

just for the cases with moderate or low levels of size-dependency. As the size of micro-beam approaches the 

material length scale parameter, the accuracy of the 2 PV model is badly deteriorated. 

Similar to the procedure discussed in section 4.1, a closed-form solution can also be derived for this case. The 

beam length and cross-section width are selected as 20L h=  and 2b l= , respectively. A uniform distributed 

load 
3q EI L=  is subjected to the micro-beam. According to [31], 20 3 =  is used for evaluating the 

bending deformation of beams with various thicknesses. For 20h l= , the results of the present model are 

illustrated in Fig. 13 and compared with the results of the 2 PV model, and an exact solution developed by Ma et al. 

[8]. As can be seen, all models give the same results and discarding the slope from the formulation does not affect 

the accuracy. Fig. 14 compares the results for a micro-beam with thickness 5h l= . In this case, the 2 PV model 

cannot provide accurate results. For various thicknesses, the maximum deflections of the beam predicted by the 

models are given in Table 3. It can be easily understood that the approximation proposed by [11] gives valid results 

only for a limited range of microstructure sizes. However, the present model is still accurate and gives the same 

results as the exact solution. So, by using the proposed consideration, the number of degrees of freedom at each 

section of micro-beams reduces but the accuracy is not affected at all. 
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Fig. 8. Deflection of micro-beam with 5d l = , obtained from different solutions. 

 

Table 1. The results of different solutions for the deflection w L of points near the fixed end. 
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Fig. 9. Deflection of micro-beam with

 
1d l = , obtained from different solutions. 

In the case of rectangular simply supported micro-beam shown in Fig. 12, the boundary conditions at the end 

sections are 

( ) ( )0 0w w L= =  ( ) ( )0 0M M L= =  (55a,b) 
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Fig. 10. The results of models with revised boundary conditions for a beam of length 0.001L m= . 
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Fig. 11. The results of models with revised boundary conditions for a beam of length 0.0001L m= . 

 

Table 2. the maximum deflection 
maxw L  at the tip point for various beam lengths 

  

Present model 

 

2 PV model 

 

Exact solution 

5L l=  72.0131 10−  72.6042 10−  72.0131 10−  

10L l=  71.2629 10−  71.3611 10−  71.2629 10−  

100L l=
 

71.3903 10−  71.3914 10−  71.3903 10−  
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Fig. 12. The simply supported micro-beam subjected to a distributed load ( )q x . 
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Fig. 13. The results of models with revised boundary conditions for a beam of length 20L h= and thickness 

20h l= . 

4. Summary 

In current study a new idea is proposed for the couple stress analysis of micro-beams. The displacement 

components are approximated by power series expansions of displacements components according to the 

kinematical assumptions of beam theories. As a result, a decisive conclusion is made and the couple-stress tensor is 

found to be skew-symmetry. Furthermore, the proposed approach makes it possible to revise the boundary 

conditions of couple stress beam theories into a more convenient form. In the special case of couple stress 

Timoshenko beam models, other than the classical w  and  , the inessential slope variation
 ( )w x   , also 

appears as a natural boundary condition in conventional modified couple stress (M-CST) models. In this study, the 

slope variation is discarded and a more convenient set of boundary conditions similar to those in classical model is 

derived without considering any approximation. Several numerical examples are considered and it is shown that the 

presented model gives exactly the same results compared with available solutions in the literature. 
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Fig. 14. The results of models with revised boundary conditions for a beam of length 20L h= and thickness 

5h l= . 

Table 3. The maximum deflection 
maxw L  of simply supported beams for different thicknesses. 

 Present model 2 PV model Exact solution 

h l=  0.01643  0.02772  0.01643  

5h l=  0.07443  0.08041 0.07443  

10h l=  0.08374  0.08553  0.08374  

20h l=  0.08644  0.08691 0.08644  
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