تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,021 |
تعداد مشاهده مقاله | 125,497,670 |
تعداد دریافت فایل اصل مقاله | 98,759,164 |
رویکرد برنامهریزی فازی استوار جدید بهمنظور طراحی شبکه زنجیره تأمین حلقه بسته | ||
مدیریت صنعتی | ||
دوره 14، شماره 3، 1401، صفحه 421-457 اصل مقاله (954.04 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/imj.2022.330096.1007865 | ||
نویسندگان | ||
سید جلال الدین حسینی دهشیری1؛ مقصود امیری* 2؛ لعیا الفت2؛ میرسامان پیشوایی3 | ||
1دانشجوی دکتری، گروه مدیریت تولید و عملیات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران. | ||
2استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران. | ||
3دانشیار گروه مهندسی صنایع دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران | ||
چکیده | ||
هدف: هدف این پژوهش طراحی شبکه زنجیره تأمین حلقه بسته با در نظر گرفتن عدم قطعیتهای ترکیبی و انعطافپذیری در محدودیتهاست. روش: در این مطالعه بهمنظور درنظرگرفتن همزمان عدم قطعیتهای شناختی و تصادفی و انعطافپذیری در محدودیتها، مدل جدیدی از برنامهریزی انعطافپذیر امکانی تصادفی استوار، بر اساس اندازهگیری Me توسعه داده شده است. یافتهها: در رویکرد پیشنهادی، ترکیب محدبی از طیف خوشبینانه و بدبینانه در مدل در نظر گرفته شده و نیاز به بررسیهای ذهنی و تکراری تصمیمگیران، در مدل رفع شده است؛ بهطوری که سطح رضایت بهصورت بهینه با حل مسئله تعیین میشود. از طرفی، بهدلیل استواری مدل، انحرافهای امکانی و سناریویی، عدم تحقق تقاضا و ظرفیت و نقض محدودیتهای نرم در مدل حداقل شد. نتیجهگیری: بهمنظور ارزیابی کارایی مدل پیشنهادی، مطالعهای موردی در زنجیره تأمین تولید کاغذسنگی انجام شد. نتایج تحلیل حساسیت، تحلیل استواری و شبیهسازی با مدل تحقق نشان داد که مدل پیشنهادی قادر است راهحلهای استوار و واقعبینانه پیشنهاد کند. پیشنهاد حل واقعبینانه و انعطافپذیر مسائل طراحی شبکه زنجیره تأمین، از طریق ایجاد تبادل بین تابع هدف و سطح ریسکپذیری تصمیمگیران و مدیران، از طریق تغییر فضای موجه در معیار Me در رویکرد پیشنهادی، از دستاوردهای مطالعه حاضر بود. | ||
کلیدواژهها | ||
طراحی شبکه زنجیره تأمین حلقه بسته؛ برنامهریزی انعطافپذیر؛ برنامهریزی امکانی؛ برنامهریزی تصادفی؛ بهینهسازی استوار | ||
مراجع | ||
آئینهوند، سروناز و غلامیان، محمدرضا (1399). ارائه مدل مکانیابی ـ موجودی فرآوردههای خونی (پلاکت) در زنجیره تأمین خون بر اساس سیستم سفارشدهی EOQ. مدیریت صنعتی، 12(4)، 609 - 633.
امیری، مقصود؛ حسینی دهشیری، سیدجلالالدین و یوسفی هنومرور، احمد (1397). تعیین ترکیب بهینه استراتژیهای زنجیره تأمین لارج با بهرهگیری از تحلیل SWOT، تکنیکهای تصمیمگیری چند معیاره و تئوری بازی. مدیریت صنعتی، 10(2)، 221-246.
حسینی دهشیری، سید جلالالدین؛ امیری، مقصود؛ الفت، لعیا و پیشوایی، میرسامان (1401). طراحی شبکه زنجیره تأمین حلقه بسته کاغذسنگی با استفاده از برنامهریزی محدودیت شانس انعطافپذیر امکانی تصادفی استوار. چشمانداز مدیریت صنعتی،12(1)، 45-81.
خلیلی، سید محمد؛ پویا، علیرضا؛ کاظمی، مصطفی و فکور ثقیه، امیر محمد (1401). طراحی یک شبکه زنجیره تأمین بنزین پایدار و تابآور تحت شرایط عدم قطعیت اختلال (مطالعه موردی: شبکه زنجیره تأمین بنزین استان خراسان رضوی). مدیریت صنعتی، 14(1)، 27-79.
سیبویه، علی؛ آذر، عادل و زندیه، مصطفی (1400). ارائه مدل دومرحلهای احتمالی استوار برای طراحی زنجیره تأمین خون تابآور با درنظرگرفتن اختلال زلزله و بیماری واگیردار. مدیریت صنعتی، 13(4)، 664-703.
مؤمنی، منصور و زرشکی، نیما (1400). مدلسازی زنجیره تأمین حلقه بسته با بهکارگیری از سناریوها در مواجهه با عدم قطعیت در کمیت و کیفیت برگشتیها. مدیریت صنعتی، 13(1)، 105-130.
References Aieneh Vand, S., & Gholamian, M. (2020). A location-inventory model of blood products (platelet) in the blood supply chain based on the EOQ ordering system. Industrial Management Journal, 12(4), 609-633. (in Persian) Amiri, M., Hosseini Dehshiri, S. J., & Yousefi Hanoomarvar, A. (2018). Determining the optimal combination of LARG supply chain strategies using SWOT analysis, multi-criteria decision-making techniques and game theory. Industrial Management Journal, 10(2), 221-246. (in Persian) Atabaki, M. S., Mohammadi, M., & Naderi, B. (2020). New robust optimization models for closed-loop supply chain of durable products: Towards a circular economy. Computers & Industrial Engineering, 146, 106520. Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227(1), 199-215. Boronoos, M., Mousazadeh, M., & Torabi, S. A. (2021). A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design. Environment, Development and Sustainability, 23(3), 3368-3395. doi:10.1007/s10668-020-00723-z Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy sets and systems, 122(2), 315-326. Dehghan, E., Nikabadi, M. S., Amiri, M., & Jabbarzadeh, A. (2018). Hybrid robust, stochastic and possibilistic programming for closed-loop supply chain network design. Computers & Industrial Engineering, 123, 220-231. Devika, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques. European Journal of Operational Research, 235(3), 594-615. Farrokh, M., Azar, A., Jandaghi, G., & Ahmadi, E. (2018). A novel robust fuzzy stochastic programming for closed loop supply chain network design under hybrid uncertainty. Fuzzy sets and systems, 341, 69-91. Fazli-Khalaf, M., Khalilpourazari, S., & Mohammadi, M. (2019). Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design. Annals of operations research, 283(1), 1079-1109. Gaur, J., Amini, M., & Rao, A. (2017). Closed-loop supply chain configuration for new and reconditioned products: An integrated optimization model. Omega, 66, 212-223. Ghahremani Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert systems with applications, 116, 454-471. Gilani, H., & Sahebi, H. (2021). Optimal Design and Operation of the green pistachio supply network: A robust possibilistic programming model. Journal of Cleaner Production, 282, 125212. Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108-141. Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers & Operations Research, 62, 112-130. Günay, E. E., Kremer, G. E. O., & Zarindast, A. (2020). A multi-objective robust possibilistic programming approach to sustainable public transportation network design. Fuzzy sets and systems, 422, 106-129. Habib, M. S., Asghar, O., Hussain, A., Imran, M., Mughal, M. P., & Sarkar, B. (2021). A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. Journal of Cleaner Production, 278, 122403. Hosseini Dehshiri, S. J., Amiri, M., Olfat, L., & Pishvaee, M. S. (2022). Stone Paper Closed-Loop Supply Chain Network Design using Robust Stochastic, Possibilistic and Flexible Chance-constrained Programming. Journal of Industrial Management Perspective, 12(1, Spring 2022), 45-81. (in Persian) Hosseini Dehshiri, S. J., Amiri, M., Olfat, L., & Pishvaee, M. S. (2022). Multi-objective closed-loop supply chain network design: A novel robust stochastic, possibilistic, and flexible approach. Expert Systems with Applications, 206, 117807. https://doi.org/10.1016/j.eswa.2022.117807 Hosseini-Motlagh, S.-M., Samani, M. R. G., & Cheraghi, S. (2020). Robust and stable flexible blood supply chain network design under motivational initiatives. Socio-economic planning sciences, 70, 100725. Inuiguchi, M., & Ramı́k, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy sets and systems, 111(1), 3-28. Khalili, S., Pooya, A., Kazemi, M., & Fakoor Saghih, A. (2022). Designing a Sustainable and Resilient Gasoline Supply Chain Network under Uncertainty (Case study: Gasoline Supply Chain Network of Khorasan Razavi Province). Industrial Management Journal, 14(1), 27-79. (in Persian) Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: a critical review. European Journal of Operational Research, 203(2), 283-293. Liu, B., & Liu, Y.-K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE transactions on Fuzzy Systems, 10(4), 445-450. Liu, Y., Ma, L., & Liu, Y. (2021). A novel robust fuzzy mean-UPM model for green closed-loop supply chain network design under distribution ambiguity. Applied Mathematical Modelling, 92, 99-135. doi:https://doi.org/10.1016/j.apm.2020.10.042 Mohammed, F., Selim, S. Z., Hassan, A., & Syed, M. N. (2017). Multi-period planning of closed-loop supply chain with carbon policies under uncertainty. Transportation Research Part D: Transport and Environment, 51, 146-172. Momeni, M., & Zereshki, N. (2021). Modeling of Closed-Loop Supply Chains by Utilizing Scenario-Based Approaches in Facing Uncertainty in Quality and Quantity of Returns. Industrial Management Journal, 13(1), 105-130. (in Persian) Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers & Chemical Engineering, 82, 115-128. Mousazadeh, M., Torabi, S. A., Pishvaee, M. S., & Abolhassani, F. (2018). Health service network design: a robust possibilistic approach. International transactions in operational research, 25(1), 337-373. Mousazadeh, M., Torabi, S. A., Pishvaee, M., & Abolhassani, F. (2018). Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach. Transportation Research Part E: Logistics and Transportation Review, 111, 113-129. Pishvaee, M. S., & Khalaf, M. F. (2016). Novel robust fuzzy mathematical programming methods. Applied Mathematical Modelling, 40(1), 407-418. Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy sets and systems, 161(20), 2668-2683. Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied Mathematical Modelling, 35(2), 637-649. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 206, 1-20. Ren, A. (2018). Solving the General Fuzzy Random Bilevel Programming Problem Through $ Me $ Measure-Based Approach. IEEE Access, 6, 25610-25620. Sadghiani, N. S., Torabi, S., & Sahebjamnia, N. (2015). Retail supply chain network design under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95-114. Sibevei, A., Azar, A., & Zandieh, M. (2022). Developing a Two-stage Robust Stochastic Model for Designing a Resilient Blood Supply Chain Considering Earthquake Disturbances and Infectious Diseases. Industrial Management Journal, 13(4), 664-703. (in Persian) Talaei, M., Moghaddam, B. F., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production, 113, 662-673. Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems, 159(2), 193-214. Torabi, S., Namdar, J., Hatefi, S., & Jolai, F. (2016). An enhanced possibilistic programming approach for reliable closed-loop supply chain network design. International Journal of Production Research, 54(5), 1358-1387. Tsao, Y.-C., & Thanh, V.-V. (2019). A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment. Transportation Research Part E: Logistics and Transportation Review, 124, 13-39. Velte, C. J., & Steinhilper, R. (2016). Complexity in a circular economy: A need for rethinking complexity management strategies. Paper presented at the Proceedings of the World Congress on Engineering, London, UK. Wang, J., & Wan, Q. (2022). A multi-period multi-product green supply network design problem with price and greenness dependent demands under uncertainty. Applied Soft Computing, 114, 108078. https://doi.org/10.1016/j.asoc.2021.108078 Xu, J., & Zhou, X. (2013). Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. Information Sciences, 238, 75-95. Yu, C.-S., & Li, H.-L. (2000). A robust optimization model for stochastic logistic problems. International Journal of Production Economics, 64(1-3), 385-397. Yu, H., & Solvang, W. D. (2020). A fuzzy-stochastic multi-objective model for sustainable planning of a closed-loop supply chain considering mixed uncertainty and network flexibility. Journal of Cleaner Production, 266, 121702. Yu, L., & Li, Y. (2019). A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles. Journal of Cleaner Production, 207, 772-787. Zhang, P., & Zhang, W.-G. (2014). Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy sets and systems, 255, 74-91. Zhang, W.-G., & Xiao, W.-L. (2009). On weighted lower and upper possibilistic means and variances of fuzzy numbers and its application in decision. Knowledge and information systems, 18(3), 311-330. | ||
آمار تعداد مشاهده مقاله: 668 تعداد دریافت فایل اصل مقاله: 706 |