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A B S T R A C T 

 

The Birjand region is a part of the South Khorasan province, situated in the structural-magmatic zone of eastern Iran. As a part of the 
continental shelf, it forms from subduction during the Cenozoic and subsequent continental collisions. This region is favorable for copper 
and gold mineralization for various geological reasons. The ultimate goal of this study is to create a Cu geochemical potential map to delimit 
prone regions for further mining activities. A total of 2468 geochemical samples were gathered to run a 20-element analysis. Taking data 
preprocessing approaches such as correction of outlier data and data normalization into consideration, a fractal graph through Concentration-
Number (C-N) model was produced to isolate different geochemical populations of Cu, Pb, Zn, Ag, Ba, and Ni for Cu targeting. Then, a 
Prediction-Area (P-A) graph was plotted for each geochemical variable to determine the weight of each evidence map. The results show that 
Barium map indicates a prediction rate of 72% and specifying 28% of the studied areas as mineralization prone areas. The zinc geochemical 
map presents an ore prediction rate of 65% and 35% of area as potential zone. In addition, copper with an ore prediction of 56% covered 44% 
of the Birjand region. Finally, a hybrid evidence map was overlaid. Accordingly, the geochemical potential areas are further located towards 
the south and south-east of Birjand, which are closely related. Moreover, there are highly favorable areas in the middle part. It is noteworthy 
that the copper potential map has higher efficiency over each individual geochemical evidence, with an ore prediction rate of 75% and 
occupying 25% of the area as favorable zones. 
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1. Introduction 

Porphyry deposits have been generally known since the 1920s as low-
grade, high-tonnage deposits, and none of the porphyry copper deposits 
were mined until 1905. The formation of these deposits is directly 
related to hydrothermal systems connected to intrusive masses. 
Therefore, their deposit model is in the form of veins as well as diffusion, 
and in the current situation, even low grades, such as 0.2-0.5% are 
considered economical. One of their characteristics is the construction 
of sulfide-silicate zones, as presented by Lowell and Gilbert (1970) [1]. 
Around many porphyry copper deposits, traces of gold, silver, lead, zinc, 
and manganese are likely to be present, and gold and even extracted 
molybdenum are commonly considered as by-products. The rocks 
found in the mineralization areas of porphyry copper are from 
granodiorite, tetalite, and quaterzmonzonite to diorite. The related 
alterations from inside to outside respectively include: potassic, phyllite, 
clay, and propylitic . 

Although there are not many studies to find porphyry deposits in the 
studied area, considering the geological structures of the Birjand region, 
and this region is located almost on the porphyry mineralization belt of 
Iran, which starts from the north-west and continues to the south-east, 
the possibility of occurrence of porphyry deposits in this area is very 
high. 

Separating geochemical anomalies from the background is a helpful 
method for geochemical exploration. Anomalous thresholds, the most  

 

 
beneficial criterion for cross-checking information with numerical data 
from different sources, are commonly used in geochemical studies [2-
4]. Predictive model of mineral capacity using the Geographic 
Information System (GIS) is a valid and accepted tool for drawing the 
goals of mineral exploration that are reproducible. Abnormal 
geochemical areas can be defined by more than a particular threshold 
value. Different statistical methods are used to determine the values of 
anomaly threshold based on a specific assumption on statistical 
distribution of geochemical variables. Separation of geochemical 
provinces concerning the purpose of the mineral deposit, has attracted 
the attention of scientists [5-7]. Recognizing and separating the 
anomalous areas from the background is an integral part of geochemical 
exploration research [8-9]. 

Different versions of fractal/multi-fractal modelling, developed by 
Mandelbrot (1983) [11], have been proposed to analyze geochemical 
data. Numerous studies have been done on the use of these versions: 
number-size (N-S) by Mandelbrot (1983) [11], concentration-area (C-
A) by Cheng et al. (1994) [12] and Farhadi et al. (2022) [13], distance-
concentration (C-D) by Li et al. (2003) [10], spectrum-area (S-A) by 
Koohzadi et al. (2021) [14] and Pourgholam et al. (2022) [15], 
concentration-number (C-N) by Shahbazi et al. (2021) [16] and 
Torshizian et al. (2021) [17], concentration-distance to fault structures 
(C-DF) by Nabilou et al. (2021) [18],  concentration-volume (C-V) by 
Mahdizadeh et al. (2022) [19] and Afzal et al. (2011) [20,21]. One of the 
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main features of fractal models compared to common statistical 
methods is considering the spatial variations of informational samples 
[12; 22-24], which reflects the geological, geochemical, and 
mineralogical sequences of a region [9-10]. Based on fractal analysis [25-
26], geochemical indicators can be deduced to prepare the mineral 
potential map (MPM). In MPM, the location of known deposits can be 
used to evaluate the performance of predictive models. This is achieved 
by covering mineral deposit sites on an exploratory classified model [27-
29]. 

MPM is a multi-criterion decision-making (MCDM) function that 
aims to map and prioritize suitable areas to identify undiscovered 
mineral reserves of the desired type [27]. Bonham-Carter et al. (1989) 
[30] used the weight of spatial index classes divided by their respective 
area covered (area occupied by each class of proven values) to estimate 
the probability of discovering mineral deposits in several classes, 
primarily by fractal analysis. Yousefi and Carranza (2015, 2016) [28,31] 
developed the Prediction-Area Chart (P-A), which the percentage of 
known deposits predicted by the predictive layers (predictive rate) and 
the desired areas of the respective predictive classes help to determine 
the comparative importance of different predictive models. By plotting 
the P-A diagram, both the deposit rate and the desired region for the 
exploration targets' mineralization, help to evaluate the predictive 
models [28; 32-37]. Therefore, if two different predictive models plot 
exploratory targets with different desired regions but the same 
prediction value, the model's performance with smaller target areas is 
higher than the model with larger target areas [37]. Kreuzer et al. (2020) 
[38] applied MPM to exploration targets and suggested some solutions 
for future fundamental practical issues which limit the effectiveness of 
MPM. Some of these issues are the failure of importing data uniformly 
and objectively representing the search space of interest, as well as 
difficulty in mapping critical targeting-relevant geoscientific elements in 
the available or obtainable datasets. Yousefi et al. (2021) [39] tried to 
enhance mineral exploration targeting using GIS and they do it by (1) 
reviewing the fundamental aspects of MPM, (2) identifying significant 
deficiencies of MPM, and (3) discussing possible solutions to alleviate 
or eliminate these deficiencies. 

Geochemical evidence maps should be generated using logistic 
functions before drawing P-A diagrams and fractal curves [28]. The 
values of spatial evidence in each map are changed using a logistic 
function, because it can correctly convert absolute values to the range 
[0,1] [40]. Therefore, using a logistic function prevents the disadvantage 
of data-driven approaches to MPM in terms of exploratory trends and 
random error in mapping areas generally depicted around known 
mineral events [28]. 

The primary purpose of this study is to identify geochemical 
anomalies in the Mokhtaran, Basiran, Deh-Salam, and Kardegan areas 
under a single map using samples of stream sediments. Through 
multivariate analysis of geochemical clustering data and principal 
component analysis (PCA), after pre-processing all input elements, 
several indicators are prepared to be displayed at intervals indicating the 
usefulness of Cu potential mapping. Simultaneous consideration of the 
C-N fractal curve and the P-A diagram provides information about the 
data-driven weight of each indicator map concerning Cu events. Finally, 
a multi-layer index overlay map is created to guide the Cu event further. 

2. Geology of the study area 

Agha-Nabati (2005) prepared the structural zoning map of Iran 
(Figure 1) [41], in which the study area is specified. The map of the study 
area (Figure 2) includes four maps: Basiran (the right one in the middle 
third), Kardegan (the left one in the middle third), Mokhtaran (in the 
upper third), and Deh-Salam (in the lower third) that each of these 
maps was prepared in a 1: 100000 scale by the Geological Survey of Iran. 
In terms of the geological and tectonic characteristics of the Mokhtaran 
region, situated in the southern part of Birjand city and located in South 
Khorasan province, this region has good potential for the occurrence of 
porphyry copper and epithermal gold ores. Most of the locations that 
have been identified or exploited in this area as metal deposits have been 

studied by field surveys. Due to the high altitude of these areas and their 
inaccessibility, further work is still needed. Therefore, using methods, 
such as remote sensing alongside surveys, significant progress can be 
made in identifying undiscovered reserves. The presence of young 
intrusive masses in the region, such as Microgranodiorite, as well as the 
presence of Paleogene volcanic as hosts, are essential indicators of 
epithermal gold and porphyry copper mineralization in the region. 
Significant alterations that represent porphyry copper and epithermal 
gold mineralization include, propylitic (calcite, epidote, and chlorite 
minerals), argillic, sericitization, and iron oxides (goethite, hematite, 
and lepidocrocite). 

 

 
Figure 1. Structural geological map of Iran on which the location of the study area 
is specified (reproduced from Richards et al. (2006) [57]). 

 

 
Figure 2: Geological map of the study area in 1:100,000 scale consists of the areas 
of Basiran (middle third-right), Deh-Salam (lower third), Kardegan (middle third-
left) and Mokhtaran (upper third). 
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In the Basiran region, due to its unique geological conditions and 
many magmatic activities in different geological eras, different types of 
mineralization, such as epithermal, porphyry, and veins can be found. 
For instance, the Qale-Zari copper-gold mine can be mentioned. The 
eastern and central parts of this region are mostly covered by Mesozoic 
and Tertiary volcanic sediments and volcanic rocks. The rock units of 
the Basiran region can be divided into five groups: sedimentary rocks, 
deep and semi-deep igneous rocks, lavas, pyroclastic rocks, and skarns 
[42]. The oldest stratigraphic unit in the study area is Jurassic shale and 
sandstone. The Paleocene base conglomerates are brown and massive, 
and thick cream-colored limestones containing Paleocene microfossils 
are metamorphosed on lava and sandstone lavas and pyroclastic rocks 
belonging to the Eocene [42] which are cut by the semi-deep and deep 
range stones. In some parts of this area, Neogene conglomerates up to a 
thickness of about 50 m are located on Eocene lavas and tuffs. Massifs, 
such as granodiorite, granite, and diorite are exposed in different parts 
of this region, attributed to the Mesozoic and Tertiary geological 
periods. 

Most of the Deh-Salam region is covered by volcanic rocks from the 
third era with a significant andesitic-dacite composition, which is a 
reason for the various parts to be covered by sand and volcanic rocks 
with a dark appearance. The rocks of this region can be divided into 
internal and external forms. The inner rocks include granophyre, 
quartzsienite, and syenite, which have undergone potassium, silicic and 
sercitic alterations, and green diorite is seen at the heights of the region. 
The external rocks in this area include basaltic andesite with grayish-
green color and dacite with a cream to pink color; all the outer rocks of 
the area have been affected by argillic, propylitic, and siliceous 
alterations. 

In the Kardegan region, intense and continuous volcanic activity in 
the Middle Jurassic can be named the most important geological 
activity, along with landslide faults and gentle folds. From the old layers 
of this area, shale, sandstone, and Lower Jurassic to Upper Cretaceous 
limestones can be found, which have been severely wrinkled in some 
areas. Some of the rocks in the Kardegan area have transformed into 
slate and schist. The Intrusive and exclusive igneous rocks of this region 
include from Eocene to Oligocene. As one of the igneous units, dark 
basaltic lavas are the most widespread in the region. Among the igneous 
rocks can be pointed the units with almost acidic rocks, such as dacite 
and rhyolite with a porphyry texture, and basalt to acidic tuffs, all three 
of these are part of the extrusive igneous rocks. The only intrusive 
igneous units are diorite and granodiorite rocks, which are covered by 
Quaternary alluvium, and only small protrusions of them can be seen in 
the region. 

In the Birjand region, a significant volume of magmatism activities in 
the form of volcanic events and the placement of intrusive masses has 
been done due to subduction. Most of the magmatism in eastern Iran 
consists of Eocene-Oligocene volcanic rocks exposed in the form of lava 
and igneous rocks. In this area, there are intrusive masses of 
granodiorite, quartz diorite, and diorite with Eocene age, as reported in 
the Urmia Dokhtar belt. In addition to these intrusive bunches, volcanic 
rocks of basalt type, ranging from “andesitic basalt to andesite”, and 
their associated pyroclastic have been reported. There are some igneous 
rocks in the form of stocks within volcanic units in the region. These 
stocks do not have significant outcrop metamorphism. These stocks can 
also be seen as outcrops with high morphology and rocks. Pyroclastic 
and volcanic deposits are commonly seen on and around stocks. 
Geochemical and petrological evidence suggests that these igneous 
massifs formed in a subduction zone. There is evidence of magmatic 
mixing between the submerged lithosphere and crustal rocks. In general, 
the intrusive masses are petrologically classified in the calc-alkaline to 
shoshonitic series, and they characterize the continental arc 
environment with an enriched mantle origin along with the effect of 
subduction-zone fluids. 

As a result of magmatic activity and subsequent events, various 
minerals, such as copper, molybdenum, gold, and silver have been 
formed. Some of these minerals are in the form of veins, massive 
sulfides, and skarn deposits, while others have been reported as 
porphyries. In the study area, some lead, zinc and manganese 

occurrences have been identified. However, the copper index has not 
been found, while there are 12 active mines in this section, but some of 
these mines do not have copper mineralization. Therefore, after the 
introduction of the mines, the mines with copper mineralization are 
investigated according to the produced/generated data. There are active 
mines in the Mokhtaran region that have copper mineralization as well 
as other minerals. The Khonik mine is a low sulfide epithermal mine 
whose mineralization is gold, silver, copper, and boron, located in the 
geological unit of volcanic and agglomerated sections of the Eocene 
period. 

The Copper-Gold mine of Chah-Zaghoo is a porphyry-skarn type, 
with granite as its host rock. In the Kardegan area, there is a well-known 
porphyry copper deposit called Chah-Shalghami, which is located in the 
andesite basalt and gray to black basalts. The Qale-Zari mine, situated 
in andesitic lavas, semi-deep equations, and tuff, is an (IOCG) mine 
whose main ores are Copper and Gold. 

Table 1 shows the geological descriptions of the abovementioned area 
shown in Figure 2. 

3. Research method 

In this study, after utilizing conventional statistical methods, such as 
drawing histogram and box plot distribution functions, factor analysis 
as an important multivariate statistical method was applied. Factor 
analysis which is a powerful multivariate statistical approach has been 
implemented on the data. By reducing the dimensions of variables 
(elements), the main factor affecting on mineralization was obtained. 
After that a concentration-number fractal filter was implemented on the 
data to better and clearly separate anomalies from the background. 

Finally, data-driven weight assignment to each indicator map was 
determined through P-A plots, which amplifies final index overlay map 
for introducing favorable zones of Cu occurrences. 

3.1. Geochemical data analysis 

Table 2 contains statistical properties, such as the number of samples 
in the region for each of the studied elements, their maximum and 
minimum values, and the mean and standard deviation of those 
elements, including copper, lead, zinc, silver, barium, and nickel. The 
histograms of geochemical concentration distribution are shown in the 
left column of Figure 3, and their box diagrams are shown in the right 
column, which plan to eliminate outlier data for a better geochemical 
potential map. Moreover, by simultaneously examining the histogram 
of geochemical concentration distribution and box diagrams, general 
geochemical information about the distribution of the data in terms of 
concentration is obtained. 

In this area, there are 2468 geochemical data that were analyzed for 
the gold element by Fire Assay Analysis, and the analysis of the rest of 
the elements was done by the ICP-OES method. In each of the four 
areas, the data were collected by different data collector groups, and 
according to the locations of all the data, they are consistent with 
waterways so it can be said that the samples were collected by the stream 
sediments method. Except for the Deh-Salam region, where the 
accuracy of data collection is 0.001 ppm, in other areas, were collected 
with an accuracy of 1 ppm. 

Multivariate statistical methods are widely used in studying 
geochemical models. These methods are capable of classification and 
ranking of geochemical anomalies [43]. For example, we can check the 
correlation coefficient between the elements, which can determine the 
relationship between the elements and the main variables related to the 
mineralization area. The correlation between the elements can also be 
investigated using the clustering method [44-45], which shows sthe 
correlation between 17 geochemical variables in this study in the 
dendrogram of Figure 4. In the next section, the relationship between 
the copper element and 17 other chemical variables is determined using 
the Pearson method, which can be seen in Table 3. In the dendrogram 
plot, the most significant correlation of the copper is with strontium and 
lead, barium, zinc, and silver in the next stage. In contrast, by the values 
obtained from the Pearson correlation coefficient, it has the highest 
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correlation with silver (0.751), and then with lead (0.717) and in the next 
stage it shows a high correlation with tin, nickel, cobalt, zinc, chromium, 
barium and antimony elements. 

 
Table 1. Geological structures in the area. 

Structure Description Structure Abbreviation 

Andesitic lavas 𝐸𝑎 

Conglomerate 𝐸𝑐 

Dacitic lavas 𝐸𝑑 

Sandstone and Marl 𝐸𝑚𝑠 

Sandstone and Marly green tuff 𝐸𝑚𝑡 

Primary monolithic limestone 𝐸𝑛1 

Secondary monolithic limestone 𝐸𝑛2 

Nomolytic conglomerate 𝐸𝑛𝑐 

Sandstone and Conglomerate 𝐸𝑠𝑐 

Sandy limestone and Sandstone 𝐸𝑠𝑑 

Red sandstone 𝐸𝑠𝑟 

Conglomerate, Sandstone and Marly red tuff 𝐸𝑡 

Flow tuff 𝐸𝑤 

Andesite 𝐸𝑂𝑎 

Andesite, Dacite and Altered tuff 𝐸𝑂𝑎𝑑  

Altered acidic volcanic rocks 𝐸𝑂𝑎𝑙  

Andesite Porphyry 𝐸𝑂𝑎𝑝 

Andesitic lavas, equivalent to semi-deep and tuff 𝐸𝑂𝑎𝑠 

Volcanic breccia and agglomerate 𝐸𝑂𝑏  

Basalt andesite and Basalt in dark gray to black 𝐸𝑂𝑏𝑎  

Conglomerate 𝐸𝑂𝑐  

Dacite 𝐸𝑂𝑑  

Pyroclastic rocks (Volcanic tuff and breccia) 𝐸𝑂𝑝𝑏  

Tuff and red Marl 𝐸𝑂𝑡  

Mesozoic rocks Mesozoic Rocks 

Metamorphic rocks Metamorphic Rocks 

Freshwater limestone 𝑁𝑔𝑙 

Conglomerate 𝑁𝑔𝑐 

Marly Gypsum 𝑁𝑔𝑚 

Marly Tuff 𝑁𝑔𝑡  

Ophiolite Zone Ophiolite Zone 

Quaternary rocks Quaternary Rocks 

Hornblende Andesitic 𝑎𝑏 

Pyroxene andesitic 𝑎𝑝 

Aplitic microgranite 𝑎𝑝𝑙 

Basalt 𝑏 

Granite + Granodiorite and Monzonite 𝑑 + 𝑔𝑑 

Dacite and Microdiorite with Andesite 𝑑𝑎 

Granite 𝑔 

Granite 𝑔1 

Granite (Eocene and Oligocene) 𝑔2 

Microgranodiorite 𝑔𝑑 

Andesite Porphyry 𝑝𝑎 

Quartz monzonite, Quartz diorite and Oligocene 
Diorite 

𝑞𝑑 + 𝑑 

 
Table 2. Statistical characteristics of the most important elements  (ppm) of 
paragenesis related to copper mineralization.  

Standard Deviation Mean Max. Min. Number  

623.809 32.6500 760,000 9.400 2468 Cu 

10.0715 919.620 220,000 4,000 2468 Pb 

618.792 69.9400 117,000 20,000 2430 Zn 

9.4610 0.3543 4,000 0.000 1681 Ag 

969.810 343.8357 1011,000 141,000 1966 Ba 

41.6324 61.8708 550,000 4,000 2468 Ni 

 

 

 
Figure 3. Statistical graphs consisting of geochemical concentration distribution 
histogram (left column) and box diagram (right column) for copper (row 1), lead 
(row 2), zinc (row 3), silver (row 4), barium (row 5) and nickel (row 6), 
respectively. 
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Figure 4. Dendrogram analysis of element concentrations in the study area. 

 

Factor analysis or “principal component analysis (PCA)” is a 
dimension reduction tool in statistical analysis [46-48], which has 
attracted the attention of researchers to find the main factors showing 
the most variability among several geochemical variables. Multivariate 
statistical analysis, especially factor analysis, is a suitable technique for 
understanding behavioral characteristics and reducing the number of 
geochemical variables. Factor analysis has been broadly used to interpret 
geochemical data obtained from stream sediments [10; 49-51]. The 
ultimate goal of factor analysis is to explain the types of multivariate 
data by as many factors as possible and to identify the hidden 
multivariate data structure. Factor analysis is suitable for interpreting 
the inherent variability in a geochemical data set with a large number of 
input elements being analyzed. As a result, factor analysis is often a 
powerful tool for analyzing exploratory data [10]. 

To reduce the number of variables, factor analysis has been 
performed on the geochemical data of the stream sediments, where 
Table 4 lists six elements and three main components/factors. The 
elements selected for executing the PCA are based on the previous two 
methods, as well as considering paragenesis associated with copper in 
most deposits. The main variables for each factor are determined based 
on the values obtained in each component, which in the first factor are: 
copper, lead, and silver, in the second factor are barium and nickel, and 
in the third factor is the element zinc. As can be seen in the results of 
the PCA in Table 4, the main factor C1 represents the most variability 
of elements, such as copper, lead, and silver, that are geochemically 
correlated to each other and depict mineralization in the area. 

3.2. Concentration - Number fractal analysis 

Geochemical data often shows self-similarity and self-affinity, thus 
can be analyzed by the theory of non-Euclidean fractal geometry. As a 
result, the anomalous areas are distinguished from the background 
based on the fractal dimensions. Fractal methods can show the 
relationship between geological, geochemical, and mineralogical 
information [3; 6; 25; 52]. Among several versions of fractal methods, 
the concentration-number (C-N) model can be used to explain how the 
geochemical population is distributed without pre-analyzing the data 
[53,54]. This model shows a spatial relationship between the input 
property and the sample values. The following equation can define the 
C-N model: 

 

N(> ρ) = Fρ−D            (1) 
 

where ρ is the concentration of the element and N (> ρ) is the total 
number of samples with a concentration equal to or greater than ρ, F is 
also a constant, and D is the standard power for the fractal dimensions 
of the concentration distribution. In addition, an N (> ρ) versus ρ curve 
in a log diagram represents linear segments with different -D slopes, 
corresponding to different concentration ranges [52-56]. 

 

Table 3. Pearson correlation of coefficient of the most important elements. 

Zn 1.000 
Pb 0.610 1.000 
Ag 0.630 0.867 1.000 
Cr 0.351 0.483 0.576 1.000 
Ni 0.413 0.615 0.649 0.639 1.000 
Bi 0.415 0.351 0.376 0.500 0.227 1.000 
Cu 0.392 0.717 0.751 0.401 0.627 0.054 1.000 
As 0.333 0.449 0.454 0.625 0.268 0.582 0.122 1.000 
Sb 0.463 0.604 0.661 0.655 0.359 0.504 0.420 0.694 1.000 
Co 0.637 0.694 0.766 0.542 0.745 0.384 0.612 0.323 0.503 1.000 
Sn 0.573 0.802 0.902 0.634 0.682 0.417 0.683 0.507 0.615 0.776 1.000 
Ba 0.429 0.676 0.741 0.476 0.297 0.489 0.509 0.507 0.666 0.509 0.657 1.000 
Sr 0.452 0.165 0.165 0.317 0.085 0.584 -0.102 0.399 0.342 0.272 0.118 0.427 1.000 
Hg 0.236 -0.352 -0.405 -0.334 -0.274 0.032 -0.320 -0.174 -0.223 -0.076 -0.434 -0.299 0.381 1.000 
W 0.230 0.295 0.219 0.058 -0.028 0.052 0.175 0.160 0.207 0.071 0.286 0.211 -0.274 -0.018 1.000 
Mo 0.309 0.626 0.648 0.233 0.392 -0.029 0.530 0.087 0.249 0.436 0.689 0.263 -0.504 -0.260 0.209 1.000 
Au 0.087 -0.096 -0.152 -0.076 -0.050 0.060 -0.068 0.051 0.001 -0.093 -0.235 -0.073 0.299 0.186 -0.060 -0.171 1.000 
 Zn Pb Ag Cr Ni Bi Cu As Sb Co Sn Ba Sr Hg W Mo Au 

 
Based on the C-N logarithmic diagram, the seven geochemical classes 

for Copper (Cu) are shown in Figure 5a. It can be said that the 
anomalous region has a threshold of 0.79, which includes grades above 
189.6 ppm, and is colored in purple and navy-blue, as shown in Figure 
5c. 

Based on the results in Figure 6a, seven different geochemical classes 
can be observed for the Lead variable (Pb), which has a threshold of 0.77 
for the anomalous region and considering the last two parts colored in 
purple and navy-blue. In Figure 6c these abnormal areas in the study 
area contain grades above 69.3ppm. 

As can be seen from the logarithmic diagram of C-N for the variable 
Zinc (Zn) and according to Figure 7a, there are five geochemical classes. 

Considering the last population as anomalous values, it shows a 
threshold of 0.84, displayed in red and contains values above 126 ppm, 
as shown in Figure 7c. 

 

Table 4. Principal component analysis of the most important elements and display 
of components. 

C3 C2 C1  
-0.119 0.024 0.870 Cu 

0.173 0.123 0.859 Pb 

-0.172 -0.185 0.857 Ag 

0.065 0.749- 0.440 Ba 

-0.586 0.648 0.307 Ni 

0.768 0.492 0.330 Zn 
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Figure5. Copper geochemical distribution map, (a) full logarithmic graph of Concentration-Number fractal, (b) Prediction-Area diagram, and (c) fractal-based 
classification map. The extraction weight is equal to 0.24116. 

 

 
Figure 6. Lead geochemical distribution map, (a) full logarithmic graph of Concentration-Number fractal, (b) Prediction-Area diagram, and (c) fractal-based classification 
map. The extraction weight is equal to 0.20067. 

 

 
Figure 7. Zinc geochemical distribution map, (a) full logarithmic graph of Concentration-Number fractal, (b) Prediction-Area diagram, and (c) fractal-based classification 
map. The extraction weight is equal to 0.61904. 
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For the variable Silver (Ag) in the logarithmic diagram of C-N, six 
geochemical classes are considered according to the specified trend and 
their distance. It is observed that the sixth class is the abnormal one, 
demonstrates the threshold value of 0.92 (Figure. 8a) depicted in red 
colour (Figure 8-c) that represent grades higher than 1.196 ppm. 

Six geochemical classes for the variable Barium (Ba) are shown in the 
C-N logarithmic diagram in Figure 9a, and according to the studies on 
the trend and distance between classes from each other, the last two 
classes are considered abnormal, which show a value of 0.82 on the 
graph. Note that in Figure 9c on the map drawn in red and purple, it is 
shown the grades above 459.2 ppm. 

Six geochemical classes are considered for the Nickel (Ni) variable in 
the C-N logarithmic diagram. By viewing the population trends and the 
difference between them in Figure 10a, only the last class is regarded as 
an abnormal class and has a value of 0.95. This is also shown in Figure. 
10c as a C-N logarithmic diagram in purple, and applies to grades more 
significant than 228 ppm. 

Figure 11 shows the classification map of all elements in two classes. 

The first class is related to the background values, and the second class 
is connected to the least anomalous value in the region. These maps are 
used to determine the location of mines and mineral indices in the study 
area. In this study, using the two-class maps the accuracy of the full 
logarithmic fractal diagram of grade-number and the prediction-area 
diagram for each element was checked. 

3.3. Prediction-Area plot 

The intersection point value can be used as a threshold in the P-A 
diagram of the control layers to create a binary evidence map for use in 
Boolean MPM logic [26]. Most mineral reserves are related to the 
intersection area up to the maximum values [24]. In MPM, the weights 
assigned to spatial evidence should reflect the actual spatial 
relationships between the spatial evidence and the intended mineral 
reserves. Therefore, known Cu locations can help the reliability of the 
weights assigned to the spatial evidence, indicating their spatial 
relationship to mineralization in the Birjand region. There are two 
curves in a P-A map of an evidence map: the known mineral event  

 

 
Figure 8. Silver geochemical distribution map, (a) full logarithmic graph of Concentration-Number fractal, (b) Prediction-Area diagram, and (c) fractal-based 
classification map. The extraction weight is equal to 0.20067. 

 

 
Figure 9. Nickel geochemical distribution map, (a) full logarithmic graph of Concentration-Number fractal, (b) Prediction-Area diagram, and (c) fractal-based classification 
map. The extraction weight is equal to 0.12014. 
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Figure 10. Barium geochemical distribution map, (a) full logarithmic graph of Concentration-Number fractal, (b) Prediction-Area diagram, and (c) fractal-based 
classification map. The extraction weight is equal to 0.94446. 

 
Figure 11. Geochemical distribution map of all elements in two classes, respectively for a) Copper, b) Lead, c) Zinc, d) Silver, e) Barium and f) Nickel. 

 

a) b) 

d) c) 

e) f) 
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prediction rate curve for the weight proof map classes and the 
percentage of occupied areas curve for the weight proof map classes. 
Usually, a fractal model is used to separate different populations/classes 
in a control/evidence map. In the P-A diagram of a given layer of an 
evidence map, if the intersection point shows a higher value on the left 
axis (i.e., higher prediction rate) compared to the P-A diagram of other 
control layers, it means that its layer has a lower value on the right axis 
(i.e., smaller occupied area). Since the sum of the mine deposit 
prediction rates and the area occupied at the intersection point is 100, if 
two curves intersect at a location above the P-A diagram of a control 
layer (relative to other evidence layers), it indicates a smaller area 
containing the number of mineral deposits, which means that there is a 
higher probability of mineral occurrence for this class in the evidence 
map [24]. 

The P-A diagram of the Cu variables, shown in Figure 5b, predicts 
44% of the study area as the desired region and 56% of the known Cu 
events. The P-A diagram of the Pb element, shown in Figure6b, predicts 
45% of the study area with an ore prediction rate of 55%. Figure 7b 
predicts 35% of the study area with a 65% ore prediction rate for the Zn 
element. In the case of the Ag element, 45% of the study area is predicted 
with a prediction rate of 55%, which for the Ni and Ba elements is 47% 
 
 

of the region with a prediction rate of 53% for nickel and 72% of the 
region with a prediction rate of 28%, for barium, respectively. The 
extracted parameters at the intersections of P-A components for 
geochemical evidence are given in Table 5. 

In this study, the values in the evidence maps are converted using a 
logistic function to the range [0,1]. Then, the weight of individual 
evidence maps is determined using the P-A diagram by this data-driven 
method [24]. Based on the concentration-number fractal method, six 
geochemical maps of Cu, Pb, Zn, Ag, Ba, and Ni were prepared. The 
multi-class index overlay map of the copper through the integration of 
all the proven layers is shown in Figure 12c. The integrated map has 
three classes (Figure 12a), with the lowest class containing values 0-0.64 
(light blue) and the highest class 0.92-1 (light green). Based on the 
intersection point in Figure 12b, the MPM output occupies 25% of the 
study area with an ore prediction rate of 75%. The weight of the 
composite evidence map is more than that of other geochemical layers 
(Table 5), showing its superiority over other evidence maps. The weights 
are calculated using the natural logarithm of the ore's 
forecast/prediction rate to the occupied area at the intersection. This 
means that the intersection point in the MPM P-A diagram has a higher 
value (75%> 72, 65, 56, 55, 55, and 53%) than other indicators. 

 

 
Figure 12. Copper geochemical potential map based on multi-class index overlay method, (a) full logarithmic fractal diagram of Concentration-Number, (b) Prediction-
Area diagram, and (c) Fractal-based classification map. The extraction weight is equal to 1.09861. 

 
Table 5. Parameters and weights derived from the Prediction-Area curve for 
Evidence layers. 

Elements Area Prediction Normalize Log (A/P) Weight 

Cu 44 56 1.2728 0.10473 0.24116 

Pb 45 55 1.2222 0.08715 0.20067 

Zn 35 65 1.8571 0.26884 0.61904 

Ag 45 55 1.2222 0.08715 0.20067 

Ba 28 72 2.5714 0.41017 0.94446 

Ni 47 53 1.1277 0.05218 0.12014 

MPM 25 75 3.0000 0.47712 1.09861 

4. Conclusion 

In fractal models, highly enriched mineral areas have a strong and 
significant relationship with the desired areas in the synthesized 
evidence map. The main anomalous regions are Cu, Pb, Zn, Ag, Ba, and 

Ni in the southern, central, and southeastern parts of the region with 
minimal areas in the northern part. The geological map shows that the 
abnormal areas are mainly in the Middle to Upper Eocene rocks. The 
southern and southwestern regions, which show the most anomalies, are 
common in dacite, andesite, basaltic, and granodiorite rocks with diorite 
and monzonite. In the middle part of the study area, anomalies in basalt, 
andesite, and dacite rocks are observed, which are all related to the 
Eocene era. However, some signs of copper enrichment can be seen in 
the granites of this part. There are signs of copper enrichment in the 
northern part of the region. The type of host rocks, which are related to 
the Neogene and pyroclastic types, along with apatite and some rocks 
from the Lower Neogene era, has formed different types of reserves. The 
Correlation between rock types and elemental distribution by the C-N 
method shows that andesite, basalt, and dacite are related to copper 
anomalies in all parts of the study area. 

According to the results of integrated evidence layers and maps, some 
areas can be introduced as new anomalies, especially in the southeastern 
part of the region, in the study area. 
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Another noticeable point is that a hybrid evidence map with a multi-
class index overlay map can depict desirable areas with higher 
performance compared to any evidence. Therefore, this criterion can be 
placed in an exploratory database as a robust footprint in porphyry 
copper exploration. It needs to combine geological and geophysical 
criteria to reinforce the final synthesized evidence map with higher ore 
prediction rates and less occupied areas as the desirable regions. 
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