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ABSTRACT: The basic idea of vibration-based damage identification approaches is that 

damage causes change in vibration response of structure. So monitoring the vibration 

response characteristics can be helpful in damage detection.  The main limitation in such 

methods is that these characteristics are also affected by the Environmental and 

Operational Variability (EOV)  that can be incorrectly known as structural damage or 

sometimes cover actual damages. This paper aims to propose an innovative approach to 

detect and locate damage considering the EOV conditions. In this regard, an Independent 

Component Analysis (ICA) based Blind Source Separation (BSS) approach is employed 

to remove the EOV influences from the time history response of the structure. The 

beneficial of using the ICA-based BSS method is that there is no need to measure the 

environmental/operational conditions. Moreover, it is able to remove EOV influences 

using a limited group of response data monitored during different environmental and 

operational conditions. Time series analysis is then performed to extract damage-sensitive 

features. Finally, a statistical tool is employed to damage identification and localization 

by using EOV independent features. Two recognized benchmark structures are employed 

for verifying the accuracy of the proposed approach. Results indicate that the proposed 

method is a time-saving tool and efficiently successful in damage assessment of structures 

under EOV. 

 

Keywords: Bhattacharyya Measure, Blind Source Separation, Damage Detection, 

Environmental and Operational Variability, Time Series Analysis. 

  
 

1. Introduction 

 

Monitoring structural damage plays a 

critical role in the maintenance of civil 

structures and has several economic 

benefits. Several methods such as 

thermography, optical methods, ultrasonic 

testing, acoustic emission, and vibration-
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based methods have been developed to 

diagnose structural damage (Avci et al., 

2021). Among these methods, vibration-

based methods are of great importance as 

they can detect damage remotely by 

sensors.  

Utilizing the statistical pattern 

recognition techniques in vibration-based 
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damage detection methods leads to an 

effective data-driven methodology which 

have attracted much attention in Structural 

Health Monitoring (SHM) applications. 

These methods consist of using vibration 

time domain responses, feature extraction 

by time series analysis, and damage 

identification through statistical decision 

making (Entezami, 2021). Roy et al. (2015) 

employed different time series models to 

obtain damage-sensitive features using 

output-only measurements. They used a 

statistical distance test for damage 

localization. Datteo et al. (2017) employed 

the principal component analysis of 

AutoRegressive (AR) parameters to 

condition assessment of a stand of the 

Giuseppe Meazza stadium in Milan during 

a long-term vibration monitoring. Razavi et 

al. (2021) proposed a data-driven method 

for vibration-based damage detection. In the 

proposed method, feature extraction is 

based on time series analysis and then 

damage is localized by two statistical 

distance measure called Jeffery’s and 

Smith’s distances. More applications of 

statistical pattern recognition techniques to 

SHM can be found in (Zhang and Song, 

2018; Entezami et al., 2019; Daneshvar et 

al., 2021; Kordi and Mahmoudi, 2022). 

The damage detection in vibration-based 

methods is based on the assumption that 

damage affects the structural dynamic 

properties that change the vibration 

response characteristic  (Limongelli et al., 

2021). However, the responses measured in 

these methods are sensitive not only to 

damage but also to EOV (Vamvoudakis-

Stefanou et al., 2018). In SHM literature, 

the sensitivity of structural responses has 

been reported to environmental and 

operational items including temperature, 

wind, humidity, traffic and water level 

within the dam (Bayraktar et al., 2014; 

Comanducci et al., 2016; Nguyen et al., 

2017; Hu W-H, 2018; Cunha et al., 2019; 

Kullaa, 2020). Consequently, before 

extracting damage sensitive features, the 

effects of the EOV must be considered. 

Cross (2012) introduced this issue as the 

data normalization problem. A literature 

review presents different approaches 

proposed for dealing with the EOV effects. 

Some of these approaches try to model the 

effect of EOV on monitoring parameters or 

damage sensitive features (Spiridonakos et 

al., 2016; Cai et al., 2021; Shan et al., 2018). 

Therefore, the prediction error is a robust 

indicator of a structural condition that is 

insensitive to EOV. The simplest approach 

to model the effects of EOV on damage-

sensitive features contains the linear 

regression model (Cross et al., 2013; 

Dervilis et al., 2015). Several approaches 

containing neural networks and support 

vector machines can be found in the 

literature dealing with the modeling the 

effect of EOV (Zhang et al., 2018). The 

primary restriction of such approaches is 

due to a set of changing conditions that must 

be identified and accurately measured. 

Nevertheless, these approaches may not be 

a good choice when several environmental 

or operational items are considered. 

Several alternative strategies have been 

investigated when it is not feasible to 

measure the environmental/operational 

conditions. The most popular of these 

strategies rely on using a group of response 

data monitored during a long enough time 

period to span all the possible normal 

conditions. Handling a huge amount of data 

is the main limitation of this strategy. 

Furthermore, having a large database from 

normal conditions may reduce features 

sensitivity to damage (Cross, 2012). 

Considering the above-mentioned 

practical difficulties, this paper aims to 

employ a Blind Source Separation 

technique (BSS) to suggest a new approach 

for data normalization.  BSS technique has 

been accepted as an effective solution for 

analysis of traffic-induced vibrations (Chen 

et al., 2015), modal identification (Yu, 

2019; Sadhu et al., 2017), and condition 

monitoring (Guo and Kareem, 2016). Sadhu 

and Hazra (2013) proposed a new damage 

detection method including BSS technique 

and time-series analysis. In this algorithm, 

the modal response is estimated from the 
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vibration measurements utilizing the BSS 

technique and then one-step-ahead 

prediction of the modal response is 

performed by means of time-series analysis. 

Rainieri et al. (2019) employed the Second-

Order Blind Identification (SOBI) to model 

the variability of natural frequency 

estimates under EOV. In this paper, an ICA-

based BSS method is employed to remove 

the EOV influences from the time history 

response of the structure.  

In the damage assessment approach 

proposed in this paper, a BSS approach is 

employed to remove the effects of the EOV 

on the time history response of the structure 

in the presence of unmeasured EOV. Then, 

time series analysis is applied to extract 

damage sensitive feature from the EOV 

independent response of the structure. 

Finally, a statistical tool called 

Bhattacharyya measure is introduced for 

damage identification and localization.  

This paper includes different sections as 

follows: Section 2 indicates the novelty and 

importance of the present work. Section 3 

describes the mathematical foundations of 

techniques used in the proposed approach. 

Section 4 presents the steps of the proposed 

damage assessment approach. In Section 5, 

the proposed method is applied to data 

acquired from two benchmark structures. A 

comparative study also is conducted to 

demonstrate the capability of the proposed 

approach. Finally, Section 6 provides the 

conclusion. 

 

2. Research Significance 

 

This paper proposes a statistical pattern 

recognition approach to detect and locate 

damage in structures considering the EOV 

conditions. The effect of EOV on the 

system’s vibration signal is a challenging 

issue in application of vibration-based 

damage detection methods. This paper 

employs an ICA-based BSS method to 

suggest a new approach to remove the EOV 

influences from the time history response of 

the structure.   This approach is able to 

remove EOV influences using a limited 

group of response data monitored during 

different environmental and operational 

conditions. It is worth to mention that in the 

proposed method, the measurement of 

environmental or operational items is 

unnecessary.  

In the proposed damage detection 

method, a time series analysis is applied to 

extract damage sensitive feature from the 

EOV independent response of the structure. 

In this method, in contrary with model 

based methods, there is no need to 

analytical or physical modeling of the 

structure and only use time-domain data.  

Finally, a novel statistical method named 

as Bhattacharyya measure is introduced to 

measure the degree of similarity between 

damage sensitive features obtained in 

different conditions of structure for damage 

detection.  

In calculating the Bhattacharyya 

measure, feature vector is divided into 

several subdivisions and the numerical 

information of them, like the number of 

total subdivisions and the number of 

samples within each subdivision, are used. 

In the other word, the features is not directly 

involved in the Bhattacharyya measure 

calculation. Therefore, it can be able to be 

regarded as a solution for the issue of large 

data or high-dimensional features. 

 

3. Theoretical Background 

 

The algorithm developed in this paper 

employs the BSS method to eliminate the 

effects of EOV from the structural 

responses. After that, time series analysis is 

employed to extract damage sensitive 

features. Finally, Bhattacharyya measure is 

used for damage detection and localization. 

Theoretical background of BSS method, 

time series analysis and Bhattacharyya 

measure are included herein. 

 

3.1. Blind Source Separation (BSS)  

The objective of BSS technique is to 

retrieve the unobserved source signals from 

the mixture observations carried out by an 

array of sensors.  In this paper, the sources 
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refer to the responses of the structure to 

unmeasured environmental and operational 

conditions that cause the responses of the 

structure in a certain state be uncertain. 

Figure 1 shows a BSS problem.  

 

[

𝑠1..
.

𝑠𝑛

] = 𝑠 → 𝐴
𝑥
→ 𝑈 → 𝑦 = [

𝑦1..
.

𝑦𝑛

] = �̂� 

Fig. 1. Mixing and separating; Unknown sources: s, 

Observations: x, Estimated sources: ŝ, Mixing 

matrix: A, Demixing matrix: U (Jain and Rai, 2012) 
 

The BSS model considers the N source 

signals and the M observations as 𝑠(𝑡) =
(𝑠1(𝑡), … , 𝑠𝑁(𝑡))𝑇 and 𝑥(𝑡) =
(𝑥1(𝑡), … , 𝑥𝑀(𝑡))𝑇 respectively. Now, the 

BSS model can be expressed as, 

 

𝑥(𝑡) = 𝐴𝑠(𝑡) 

�̂�(𝑡) = 𝑈𝑥(𝑡) 
(1) 

 

BSS methods' purpose is to find the 

demixing matrix U and the sources ŝ(t) 

based on observations of the x(t) alone. A 

literature review reveals several BSS 

approaches. In this paper, Independent 

Component Analysis (ICA) is applied to 

remove the EOV effect. 

 

3.1.1. Independent Component Analysis 

(ICA) 

Independent Component Analysis is 

greatly utilized in various fields such as 

blind separation of mixed voices or images, 

biomedical signal processing, data 

communication and several others. 

Recently ICA is extended for damage 

detection and condition monitoring (Jiang 

et al., 2019; Wang et al., 2020). There are 

different ICA algorithms in the literature 

(for example Joint Approximate 

Diagonalization of Eigenmatrices (JADE) 

and Natural Gradient algorithms). The 

proposed approach in this paper utilizes the 

JADE algorithm. 

Cardoso and Souloumica (1993) 

proposed the JADE as an algorithm for ICA 

by a joint approximate diagonalization of 

eigenmatrices. The approach combines 

second and fourth order statistics to perform 

BSS of the mixtures. Due to space 

limitation, fundamental steps of JADE 

algorithm are indicated. The reader can 

refer to Cardoso (1999) for further detail.  

Referring to Eq. (1), X:  is a set of 

observations and A: is an unknown mixing 

matrix. The goal is then to estimate a 

demixing matrix, U = A-1. Supposing that 

the sources are independent, four 

fundamental steps are needed to obtain the 

demixing matrix.  

1. Estimating a whitening matrix W and 

calculating the whitened matrix Z which 

Z = WX.  

2. Estimating the cumulant matrices {𝑄𝑖
𝑍}. 

3. Estimating the matrix V using joint 

approximate diagonalization (JAD) 

algorithm as   

 

𝑉 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 0𝑓𝑓(𝑉𝑇𝑄𝑖
2𝑉)

𝑖
 (2) 

 

4. Estimating the demixing matrix [U] and 

the sources {s(t)}which 

 

[𝑈] = [𝑉]𝑇[𝑊] 
{𝑠(𝑡)} = [𝑈]{𝑥(𝑡)} 

(3) 

 

3.2. Time Series Analysis 

Time series analysis is a statistical way 

trying to fit a mathematical model over 

time-series observations in order to 

determine specific statistics. There are 

several model for analyzing the time series 

data. Entezami and Shariatmadar (2019) 

suggested that when the measured response 

of the structure is resulting from the 

ambient excitations, it should be better to 

model the structural response by applying 

time series models that contain a 

polynomial equation into the error term. In 

this regard, the ARMA and ARARX 

models can be efficiently employed for 

modeling the time history measurements 

under the ambient excitations. If time series 

signal is an AR process in nature, the 

ARARX model is a better choice (Ljung, 

1999). To determine the nature of time 

series data, the Box-Jenkins methodology 
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can be used efficiently (Box et al., 2015). In 

the benchmark structures considered in this 

paper, the ARARX model is used.   

Suppose that x(t) is a stationary and 

linear time series, then AR(p) model is 

indicated as: 

 

𝑥(𝑡) = ∑ 𝜑𝑥𝑗𝑥(𝑡 − 𝑗)

𝑝

𝑗=1

+ 𝑒𝑥(𝑡) (4) 

 

in which ex(t): is the random error, 𝜑𝑥𝑗: 

denotes the AR coefficients, and p: is the 

order of the model. Structurally, the ARX 

model and the AR model are identical. The 

difference is that the ARX model contain a 

regression term for an external input e(t). In 

the employment of an ARARX model, the 

residuals of the AR model are applied as the 

external input in the ARX model. 

 

𝑥(𝑡) = ∑ 𝛼𝑖𝑥(𝑡 − 𝑖)

𝑎

𝑖=1

+ ∑ 𝛽𝑗𝑒𝑥(𝑡 − 𝑗)

𝑏

𝑗=1

+ 𝜀𝑥(𝑡) 

(5) 

 

where 𝛼𝑖 and 𝛽𝑗: are the ARX coefficients, 

𝜀x(t): is the ARX random error, and a and b: 

are the order of the model. 

In application, damage sensitive feature 

might be selected from particular 

characteristics of the residuals achieved by 

fitting a model from reference condition x(t) 

to y(t) measured from an unknown 

condition. 

 

𝑦(𝑡) = ∑ 𝜙𝑦𝑗𝑦(𝑡 − 𝑗)

𝑝

𝑗=1

+ 𝑒𝑦(𝑡) (6) 

𝜀𝑦(𝑡) = 𝑦(𝑡) − ∑ 𝛼𝑖𝑦(𝑡 − 𝑖)

𝑎

𝑖=1

+ ∑ 𝛽𝑗𝑒𝑦(𝑡 − 𝑗)

𝑏

𝑗=1

 

(7) 

 

3.3. Bhattacharyya Measure 

Bhattacharyya measure reflects the 

degree of similarity between any two 

statistical samples. Suppose that p(i) and 

p’(i) are two samples, including N partitions 

with respective probabilities p(i = 1), . . . , 

p(i = N) and p’(i = 1), . . . , p’(i = N). The 

Bhattacharyya measure is defined as: 

 

𝜌(𝑝, 𝑝′) = ∑ √𝑝(𝑖)𝑝′(𝑖)

𝑁

𝑖=1

 (8) 

 

From the geometric view, the 

Bhattacharyya measure is the cosine of the 

angle between the vectors 

(√𝑝(𝑖) … . . √𝑝(𝑁))
𝑇
and 

(√𝑝′(𝑖) … . . √𝑝′(𝑁))
𝑇
. To obtain 

Bhattacharyya measure between two 

damage-sensitive feature vectors, each 

vector should be divided into N partitions, 

after determining the probability of each 

partition, the Bhattacharyya measure is 

calculated according to Eq. (8).  

 

4. Proposed Method 

 

Suppose that there is a significant amount of 

variability in the measured data from an 

undamaged structure due to EOV. The 

proposed method takes advantage of the 

JADE algorithm to filter the confounding 

effects of EOV. The JADE algorithm makes 

the measured data independent of one 

another and obtains the sources. Therefore, 

if in a time period, the data from the 

undamaged structure subject to EOV 

conditions are recorded, one can acquire the 

independent sources. Discarding the 

sources that account for significant amounts 

of variability in the data, the confounding 

effects of EOV are filtered. 

A critical aspect of the application of the 

JADE algorithm is the determination of the 

number of sources (m). Like the PCA, a 

smaller number of measured data are 

responsible for the total variability in data. 

This happens when some of the eigenvalues 

of the covariance matrix become equal to 

zero. In practical applications, owing to the 

noise and numerical precision issues, the 

eigenvalues do not become exactly equal to 

zero. Instead, the number of sources, which 
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account for most of the variabilities, can be 

determined when a clear drop in the 

eigenvalues is observed. Here, the 

following indicator is used to determine m: 

 

𝐼 =
∑ 𝜎𝑖

2𝑚
𝑖=1

∑ 𝜎𝑖
2𝑛

𝑖=1

 (9) 

 

The steps of the proposed damage 

assessment framework are as follows. First, 

the JADE algorithm is applied into a set of 

acceleration time history measurements 

from an undamaged state (or reference 

state) measured in different environmental 

and operational conditions, and the sources 

are obtained. Concerning m in Eq. (9), the 

number of sources is determined as m+1. 

The last source is selected as an 

independent source from EOV effects. 

Then, the independent source is modeled 

using an appropriate time series model as 

presented in Subsection 2.2 and the 

residuals are calculated. With the arrival of 

acceleration time history measurements 

from the current state, the independent 

source is also obtained using the JADE 

algorithm. After that, the time series model 

applied in the reference state is used to 

model the independent source from the 

current state and the residuals are 

calculated. Finally, the Bhattacharyya 

measure is determined between the 

residuals from reference and current states 

and considered as a damage index. The 

flowchart of the suggested approach is 

showed in Figure 2. 

 

5. Application  

 

To support the proposed method and to 

demonstrate the usefulness of the JADE 

algorithm for compensating the influences 

of EOV, two well-known benchmark 

models in the SHM community are 

investigated. The first is a simulated beam 

structure under changing environmental and 

operational conditions. The second is a 

laboratory wooden bridge with actual 

environmental variability. 

 

 

 
Fig. 2. Flowchart of the proposed method 



Civil Engineering Infrastructures Journal 2023, 56(1): 33-49 39 

 

5.1. Beam Structure with Environmental 

and Operational Changes 

The considered structure is a simply-

supported steel beam simulated by Kullaa 

(2014) and is showed in Figure 3. The 

length and cross-section of the beam is 1.4 

m and 50 × 5 mm, respectively. According 

to Figure 3, the structure contains a spring 

in 612.5 mm from the support with spring 

constant k as: 

 

𝑘 = 𝑘0 + 𝑎𝑇3 (10) 

 

where k0 = 100 kN/m, a = –0.8 (with 

compatible units), and T: is temperature 

with a uniform random distribution between 

-20 and +40 ∘C.  

The beam consists of three equal length 

parts. The Young’s modulus of each part Ei 

is: 

 

𝐸𝑖 = 𝐸0 + 𝜎𝑖𝑧𝑖,            𝑖 = 1,2,3 (11) 

 

where E0 = 207 GPa and zi: is the 

environmental variable with standardized 

Gaussian distribution and the standard 

deviations (𝜎𝑖) of different parts are 5, 3 and 

7 GPa, respectively. 

Damage is simulated by the beam depth 

reduction on a length of 19.4 mm at the 

spring support. Sensor 21 is at the center of 

the damaged zone. The beam depth 

reduction differs in five levels: 0.5, 1, 1.5, 

2, and 2.5 mm.  

The proposed method is applied to the 

acceleration measurements of the beam 

structure. First, 10 measurements from the 

undamaged beam as a reference data set 

(R), 10 measurements from the undamaged 

beam as a health data set (H), and 10 

measurements from each five damaged 

state as damaged data sets (D1, D2, D3, D4, 

and D5) are selected. Then, the sources are 

obtained from each dataset using the JADE 

algorithm. The 10th source is chosen as an 

independent source in each state. Based on 

Section 2.2, the ARARX model is selected 

for time series modeling. Finally, the 

Bhattacharyya measure is calculated 

between residuals of the reference state and 

those of each state. The mentioned steps are 

repeated for each Degree Of Freedom 

(DOF).  

To determine the threshold value, after 

estimating the Bhattacharyya measure of 

health state in each DOF, the mean and 

standard deviation of them are obtained. 

Supposing normal distribution for 

Bhattacharyya measure, the threshold is set 

at the point under which 1% values occur.  

Here, the threshold value is 0.8059. The 

damage index beyond the threshold value 

means the structure is healthy and under 

that indicates a damaged state. 

Figure 4 illustrates the Bhattacharyya 

measure in different structural states. As the 

number of DOF is too large, only odd DOFs 

are shown. As can be seen from Figure 4, 

the damage index in healthy states is 

beyond the threshold value in all DOFs. 

About the damaged states in DOF 11 to 29, 

the damage indices are under the threshold 

value except for a few errors. In few initial 

and final DOF, the damaged states D1 and 

D2 are not recognized due to be far from the 

damage location. In DOF 21, the 

Bhattacharyya measure in damaged states is 

lower than that of other DOFs showing 

damage location. In point of damage 

severity, the damage index decreased while 

damage severity increased as denoted in 

Figure 4. However, there are a few errors 

that it will be discussed later. 

 
 

 
Fig. 3. Simply-supported beam (Kullaa, 2014) 
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Fig. 4. The Bhattacharyya measure of odd DOFs of beam structure in different structural states 

 

Investigating the cause of errors in 

Figure 4, the values of the indicator I in Eq. 

(9) are considered for m = 9. These values 

in each DOF and different damage states are 

shown in Table 1.  As it is clear in all error 

cases, the indicator I is less than 0.97. This 

reveals that in such cases, the EOV effects 

have not been effectively eliminated and the 

obtained sources are not independent of 

EOV. So, in these cases, more data 

measurements are needed in a relevant data 

set. In Figure 5, the cases that I < 0.97 are 

deleted. In each DOF, as the damage 

severity increases, the damage index 

decreases.  

It is notable to mention that the proposed 

method is able to identify the damage 

location even in the small damage scenarios 

like the states D1 and D2. 

 
Table 1. The value of indicator I in Eq. (9) when m = 9 

DOF 
Structural state 

R  H  D1 D2 D3 D4 D5 

1 0.989 0.995 0.964 0.979 0.972 0.990 0.988 

3 0.989 0.995 0.963 0.978 0.972 0.990 0.989 

5 0.991 0.995 0.960 0.975 0.973 0.990 0.990 

7 0.993 0.996 0.975 0.955 0.978 0.992 0.994 

9 0.992 0.994 0.976 0.961 0.979 0.991 0.993 

11 0.990 0.997 0.974 0.992 0.977 0.996 0.992 

13 0.991 0.996 0.966 0.983 0.975 0.993 0.992 

15 0.994 0.996 0.957 0.973 0.977 0.991 0.994 

17 0.992 0.993 0.975 0.974 0.975 0.990 0.992 

19 0.991 0.994 0.974 0.974 0.970 0.988 0.987 

21 0.992 0.993 0.977 0.971 0.972 0.987 0.991 

23 0.994 0.992 0.980 0.965 0.970 0.980 0.991 

25 0.995 0.992 0.984 0.968 0.971 0.979 0.991 

27 0.992 0.992 0.978 0.972 0.972 0.984 0.987 

29 0.989 0.993 0.975 0.961 0.970 0.987 0.984 

31 0.991 0.992 0.982 0.957 0.971 0.985 0.985 

33 0.991 0.992 0.981 0.980 0.972 0.986 0.986 

35 0.990 0.993 0.973 0.973 0.971 0.989 0.985 

37 0.988 0.993 0.973 0.972 0.969 0.990 0.983 

39 0.991 0.990 0.986 0.981 0.971 0.974 0.984 

41 0.993 0.991 0.985 0.962 0.971 0.981 0.990 

43 0.992 0.993 0.975 0.970 0.973 0.985 0.988 

45 0.991 0.994 0.970 0.964 0.970 0.987 0.992 

47 0.991 0.994 0.975 0.966 0.970 0.988 0.985 

0
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Fig. 5. The modified Bhattacharyya measure of beam structure in different structural states 

 

To demonstrate the capabilities of the 

suggested approach, it is compared with the 

damage detection method suggested by 

Sohn and Farrer (2001). In Sohn and 

Farrer’s method, an AR(p) model is applied 

to all measurements from a reference 

database. After estimating AR coefficients 

of the measurement y(t) from unidentified 

state, the reference dataset x(t) whose AR 

coefficients approximate those of y(t), is 

chosen. Next, the chosen x(t) is modeled by 

an ARX (𝛼,𝛽). So, 𝜀𝑥(𝑡) and 𝜀𝑦(𝑡), the 

ARX residual of x(t) and y(t), are estimated. 

Finally, the ratio 𝜎(𝜀𝑦) 𝜎(𝜀𝑥)⁄  is 

determined being the damage-sensitive 

feature, while 𝜎( ) is the standard deviation. 

The increase in this ratio is monitored to 

detect damage and is anticipated to reach its 

peak value near the damage location. 

Furthermore, a hypothesis test is applied to 

examine if the new measurement y(t) and 

the baseline measurement x(t) are 

considerably different. A more detailed 

discussion of this method can be found in 

Sohn and Farrer (2001). To employ the 

indicated method, 40 measurements from 

the health state of the beam structure 

measured under EOV are chosen as the 

reference database. Next, from each 

structural state, 10 datasets are picked as 

test datasets. Table 2 presents the 

𝜎(𝜀𝑦) 𝜎(𝜀𝑥)⁄  ratio for odd DOFs and all 

structural states. The values presented are 

the mean values of 10 sample standard 

deviation ratios for each structural state. 

Regarding Table 2 in damaged states, the 

highest increase in 𝜎(𝜀𝑦) 𝜎(𝜀𝑥)⁄  ratio is at 

DOF 21 (damage location). Moreover, as 

damage severity increases, the standard 

deviation ratio also increases as well. 

The results of hypothesis tests are 

outlined in Table 3. The values in Table 3 

show among all hypothesis tests how many 

null hypothesis are rejected. For example, 

2/10 means that from 10 hypothesis test 

applied on data sets, the rejection number is 

2. Normally, in the health condition the 

rejection numbers are low, though in 

damaged condition many rejections are 

reported. Besides, maximum value of the 

rejections shows the damage location. 

Results show that Sohn and Farrer’s 

method has been able to effectively 

determine structural state and damage 

location. Meanwhile, the reference database 

in this method contains 40 test 

measurements and in the proposed method 

there are only 10 test measurements. 

Besides, the analysis time by MATLAB in 

the Sohn and Farrer’s method is 2328 s 

while it is 196 s in the proposed method. 

Once again, the beam structure is analyzed 

using Sohn and Farrer’s method. This time 

the number of test measurements in the 

reference database is 10. In this case, the 

analysis time is 1663 s. Table 4 

demonstrates the hypothesis test results in a 

healthy structure. Table 4, reveals that 

having a reference database with 10 test 

measurements, the Sohn and Farrer’s 
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method is not successful in damage 

detection. As a conclusion from these 

analyses, it can be stated that the proposed 

method compared with Sohn and Farrer’s 

method can present good results using 

fewer measurements from the reference 

state of the structure in a shorter analysis 

time.  

 

5.2. Wooden Bridge with Actual 

Environmental Variability  

The second considered structure is a 

wooden bridge under real environmental 

variability presented by Kulla (2011). 

Figure 6 shows the laboratory setup. The 

acceleration is measured by 15 sensors at 

three different longitudinal positions with a 

256 Hz sampling frequency. The 

measurement is accomplished under 

temperature and humidity variations during 

several days. Damage is simulated by 

attaching point masses on the top flange 

close to sensor 4 (Figure 6). The weight of 

the masses varies in five sizes:   23.5, 47.0, 

70.5, 123.2, and 193.7 g. With regard to the 

total weight of the structure (36 kg), the 

attaching point masses are very small.  

 

Table 2. The mean value of ( ) ( )y xσ ε / σ ε in different structural states 

Structural 

state 

DOF 

1 3 5 7 9 11 13 15 17 19 21 23 

H 1.016 1.018 1.010 1.010 1.073 1.002 1.029 1.015 1.010 1.022 1.035 1.016 

D1 1.015 1.022 1.016 1.019 1.028 1.016 1.019 1.427 1.353 1.895 2.088 1.782 

D2 1.018 1.024 1.018 1.019 1.024 1.290 1.480 1.453 1.460 2.076 2.565 1.981 

D3 1.020 1.018 1.024 1.306 1.264 1.427 1.667 1.800 2.228 2.588 3.259 2.733 

D4 1.368 1.212 1.456 1.396 1.602 1.647 1.686 1.881 2.584 2.925 3.513 2.840 

D5 1.397 1.351 1.414 1.431 1.653 1.621 1.792 2.420 3.138 3.735 4.349 3.414 

 
Table 3. The result of hypothesis tests in different structural states 

Structural state 
DOF 

1 3 5 7 9 11 13 15 17 19 21 23 

H 0/10 1/10 0/10 0/10 1/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 

D1 0/10 1/10 0/10 1/10 0/10 0/10 1/10 6/10 6/10 10/10 10/10 10/10 

D2 1/10 2/10 1/10 1/10 1/10 4/10 7/10 6/10 7/10 10/10 10/10 10/10 

D3 0/10 0/10 2/10 5/10 5/10 6/10 9/10 9/10 10/10 10/10 10/10 10/10 

D4 6/10 3/10 7/10 6/10 8/10 8/10 9/10 10/10 10/10 10/10 10/10 10/10 

D5 6/10 6/10 6/10 6/10 8/10 8/10 10/10 10/10 10/10 10/10 10/10 10/10 

 
Table 4. The result of hypothesis tests in heath state with 10 measurements in the reference database 

DOF 1 3 5 7 9 11 13 15 17 19 21 23 

H 8/10 7/10 6/10 8/10 7/10 8/10 9/10 8/10 6/10 8/10 8/10 7/10 

DOF 25 27 29 31 33 35 37 39 41 43 45 47 

H 6/10 7/10 8/10 8/10 8/10 7/10 8/10 9/10 7/10 8/10 8/10 9/10 

Structural 

state 

DOF 

25 27 29 31 33 35 37 39 41 43 45 47 

H 1.027 1.018 1.012 1.004 1.017 1.015 1.025 1.001 1.016 1.016 1.012 1.015 

D1 1.704 1.508 1.550 1.334 1.029 1.020 1.025 1.017 1.019 1.015 1.016 1.030 

D2 1.792 1.610 1.595 1.450 1.246 1.026 1.024 1.015 1.021 1.016 1.020 1.025 

D3 2.045 1.695 1.653 1.501 1.321 1.398 1.353 1.214 1.022 1.020 1.025 1.015 

D4 2.331 1.830 1.717 1.576 1.555 1.598 1.563 1.257 1.199 1.266 1.158 1.291 

D5 2.930 2.256 2.173 2.055 1.930 1.958 1.893 1.475 1.498 1.469 1.546 1.400 

Structural state 
DOF 

25 27 29 31 33 35 37 39 41 43 45 47 

H 1/10 0/10 0/10 0/10 0/10 0/10 1/10 0/10 0/10 0/10 0/10 0/10 

D1 9/10 7/10 7/10 6/10 1/10 0/10 1/10 0/10 0/10 0/10 0/10 1/10 

D2 10/10 8/10 8/10 7/10 5/10 1/10 1/10 0/10 1/10 0/10 1/10 1/10 

D3 10/10 9/10 9/10 7/10 5/10 6/10 5/10 4/10 1/10 1/10 2/10 1/10 

D4 10/10 10/10 10/10 7/10 7/10 7/10 7/10 5/10 4/10 5/10 3/10 4/10 

D5 10/10 10/10 10/10 10/10 10/10 10/10 10/10 7/10 7/10 7/10 7/10 6/10 
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Fig. 6. Wooden bridge with the location of sensors and damage (D) (Kulla, 2011) 

 

To apply the proposed method, 20 test 

measurements from the healthy state are 

accounted for a reference dataset (training 

phase) and 20 test measurements from each 

state (healthy state and 5 damage states) are 

considered as the current structural state 

(i.e., H, D1-D5). To determine the number 

of sources, the I indicator according to Eq. 

(9) is considered for m = 1, 2, …, 20. These 

values for each structural state in DOF 1 are 

shown in Table 5. Regarding I values, the 

numbers of sources are chosen as 19, 20, 20, 

18, 20, 19, and 14 for R, H, D1, D2, D3, D4, 

and D5 states, respectively. In each state, 

the last source is considered an independent 

source. Choosing fewer sources makes the 

last source not independent enough and the 

more sources lead to the disappearance of 

some structural information. For example, 

if 19 sources in D2 is chosen and the 19th 

source is considered as an independent 

source, this source cannot express the 

behavior of the structure. Figure 7 

demonstrates the last source in DOF 1 when 

the number of sources is 18 and 19. 

The AutoCorrelation Function (ACF) 

and Partial AutoCorrelation Function 

(PACF) are considered in order to 

determine a proper time series model. As an 

example, the ACF and PACF plot of the 

independent source in DOF 1 is shown in 

Figures 8 and 9. It can be seen that in Figure 

8, the ACF approaches zero as time goes to 

infinity by damped wave sine and Figure 9 

shows cut off at PACF.  

So, according to Box-Jenkins approach, 

the nature of this time series is an AR 

process and thus, according to what is 

explained in Section 2.2, the ARARX 

model is selected. 
 

Table 5. The I indicator in DOF 1 for each structural states of wooden bridge 
Structural states 

M Values 
D5 D4 D3 D2 D1 H R 

0.1483 0.1026 0.1021 0.1512 0.1032 0.0850 0.1173 1 

0.2618 0.1772 0.1746 0.2353 0.1777 0.1648 0.1976 2 

0.3691 0.2494 0.2463 0.3032 0.2447 0.2361 0.2746 3 

0.4727 0.3100 0.3112 0.3692 0.3075 0.3065 0.3430 4 

0.5658 0.3703 0.3725 0.4329 0.3687 0.3733 0.4095 5 

0.6554 0.4263 0.4316 0.4927 0.4269 0.4381 0.4751 6 

0.7242 0.4813 0.4876 0.5485 0.4816 0.4988 0.5393 7 

0.7762 0.5339 0.5426 0.6024 0.5350 0.5580 0.6000 8 

0.8258 0.5852 0.5945 0.6532 0.5878 0.6132 0.6553 9 

0.8726 0.6349 0.6454 0.7014 0.6379 0.6664 0.7063 10 

0.9187 0.6839 0.6935 0.7469 0.6852 0.7158 0.7539 11 

0.9623 0.7315 0.7402 0.7900 0.7306 0.7626 0.7907 12 

0.9999 0.7782 0.7846 0.8309 0.7747 0.8037 0.8269 13 

1.0000 0.8223 0.8248 0.8703 0.8174 0.8384 0.8604 14 

1.0000 0.8648 0.8630 0.9068 0.8587 0.8722 0.8924 15 

1.0000 0.9050 0.8995 0.9409 0.8982 0.9043 0.9232 16 

1.0000 0.9399 0.9341 0.9745 0.9336 0.9324 0.9532 17 

1.0000 0.9711 0.9676 1.0000 0.9679 0.9588 0.9802 18 

1.0000 0.9999 0.9999 1.0000 0.9999 0.9833 1.0000 19 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 20 
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(a) 

 

 
(b) 

Fig. 7. The last source in DOF 1 when the number of sources is: a) 18; and (b) 19 
 

 
Fig. 8. The ACF plot of the independent source in DOF 1 

 

 
Fig. 9. The PACF plot of the independent source in DOF 1 
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The AR model order is estimated using 

the Akaike Information Criterion (AIC). 

For example, Figure 10 exhibits the AIC 

estimates in DOF 1. The optimal order is 

found to be 70, as shown in Figure 10. To 

determine the ARX model order, according 

to Ljung (1999) recommendation, the sum 

of 𝛼 and 𝛽 (ARX order) should be kept 

smaller than AR order p (i.e.  𝛼 + 𝛽 ≤ 𝑝).  

In this way, the ARARX model order is 

determined in each DOF and structural 

state. 

As the structure is under the ambient 

vibrations, the acceleration data are 

supposed to be linear stationary signals. 

This assumption is examined by the ACF of 

the residuals of the ARARX model and is 

shown in Figure 11. The plot specifies no 

significant trend in the residuals and so the 

residuals are independent and identically 

distributed. 

After specifying the ARARX model 

parameters in each DOF, the model is 

applied to the independent source in each 

structural state. Then, the Bhattacharyya 

measure is obtained between the residuals 

of the current state and reference state. To 

define the threshold value, a similar 

procedure as indicated in Section 4.1 is 

employed (Figure 12). A close look at 

Figure 12 reveals that the damage index in 

the health state in all DOFs is greater than 

the threshold limits. Also, it shows that 

between DOFs 4 to 6, which are in the same 

direction, DOF 4 has the lowest damage 

index. Similarly, between DOFs 10 to 12, 

DOF 10 has the lowest damage index. This 

localizes the damage which is near the 

sensors 4 and 10. Furthermore, in most 

DOFs, as the severity of damage increases, 

the Bhattacharyya measure decreases. In 

DOFs 13 to 15, there are some errors due to 

being away from the damage location; 

besides, all damage scenarios are small as 

mentioned earlier.  
 

 
Fig. 10. Determination of the AR model order by the AIC method in DOF 1 

 

 
Fig. 11. ACF of residuals in DOF 1 
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Fig. 12. The Bhattacharyya measure of odd DOF of beam structure in in each structural state 

 

6. Discussion and Conclusion 

 

In this paper, an innovative approach was 

proposed to detect and locate damage under 

the EOV conditions. In this approach, the 

ICA-based BSS approach was initially 

employed to acquire the time history 

response of the structure that is independent 

of unmeasured EOV. Then, time series 

analysis was applied to extract damage 

sensitive features. Finally, a novel statistical 

tool called Bhattacharyya measure was 

introduced to damage identification and 

localization using EOV independent 

features. The accuracy of the proposed 

techniques was validated by two useful 

benchmark structures under the simulated 

and actual EOV.  

The first benchmark structure was a 

numerical beam structure under simulated 

EOV. The proposed method was applied to 

the acceleration measurements of the beam 

structure. Supposing normal distribution for 

Bhattacharyya measure in healthy state, the 

threshold value was defined. The damage 

index beyond the threshold value means 

that the structure is healthy and under that 

indicates a damaged state. Result showed 

that the proposed method could detect and 

localize damage. However, there were a few 

errors in results. Investigating the cause of 

errors revealsed that in all error cases, the 

indicator I was less than 0.97. It means that 

in these cases, the EOV effects have not 

been effectively eliminated and the 

obtained sources are not independent of 

EOV. Therefore, in these cases, more data 

measurements are needed in a relevant data 

set. The results showed as the damage 

severity increases, the damage index 

decreases; so the proposed approach could 

evaluate damage severity qualitatively. 

Furthermore, the proposed method was 

capable of damage localization even in the 

small damage scenarios. It showed that the 

proposed method was successful in early 

damage detection. As a result, if there are 

enough test measurements in each structural 

state, the proposed method can detect, 

localize damage, and evaluate damage 

severity qualitatively.  Then a comparative 

study was conducted to indicate the 

capability of the suggested approach.  

In this study, the structural state was 

analyzed based on the method proposed by 

Sohn and Farrer. The results showed that 

this method is also successful in damage 

diagnosis. However, the test measurements 

under EOV, which are needed in the 

training phase in the proposed method (10 

test measurements), are much fewer than 

those in Sohn and Farrer’s method (40 test 

measurements). Furthermore, the analysis 

time in the proposed method was about 12 

times shorter.  

The second benchmark structure was an 

experimental beam structure under actual 

EOV. In this beam structure, the steps of the 
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proposed approach were considered in 

details. Firstly, the importance of proper 

estimation of the number of sources in BSS 

implementation was investigated. It showed 

that to determine the number of sources, the 

amount of I indicator should be considered. 

According to this study, the indicator I must 

be greater than 0.97. Furthermore, in the 

cases that with increasing the number of 

sources (m) the change in indicator I is 

negligible, the smallest m is chosen as the 

number of sources. Choosing fewer sources 

makes the last source not independent 

enough and the more sources lead to the 

disappearance of some structural 

information. Then, the process of 

determining the appropriate time series 

model and the order of chosen model was 

discussed in details. Finally, the results 

showed that although the damage severity 

was small, the proposed method was 

successful in damage detection and 

localization. It could also qualitatively 

evaluate the damage severity at the 

damaged area. 

Based on the analysis of this study, it can 

be concluded that: 

• The ICA-based BSS technique 

employed in the proposed method is 

effectively able to remove the EOV 

influence from the time history response 

of the structure under unmeasured EOV.  

• The suggested approach uses a limited 

group of response data for extracting the 

independent damage-sensitive features 

in the training phase. This significant 

advantage grants the suggested 

approach, in comparison with the 

conventional approach, to be a more 

time-saving and effective tool for 

damage assessment of structures with 

reliable results.  

• The introduced Bhattacharyya measure 

is a powerful tool in decision making for 

damage identification and localization. It 

can also qualitatively evaluate the 

severity of damage.  

• The proposed method can be effectively 

employed in the issues of early damage 

identification. 
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