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The diffusion coefficient of gases in a wide range of chemical processes is 

of great importance. Semi-empirical models for diffusion coefficient 

prediction are useful due to their relatively lower cost compared to 

laboratory methods. In this study, to facilitate the equations and accelerate 

the calculations, appropriate models have been presented using existing 

parameters such as molecular weight and critical properties to determine 

the binary diffusion coefficient of gases. The calculations have been 

performed using a particle swarm optimization (PSO) algorithm. This 

model has been used to obtain the diffusion coefficient of 84 gas dual 

systems at P=101.325 kPa and variable temperature (373.15-673.15 K). 

Also, during the validation phase, the suggested model attained the most 

accurate prediction with R2 = 0.9989. This model is capable to predict the 

diffusion coefficient of gases with a mean relative error percentage of 

2.57% and mean square error percentage of 0.15% compared to actual data. 

These results are significantly better than those obtained from other models. 

Introduction 

The diffusion coefficient in the phenomenon of mass transfer is of great importance for 

designing and simulation of different chemical processes [1]. As the theory and engineering 

applications of diffusional operations are advanced, increasing demands have arisen for 

diffusion coefficients of gases and vapors [2].  The diffusion of gases can be observed in many 

phenomena such as the movement of gases in the earth’s strata, purification by adsorption, 

cooling of nuclear reactors, and permeability of various packing materials [3]. 

The relationship between the concentration gradient and the diffusion flux due to the 

concentration gradient is called Fick's law of diffusion, which is defined by the following 

Equations for binary mixtures: 

J1 = −CD12∇x1 
                                                                       

(1) 
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J2 = −CD21∇x2 (2)                                                                       

where each species is labeled by 1 or 2 subscripts. J1 and J2 (mole/cm2.s) are the flux densities. 

C (mole /cm2) is the total number density and the composition gradients are demonstrated in 

terms of mole fractions (x1 and x2). The diffusion coefficient is one of the key parameters in 

chemical processes. In binary mixtures, there is only one independent concentration gradient 

and one independent diffusion flux due to the survival of the total flux in the volume. As a 

result, the diffusion coefficients of Fick in binary mixtures are equal as follows [4]: 

D12 = D21 (3)                                                                                                   

Numerous gases have had their diffusion coefficients measured over history and compiled. 

Table 1 shows an overview of the background of the studies conducted on the measurement 

and prediction of the diffusion coefficients of pure gases. 

Table 1. A list of the techniques and correlations for diffusion coefficients 

Source Comment Year Ref 

Camper et al. This study introduces a brand-new semi-infinite volume method for 

calculating the diffusion coefficients of gases in ionic liquids at 

ambient temperature (RTILs). Henry's constants were measured using 

the same techniques as the diffusion coefficients. Along with the 

relationship of the diffusion coefficients with molecule size and 

viscosity, it is also examined how Henry's constants and diffusion 

coefficients relate to temperature. The gases used included carbon 

dioxide,ethylmethylimidazoliumbis (trifluoromethanesulfonyl)amide 

(emim), ethane, ethene, propane, and propane. 

2006 [5] 

Pillalamarry et al. This essay examines the findings of an experimental investigation on 

the sorption and diffusion characteristics of methane in coals from the 

Illinois basin. First, the Langmuir Constants were estimated and the 

sorption findings were modeled using the Langmuir isotherm model. 

Next, the diffusion coefficient, D, was determined by modeling 

experimental data using the unipore diffusion theory and Fick's law of 

diffusion. For pressures lower than 3.5 MPa, the results unmistakably 

showed a negative link between D and pressure. It was discovered that 

the variation's overall pattern was bi-modal, with its value holding 

constant at high pressures and then rapidly increasing below this 

critical pressure. The findings of sorption and diffusion were 

compared, and the results showed that D was dependent on surface 

covering, which has a positive relationship with pressure. The results 

from previous studies using the bi-disperse diffusion model seemed to 

be in good agreement with the trend of diffusion variation with 

pressure. The practical implication of the findings is that methane 

migration is substantially facilitated by low pressures. This is a 

promising result given the low in situ pressure generally found in the 

Illinois basin. Finally, after several years of production, the San Juan 

basin's higher gas production rates may be caused, at least in part, by 

this tendency. 

2011 [6] 

Chen et al. This study measures the methane diffusion coefficients in shale cores 

at supercritical circumstances using two different types of methane 

diffusion tests. According to experimental findings, (1) the free 

molecular diffusion coefficient is averaged out to be 1.214 ×

10−10 
m2

s
 under reservoir conditions from the isobaric diffusion 

experiments, but (2) the Knudsen diffusion, surface diffusion, and 

2018 [7] 
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configurational diffusion coefficients in the pressure decay 

experiments are more important for shale gas development. In matrix 

nanopores, where the mean diffusion coefficients are 4.99 × 10−14 
m2

s
 

for pores less than 4 nm and 9.03 × 10−9 
m2

s
 for pores larger than 4 

nm, it is shown that Knudsen diffusion and surface diffusion emerge 

simultaneously as gas transports. 2.06 × 10−22 
m2

s
 is computed as the 

mean configurational diffusion coefficient for dissolved gas. To 

compare the theoretical results with the experimental data, the four 

types of diffusion coefficients indicated above are also theoretically 

estimated using the appropriate models. The relationship between gas 

diffusion and pore size is found by combining theoretical and 

experimental results, and this can help to further analyze the 

comprehensive diffusion behavior in shale gas development as well as 

the relative contribution of each diffusion during different production 

stages. This is because the measured methane diffusion coefficients 

correspond to a wide range of pore sizes. This work clarifies the 

behavior of gas diffusion throughout a range of pore sizes, which 

helps develop quantitative knowledge of the movement of shale gas 

in the matrix during production. 

Zhao and Jin used molecular dynamics simulations to examine the diffusion 

coefficient of several gases in supercritical water. According to 

research, carbon monoxide has the slowest penetration while 

hydrogen has the fastest. 

2020 [8] 

Athar et al. It has been discovered through soaking studies that the penetration of 

propane in heavy oil occurs in three stages: the early zone, the 

transition zone, and the late time zone. In all three areas, the 

coefficients of solubility and penetration of propane in the oil have 

been highly influenced by temperature. 

2020 [9] 

Zhao et al. Molecular dynamics simulations have also been used to look into the 

diffusion coefficient of a particular group of gases in water at infinite 

dilution close to the critical point. To forecast the water permeability 

coefficient close to the critical point, a novel experimental equation 

has been proposed. The diffusion coefficient of all gases has been 

achieved with an average absolute relative error of 7.65% 

2021 [10] 

Si et al. In this study, an improved model was built to account for both gas 

adsorption in residual pores and gas dissolution in pore water when 

calculating the effective diffusion coefficient of the gas in a water-

saturated coal core. Since the traditional model only takes into account 

the gas dissolution in pore water, the calculation results of the 

improved model using a PVT (Pressure-Volume-Temperature) test 

method are in the range of 1.03 × 10−12 to30.40 × 10−12 
m2

s
, which 

are 5 to 6 orders of magnitude lower than those calculated by the 

traditional model. As a result, the findings of the revised model are 

closer to reality. Additionally, tests including saturated moisture, 

equilibrium moisture, and NMR were conducted. Results indicate that 

equilibrium and saturated moisture both decline with increasing coal 

rank. As the coal rank rises, the pore size transitions from 

micropore/mesopore-dominated to micropores-dominated. 

Additionally, the fraction of open porosity gradually declines as the 

coal rank rises, whereas the proportion of closed porosity rises, 

suggesting that pore connectivity declines as the coal rank rises. The 

effects of pore structure, pressure, liquid characteristics, and 

adsorbability on the effective diffusion coefficient were then 

examined. 

2021 [11] 
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An et al. In this study, the diffusion coefficients under varied stress, 

concentration gradient, temperature, and gas-type circumstances were 

obtained using a direct steady-state technique based on Fick's law. It 

is discovered that the stress and the gas diffusion coefficient have a 

weak negative linear association. While the diffusion coefficient of 

non-adsorptive gas (helium) decreases first and then increases, the 

diffusion coefficient of methane decreases in a power function as the 

concentration gradient grows. The Arrhenius formula is satisfied by 

the gas diffusion coefficient in coal, which exhibits a positive 

correlation with temperature. In order to forecast the characteristics of 

coal's gas desorption with changing temperatures, a model taking 

diffusion coefficient variation for coal particles into account was 

developed based on the measured relationships and Fick's law. The 

dependability of the direct measurement method of the diffusion 

coefficient is demonstrated by the agreement between the expected 

and measured results. It might offer a fresh approach to predicting the 

behavior of gas diffusion in coal under varying circumstances. 

2022 [12] 

Chen et al. The first thing this research did was present a back propagation (BP) 

neural network-based quick and easy prediction approach for 

diffusion coefficient for both CO2-oil systems within and outside of 

porous media. 18.73% and 18.80% of the errors are on average, 

respectively. Models can be regularly updated to produce more 

precise estimations of the supercritical CO2-oil system without/with 

porous medium conditions with the ongoing addition of new data. The 

correlation between the diffusion coefficient and temperature, 

pressure, permeability, porosity, and surface area is positive. The 

volume of porous media, oil density, and oil viscosity all negatively 

correlated with the diffusion coefficient. It is important to remember 

that for rocks with a certain volume, an increase in surface area can 

greatly increase the diffusion coefficient, implying that a direct 

upscale of the CO2 diffusion coefficient determined in the lab is 

completely irrational. 

2022 [13] 

Bellaire et al. For all mass transfer processes, diffusion coefficients at infinite 

dilution are crucial fundamental information. They can be discovered 

by utilizing nuclear magnetic resonance spectroscopy with pulsed 

field gradients (PFG-NMR), a method that is frequently used in 

chemistry but is only occasionally employed in engineering studies, 

to analyze substances that are in equilibrium. Here, at 298.15 K, the 

self-diffusion coefficients of diluted solutions of carbon dioxide and 

methane in the pure solvents water, ethanol, cyclohexane, toluene, 

methanol, and acetone were measured using this useful method. 

Measurements were also made for the systems (carbon dioxide + 

water) and (carbon dioxide + ethanol) at 308.15 K, 318.15 K, and 

333.15 K. No literature data were previously available for the 

methane-containing systems, with the exception of (methane + water) 

and (methane + toluene). At the studied solute concentrations, there is 

almost no difference between the self-diffusion coefficient and the 

mutual diffusion coefficient. To predict diffusion coefficients at 

infinite dilution, the experimental results are compared to 

experimental literature data as well as to findings from semi-empirical 

approaches. Additionally, using force fields that were collected from 

the literature, molecular dynamics simulations of all systems were run 

to calculate the diffusion coefficient at infinite dilution. The results 

2022 [14] 
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are then compared to the experimental data and those from the 

traditional prediction methods. 

 

When the complication issues rise, the experimental data must be estimated. Traditional 

optimization algorithms may be hard to meet the supplies of the problems so leading to new 

influential algorithms [15]. Over the past few years, various traditional novelty algorithms have 

been developed as impressive and practical approaches to problem optimization [16, 17]. Due 

to the continuous improvement of computing power. By using numerical integration, they 

aimed to quickly optimize the reaction rate, and conversion range, and accommodate any 

collection of differential rate equations [18]. Particle swarm optimization (PSO) and genetic 

algorithm (GA) are the most hopeful algorithms for network optimization [19]. PSO as an 

evolutionary random algorithm that is nature-inspired is evoked by the public behavior of 

organisms, which warrants a coordinated swarm to achieve the ideal result extended by 

Kennedy and Eberhart [20]. It is randomly placed in the workspace, and each particle's objective 

function quantity is assessed [21]. Like GA, PSO is an optimization tool that is based on 

population. But, GA and PSO are different in some ways: (1) PSO has a various evolutionary 

mechanism, with the exception of genetic agents such as crosses and mutations, which update 

their PSO particles at internal speeds. (2) At the same time, particles of PSO have a memory 

that is vital for the algorithm [22]. 

 In recent years, the optimization algorithm PSO was used the nonlinear Regression in 

problems such as, Model design and parameter estimation for the thermodynamics, kinetics, 

and hydrodynamics of mixed salt precipitation in porous media [23], Interacting parameter 

correlation in the Wilson, NRTL, and UNIQUAC models [24], toxic vapors' kinetic adsorption 

on activated carbon in the batch reactor [25], predict crude oil properties [26], For the gas cross 

flow in packed bed reactors, a novel Sauter mean diameter correlation has been developed [27], 

and An innovative theoretical and practical approach based on friction volume theory and 

friction theory parameter tweaking for viscosity-sensitive Iranian heavy crude oils [28]. 

In previous studies, relationships have been proposed to obtain the diffusion coefficient, 

which is mostly complex and detailed, and there are some difficulties in using them. In this 

study, an optimum and simple model with a low error rate of specific gases is proposed by 

Particle Swarm Optimization (PSO) using data related to the physical properties of gas in 

P=101.325 kPa. 

Methodology 

PSO Algorithm 

James Kennedy and Russell Eberhart presented the particle swarm optimization technique 

in 1995. This algorithm is adapted from the collective performance of a collection of animals 

such as fliers and fish [29]. PSO is an optimization approach based on population inspired by 

the public treatment of birds or fish training. It sometimes bears many similarities to 

Evolutionary Calculation techniques (EC), Genetic Algorithms (GA), and Evolutionary 

Strategies (ES). But there are also many contrasts between these methods [30]. The PSO starts 

with a collection of chance iotas (solutions) and therefore takes optimal search by keeping 

generations up to date by coursing the best valuations in every entrance, in which every particle 

is kept up to date. The first of these values is the foremost fit (𝑥𝑖,𝑝𝑏𝑒𝑠𝑡[𝑡]). This foremost value 

is the best value in the world and is entitled (𝑥𝑔𝑏𝑒𝑠𝑡[𝑡]). After gaining the two foremost values, 

the particle keeps its velocity and position of itself up to date by means of the following 

equations: 

𝑣𝑖[𝑡 + 1] = 𝑤𝑣𝑖[𝑡] + 𝑐1𝑟1(𝑥𝑖,𝑝𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡]) + 𝑐2𝑟2(𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] − 𝑥𝑖[𝑡]) (4) 
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𝑥𝑖[𝑡 + 1] = 𝑥𝑖[𝑡] + 𝑣𝑖[𝑡 + 1] (5) 

The 𝑥𝑖[𝑡 + 1] and 𝑣𝑖[𝑡 + 1] is the position and velocity of the particle “i” in the new 

iteration. The 𝑥𝑖,𝑝𝑏𝑒𝑠𝑡[𝑡] shows the foremost position of particle” i”, and 𝑥𝑔𝑏𝑒𝑠𝑡[𝑡] represents 

the foremost position among the whole available particles. 𝑟1 and 𝑟2 are the random number 

between zero and one. 𝑐1 and 𝑐2 are positive constant parameters entitled acceleration 

coefficients. w is the inertia weight that is used to ensure convergence. Fig. 1 shows the 

flowchart algorithm for particle swarm optimization [31].  

 

Fig. 1. Flowchart algorithm for particle swarm optimization 

The optimal amounts of the parameters w, 𝑐1 and 𝑐2 are obtained from the following 

relations. Table 2 specifies the implementation parameters of the particle swarm optimization 

algorithm.  

K =
2k

∅ − 2 + √∅2 − 4∅
 (6) 

∅ = ∅1 + ∅2 (7) 

w = K (8) 

c1=K∅1 (9) 

c2=K∅2 (10) 

In the above equations, ∅1 and ∅2 are constant values greater than zero, respectively, which 

must be adjusted to achieve the optimal value of the parameters of the particle swarm algorithm, 
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including inertial coefficient (w), and learning coefficients (𝑐1 and 𝑐2). Clerk suggested that if 

the values ∅1 and ∅2 were equal to 2.05 and the value of K was considered equal to one, the 

optimal value of 0.73 for the inertial coefficient would be obtained [32]. The PSO is employed 

for data fitting issues, at which the variables are the required coefficients of the regression 

model for data fitting. In the case of a randomly initialized solution at the first iteration, we can 

calculate the minimized error between the actual output value and predicted value from 

initialized solution to compute the fitting function. 𝑎0
𝑖.𝑘, 𝑎1

𝑖.𝑘, …., 𝑎𝑛
𝑖.𝑘 can be considered as the 

solution resulting from the PSO for i iteration and k population. The predicted output value 

related to 𝑎0
𝑖.𝑘, 𝑎1

𝑖.𝑘, …., 𝑎𝑛
𝑖.𝑘 for both the linear and non-linear regression models can be obtained 

using the following equations [33]: 

yPredicted =  a1
i.kx1 +   a2

i.kx2 + ⋯ +  an
i.kxn + a0

i.k (11) 

yPredicted =  an
i.kxn +   an−1

i.k xn−1 + ⋯ +  a1
i.kx1 + a0

i.k (12) 

To generate the fitness function, can be used is assessed by the equation below [34]: 

Ei = ∑(Pij − Tj)
2

n

j=1

 (13) 

where 𝑇𝑗 is the desired value for fitness case j and 𝑃𝑖𝑗 is the value predicted by the individual 

program i for fitness case j (out of n fitness instances). 

Table 2. Parameters of the particle swarm optimization algorithm 

Parameter Value 

Number of Iterations 2000 

Population size 100 

Mutation 0.04 

Internal coefficient(w) 0.7298 

Personal learning coefficient(c1) 1.4962 

General learning coefficient(c2) 1.4962 

Data Acquisition and Analysis 

Experimental diffusion coefficient data for 84 systems at P=101.325 kPa and different 

temperatures have been selected [35] as the basis for comparison in determining the relative 

accuracy of the PSO algorithm method. The physical properties of pure gases including 

temperature, critical temperature, critical volume, and molecular weight were obtained from 

laboratory data and used for the prediction of the diffusion coefficient of these gases.  

Selection of Optimal Configuration 

Three crucial characteristics that affect how well the constructed model performs are defined 

in this section. Each input data's correlation coefficient serves as the parameter [36]: 

R2 = 1 −
∑ (Dexp − Dm)2n

i=1

∑ (Dexp − D̅exp)2n
i=1

 (14) 

The second is the mean square error (MSE) [37]: 

MSE =
1

n
∑(Dexp − Dm)2

n

i=1

 (15) 

The third parameter is the mean relative error (MRE) [38]: 
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MRE =
1

n
∑ |

Dexp − Dm

Dexp
|

n

i=1

 (16) 

n is the number of data points, 𝐷𝑒𝑥𝑝 is the experimental diffusion coefficient, �̅�𝑒𝑥𝑝 is the 

average value of the experimental values  and 𝐷𝑚 is the diffusion coefficient obtained from 

the modeling. 

Results 

The general model for the constant prediction of diffusion coefficients for binary gas 

mixtures at atmospheric pressure is: 

D12 =
a0Ta1(

1
Mw1

+
1

Mw2
)a2

P(Tc1Tc2)a3(Vc1 + Vc2)a4
 

(17) 

Eq. 17 was created using the PSO algorithm method. Using this equation, the diffusion 

coefficient of gases can be calculated with less error. This equation is based on the temperature, 

pressure, and physical properties of the material. a0, a1, a2, a3 and a4 are fixed coefficients and 

the related numerical values are given in Table 3. 

Table 3. Correlated constants for determination of the diffusion coefficient. 

Value Constant 

0.3575 a0 

1.7335 a1 

0.5335 a2 

0.1061 a3 

0.6455 a4 

The correlation between the simulation results is shown in Fig. 2. 

 

Fig. 2. Correlation of experimental data versus PSO predictions 
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Table 4 shows the MRE, MSE and R2 values calculated. 

Table 4. The MRE, MSE and R2 values for the PSO configurations 

MRE×100 MSE×100 𝐑𝟐 

2.57 0.15 0.9989 

Table 5 shows the binary systems used in this model along with the mean relative error. 

Comparison of the method with experimental data shows that the PSO algorithm method 

provides acceptable results for the diffusion coefficient so the highest and lowest error rate in 

this model is 8.9% and 0%, respectively. 

Table 5. Correlated results for determination of the diffusion coefficients. 

Name T (K) RE(%) Name T (K) RE(%) 

Ar-CH4 373.15 8.75 CH4-O2 573.15 1.20 

Ar-CH4 473.15 7.55 CH4-O2 673.15 1.74 

Ar-CH4 573.15 6.58 CO-H2 373.15 2.25 

Ar-CH4 673.15 5.64 CO-H2 473.15 1.65 

Ar-CO 373.15 0.36 CO-H2 573.15 1.36 

Ar-CO 473.15 0.06 CO-H2 673.15 1.17 

Ar-CO 573.15 0.42 CO-He 373.15 3.19 

Ar-CO 673.15 0.70 CO-He 473.15 2.53 

Ar-CO2 373.15 0.62 CO-He 573.15 2.05 

Ar-CO2 473.15 3.43 CO-He 673.15 1.73 

Ar-CO2 573.15 4.94 CO-N2 373.15 8.91 

Ar-CO2 673.15 5.74 CO-N2 473.15 5.92 

Ar-H2 373.15 2.38 CO-N2 573.15 4.30 

Ar-H2 473.15 3.56 CO-N2 673.15 3.06 

Ar-H2 573.15 4.23 CO-O2 373.15 0.01 

Ar-H2 673.15 4.64 CO-O2 473.15 0.28 

Ar-He 373.15 1.77 CO-O2 573.15 0.46 

Ar-He 473.15 0.25 CO-O2 673.15 0.55 

Ar-He 573.15 1.03 CO2-H2 373.15 8.10 

Ar-He 673.15 2.09 CO2-H2 473.15 4.99 

Ar-N2 373.15 2.09 CO2-H2 573.15 4.15 

Ar-N2 473.15 1.78 CO2-H2 673.15 3.59 

Ar-N2 573.15 1.30 CO2-N2 373.15 0.80 

Ar-N2 673.15 1.02 CO2-N2 473.15 3.37 

Ar-O2 373.15 4.24 CO2-N2 573.15 4.50 

Table 6. Continued correlated results for determination of the diffusion coefficients 

Name T (K) RE(%) Name T (K) RE(%) 

Ar-O2 473.15 4.27 CO2-N2 673.15 4.78 

Ar-O2 573.15 4.19 CO2-O2 373.15 0.66 

Ar-O2 673.15 4.18 CO2-O2 473.15 0.85 

CH4-H2 373.15 1.04 CO2-O2 573.15 1.81 

CH4-H2 473.15 0.31 CO2-O2 673.15 2.22 

CH4-H2 573.15 0.27 H2-He 373.15 0.06 

CH4-H2 673.15 0.79 H2-He 473.15 0.22 

CH4-He 373.15 1.07 H2-He 573.15 0.35 

CH4-He 473.15 0.75 H2-He 673.15 0.40 

CH4-He 573.15 0.42 H2-N2 373.15 0.49 

CH4-He 673.15 0.15 H2-N2 473.15 0.12 

CH4-N2 373.15 7.86 H2-N2 573.15 0.42 

CH4-N2 473.15 7.51 H2-N2 673.15 0.61 

CH4-N2 573.15 7.23 H2-O2 373.15 1.73 

CH4-N2 673.15 6.83 H2-O2 473.15 1.79 

CH4-O2 373.15 1.34 H2-O2 573.15 1.85 

CH4-O2 473.15 0.28 H2-O2 673.15 1.87 
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To evaluate the performance of the proposed model in comparison with other models [39-

43], the amounts of errors obtained from each model are shown in Fig. 3. It is found that the 

proposed model with a mean relative error of 2.57% has less error in predicting the diffusion 

coefficients compared to other models.  

Generally, the results obtained from the proposed model are in good agreement with the 

experimental results. It is worth mentioning that most of the previous models proposed to 

determine the double diffusion coefficient of gases have variables that require extensive 

information such as knowledge of the collision diameter between gas molecules, intermolecular 

forces, and liquid molar volume at normal boiling point. Also, the required parameters for these 

equations are available for a limited number of materials. However, our proposed model is 

based on the critical properties that are available for most components. Generally, our study 

demonstrates the employment of an appropriate modeling method that is applicable for 

predicting the penetration coefficient of gases which is advantageous for the simulation of 

chemical processes in the industry.  

 
Fig. 3. Comparison between errors obtained from our proposed method with those of previous models 

Conclusion 

In this study, a semi-empirical equation has been obtained using the PSO algorithm to 

calculate the binary diffusion coefficient of gases for various systems at P=101.325 kPa and 

variable temperatures. In order to forecast the diffusion coefficient of these gases, the physical 

parameters of pure gases, such as temperature, critical temperature, critical volume, and 

molecular weight, were acquired from laboratory data. During the validation phase, the 

suggested model attained the most accurate prediction with R2 = 0.9989, MRE=2.57% and 

MSE=0.15%. The result of our study is advantageous for the simulation of different chemical 

processes based on gases through appropriate prediction of the diffusion coefficient. It is 

important to note that the majority of the earlier models that were suggested to figure out the 

double diffusion coefficient of gases contain variables that call for a lot of background 

knowledge, like understanding gas molecule collision diameters, intermolecular forces, and 

liquid molar volumes at normal boiling points. Additionally, only a few materials have the 
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available parameters for these equations. Our suggested model, however, is based on the 

essential characteristics that are present in the majority of components.  

Nomenclature 

D12 diffusion coefficients (
Cm2

s
) 

Mw Molecular weight 

P Pressure (kPa) 

T Temperature (K) 

Tc Critical Temperature (K) 

Vc Critical Volume (
m3

mol
) 
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