- صوفی، م و علیجانی، ب. (1391). تغییر اقلیم در ناهمواریهای زاگرس. فصلنامه سرزمین، 9(34)، 66-47.
- مجرد، ف و مرادی فر، ح. (1382). مدلسازی رابطه بارش با ارتفاع در منطقه زاگرس. مدرس علوم انسانی ، 7(23)، صص 182-163.
- Brown, D.G., Pijanowski, B.C., & Duh, J.D., (2000). Modeling the relationships between land use and land cover on private lands in the Upper Midwest, J. Environ. Manage. 59, 247–263.
- Chang, H., He, G., Wang, Q., Li, H., Zhai, J., Dong, Y., Zhao, Y., Zhao, J., (2021). Use of sustainability index and cellular automata-Markov model to determine and predict long-term spatio-temporal variation of drought in China. Hydrol. 598, 126248.
- Choubin, B., Soleimani, F., Pirnia, A., Sajedi-Hosseini, F., Alilou, H., Rahmati, O., Melesse, A.M., Singh, V.P., & Shahabi, H., (2019). Effects of drought on vegetative cover changes: Investigating spatiotemporal patterns. Extrem. Hydrol. Clim. Var. Monit. Model. Adapt. Mitig. 213–222.
- Chung, K.L., (1960). Markov Chains with Stationary Transition Probabilities. Markov Chain. with Station. Transit. Probab. 1–130.
- Ding, Y., Gong, X., Xing, Z., Cai, H., Zhou, Z., Zhang, D., Sun, P., & Shi, H., (2021). Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China. Water Manag, 255, 106996.
- EarthExplorer [WWW Document], 2021. URL https://earthexplorer.usgs.gov/ (accessed 11.11.21).
- Ebrahimi-Khusfi, Z., Mirakbari, M., Ebrahimi-Khusfi, M., Taghizadeh-Mehrjardi, R., (2020). Impacts of vegetation anomalies and agricultural drought on wind erosion over Iran from 2000 to 2018. Appl. Geogr, 125, 102330.
- Fadhil, R.M., &Unami, K., (2021). A multi-state Markov chain model to assess drought risks in rainfed agriculture: a case study in the Nineveh Plains of Northern Iraq. Stoch. Environ. Res. Risk Assess, 35, 1931–1951.
- Fars Meteorological Bureau [WWW Document], 2021. URL https://www.farsmet.ir/ (accessed 11.11.21).
- Ghasemi, M.M., Pakparvar, M., & Mokarram, M., (2021). Preparation of landforms using geomorphon method and its relationship with drought in the east and south of Fars province. Quant. Geomorphol. Res, 10, 1-12.
- Jahantigh, M., & Jahantigh, M., (2021). Monitoring Changes in Erosion areas Using Remote sensing Data in Three years of Wet, Normal and Drought (Case study: Nimroz Region of Sistan). Eros. Res. J, 11, 1–26.
- Javed, T., Li, Y., Feng, K., Ayantobo, O.O., Ahmad, S., Chen, X., Rashid, S., Suon, S., (2021). Monitoring responses of vegetation phenology and productivity to extreme climatic conditions using remote sensing across different sub-regions of China. Sci. Pollut. Res, 28, 3644–3659.
- Jiao, W., Wang, L., & McCabe, M.F., (2021). Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ, 256, 112313.
- Karimi, H., Raeisi, E., & Rezaei, A., (2018). Determination of karst aquifer characteristics using physicochemical parameters (A case study from west of Iran). Geopersia, 8, 293–305.
- Kędzior, M., & Zawadzki, J., (2017). SMOS data as a source of the agricultural drought information: Case study of the Vistula catchment, Poland. Geoderma, 306, 167–182.
- Kiem, A.S., Austin, E.K., (2013). Drought and the future of rural communities: Opportunities and challenges for climate change adaptation in regional Victoria, Australia. Glob. Environ. Chang, 23, 1307–1316.
- Li, L., She, D., Zheng, H., Lin, P., & Yang, Z.-L., (2020). Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. Hydrometeorol, 21, 1513–1530.
- Li, P., Zhu, D., Wang, Y., & Liu, D., (2020). Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agric. Meteorol, 295, 108190.
- Liu, X., Zhu, X., Zhang, Q., Yang, T., Pan, Y., & Sun, P., (2020). A remote sensing and artificial neural network-based integrated agricultural drought index: Index development and applications. CATENA, 186, 104394.
- Mansouri Daneshvar, M.R., Ebrahimi, M., & Nejadsoleymani, H., (2019). An overview of climate change in Iran: facts and statistics. Syst. Res. 81(8), 1–10.
- Mokarram, M., Pourghasemi, H.R., Hu, M., & Zhang, H., (2021). Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA-Markov model. Total Environ, 781, 146703.
- Mokarram, M., & Sathyamoorthy, D., (2016). Investigation of the relationship between drinking water quality based on content of inorganic components and landform classes using fuzzy AHP (case study: South of Firozabad, west of Fars province, Iran). Water Eng. Sci, 9, 57–67.
- Mokarrama, M., & Hojati, M., (2018). Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM). J. Remote Sens. Sp. Sci. 21, 111–120.
- Nafarzadegan, A.R., Rezaeian Zadeh, M., Kherad, M., Ahani, H., Gharehkhani, A., Karampoor, M.A., & Kousari, M.R., (2012). Drought area monitoring during the past three decades in Fars province, Quat. Int. 250, 27–36.
- Pei, Z., Fang, S., Wang, L., & Yang, W., (2020). Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water, 12, 1912-1925.
- Rabbi, S.M.F., Tighe, M.K., Warren, C.R., Zhou, Y., Denton, M.D., Barbour, M.M., & Young, I.M., (2021). High water availability in drought tolerant crops is driven by root engineering of the soil micro-habitat. Geoderma, 383, 114738.
- Rabiner, L.R., & Juang, B.H., (1986). An Introduction to Hidden Markov Models. IEEE ASSP Mag, 3, 4–16.
- Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W., (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math. Comput. Model, 54, 938–943.
- Sharafati, A., Nabaei, S., & Shahid, S., (2020). Spatial assessment of meteorological drought features over different climate regions in Iran. J. Climatol. 40, 1864–1884.
- Tanda, A.S., (2021). Native Bees Are Important and Need Immediate Conservation Measures: A Review † 1–15.
- Tsakiris, G., & Vangelis, H., (2005). Establishing a Drought Index Incorporating Evapotranspiration.
- Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., Vermote, E.F., & El & Saleous, N., (2010). An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485–4498.
- Vali, A., Ranjbar, A., Mokarram, M., & Taripanah, F., (2020). Investigating the topographic and climatic effects on vegetation using remote sensing and GIS: a case study of Kharestan region, Fars Province, Iran. Theor. Climatol. 140, 37–54.
- Van Loon, A.F., & Van Lanen, H.A.J., (2012). A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci, 16, 1915–1946.
- Vicente-Serrano, S.M., & Beguería, S., (2016). Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge et al. J. Climatol. 36, 2120–2131.
- Xie, F., Fan, H., 2021. Deriving drought indices from MODIS vegetation indices (NDVI/EVI) and Land Surface Temperature (LST): Is data reconstruction necessary?, J. Appl. Earth Obs. Geoinf, 101, 102352.
- Zhou, K., Li, J., Zhang, T., & Kang, A., (2021). The use of combined soil moisture data to characterize agricultural drought conditions and the relationship among different drought types in China. Agric. Water Manag, 243, 106479.
|