تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,368 |
تعداد دریافت فایل اصل مقاله | 97,225,737 |
Detecting Virulence Genes Among Salmonella Serovar Infantis Isolated From Poultry Sources | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 8، دوره 17، شماره 4، دی 2023، صفحه 363-374 اصل مقاله (1.92 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.4.1005293 | ||
نویسندگان | ||
Hossein Haghighatnezhad؛ Seyed Mostafa Peighambari* ؛ Jamshid Razmyar | ||
Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Background: Salmonellosis is increasingly recognized as a worldwide public health concern. Salmonella Infantis can infect both humans and animals, including poultry. It has been one of the most reported isolated serovars from different parts of the world. Although some research has been carried out on the pathogenesis of S. Infantis, little scientific understanding of its pathogenesis is available. Objectives: This study aimed to analyze the virulence genes of S. Infantis recovered from different sources of poultry in Iran. Methods: Six virulence genes of 54 S. Infantis strains originated from broiler feces, poultry processing, and broiler carcasses were examined. Gene-specific polymerase chain reactions were designed and employed to detect the presence or absence of 6 important virulence genes (sopB, sopE, sitC, pefA, sipA, and spvC) in 54 S. Infantis isolates. Results: In this study, sopE, sitC, pefA, sipA, and sopB virulence genes were detected in 51(94.4%), 49(90.7%), 26(48.1%), 15(27.7%), and 5(9.2%) isolates, respectively. The spvC gene was not detected in any of the isolates. Conclusion: In the present study, a remarkably identical profile was found on virulence genes’ presence in isolates recovered from broiler feces and poultry processing plant sources, that is a public health concern. However, more S. Infantis isolates from various poultry sources, and human origin should be examined and analyzed. The findings of this survey can help the health researchers better understand the pathogenesis and epidemiology of S. Infantis in Iran. | ||
کلیدواژهها | ||
Pathogenesis؛ Poultry؛ Public health؛ Salmonella Infantis؛ Virulence genes | ||
اصل مقاله | ||
1. Introduction
Salmonella isolation and identification
3. Results
The 6 virulence genes of S. Infantis, ie, sopB, sopE, sitC, pefA, sipA, and spvC, were detected by conventional PCR in 54 isolates and the results have been demonstrated in Table 3. The sopE gene was identified as the most prevalent virulence gene (Figure 2).
The sopE gene was detected in 96.7% of fecal isolates (30/31 isolates), 90% of processing isolates (18/20 isolates), and all of the carcasses’ isolates (3/3 isolates). The sitC virulence gene was the second-highest prevalent virulence gene (Figure 3).
This virulence gene was positive in 93.5% of fecal isolates (29/31 isolates), 85% of processing isolates (17/20 isolates), and all other isolates. The pefA virulence gene was the third most prevalent virulence gene among isolates (Figure 4).
Unlike the previous 2 genes, the highest detection percentage of this gene (52.38%) was in processing isolates (11/20). This gene was detected in 48.3% of fecal isolates (15 isolates out of 31 isolates). But this gene was negative in carcasses’ isolates. The sipA gene was the fourth most prevalent virulence gene (Figure 5).
This gene was detected in 33.3% of carcass isolates, 32.2% of fecal isolates, and 20% of slaughter isolates. It is noteworthy that the sopB gene was detected only in 16.12% of fecal isolates (10/31) (Figure 6).
The spvC virulence gene was not detected in any of the isolates (Table 3).
Almeida, F., Pitondo-Silva, A., Oliveira, M. A., & Falcão, J. P. (2013). Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in Sao Paulo state, Brazil. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 19, 145–151. [DOI:10.1016/j.meegid.2013.07.004] [PMID] Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. Clinical Microbiology and Infection, 22(2), 110-121. [DOI:10.1016/j.cmi.2015.12.004] [PMID] Belachew, T., Mulusew, E., Tolosa, Y., Asefa, Z., Negussie, H., & Sori, T. (2021). Prevalence and antimicrobial-susceptibility profiles of Salmonella in smallhold broiler supply chains in central Ethiopia. Infection and Drug Resistance, 14, 4047-4055. [DOI:10.2147/IDR.S331249] [PMID] [PMCID] Chiu, C. H., Su, L. H., Chu, C. H., Wang, M. H., Yeh, C. M., & Weill, F. X., et al. (2006). Detection of multidrug-resistant Salmonella enterica serovar typhimurium phage types DT102, DT104, and U302 by multiplex PCR. Journal of Clinical Microbiology, 44(7), 2354-2358. [DOI:10.1128/JCM.00171-06] [PMID] [PMCID] Elkenany, R., Elsayed, M. M., Zakaria, A. I., El-Sayed, S. A., & Rizk, M. A. (2019). Antimicrobial resistance profiles and virulence genotyping of Salmonella enterica serovars recovered from broiler chickens and chicken carcasses in Egypt. BMC Veterinary Research, 15(1), 124. [DOI:10.1186/s12917-019-1867-z] [PMID] [PMCID] Dantas, S. T. A., Camargo, C. H., Tiba-Casas, M. R., Vivian, R. C., Pinto, J. P. A. N., & Pantoja, J. C. F., et al. (2020). Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Research International (Ottawa, Ont.), 129, 108835. [DOI:10.1016/j.foodres.2019.108835] [PMID] Elemfareji, O. I., & Thong, K. L. (2013). Comparative virulotyping of Salmonella typhi and Salmonella enteritidis. Indian Journal of Microbiology, 53(4), 410-417. [DOI:10.1007/s12088-013-0407-y] [PMID] [PMCID] Fabrega, A. & Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clinical Microbiology Reviews, 26(2), 308-341. [DOI:10.1128/CMR.00066-12] [PMID] [PMCID] Figueiredo, R., Card, R., Nunes, C., AbuOun, M., Bagnall, M. C., & Nunez, J., et al. (2015). Virulence characterization of Salmonella enterica by a new microarray: Detection and evaluation of the cytolethal distending toxin gene activity in the unusual host S. Typhimurium. Plos One, 10(8), e0135010. [DOI:10.1371/journal.pone.0135010] [PMID] [PMCID] Foley, S. L., Johnson, T. J., Ricke, S. C., Nayak, R., & Danzeisen, J. (2013). Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiology and Molecular Biology Reviews, 77(4), 582-607. [DOI:10.1128/MMBR.00015-13] [PMID] [PMCID] Fuche, F. J., Sow, O., Simon, R. & Tennant, S. M. (2016). Salmonella serogroup C: Current status of vaccines and why they are needed. Clinical and Vaccine Immunology, 23(9), 737-745. [DOI:10.1128/CVI.00243-16] [PMID] [PMCID] García-Soto, S., Abdel-Glil, M. Y., Tomaso, H., Linde, J., & Methner, U. (2020). Emergence of multidrug-resistant Salmonella enterica subspecies enterica serovar Infantis of multilocus sequence type 2283 in German broiler farms. Frontiers in Microbiology, 11, 1741. [DOI:10.3389/fmicb.2020.01741] [PMID] [PMCID] Gole, V. C., Chousalkar, K. K., & Roberts, J. R. (2013). Survey of Enterobacteriaceae contamination of table eggs collected from layer flocks in Australia. International Journal of Food Microbiology, 164(2-3), 161-165. [DOI:10.1016/j.ijfoodmicro.2013.04.002] [PMID] Hendriksen, R. S., Vieira, A. R., Karlsmose, S., Lo Fo Wong, D. M., Jensen, A. B., & Wegener, H. C., et al. (2011). Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathogens and Disease, 8(8), 887-900. [DOI:10.1089/fpd.2010.0787] [PMID] Hindermann, D., Gopinath, G., Chase, H., Negrete, F., Althaus, D., & Zurfluh, K., et al. (2017). Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010-2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Frontiers in Microbiology, 8, 1322. [DOI:10.3389/fmicb.2017.01322] [PMID] [PMCID] Hopkins, K. L., & Threlfall, E. J. (2004). Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. Journal of Medical Microbiology, 53(6), 539-543. [DOI:10.1099/jmm.0.05510-0] [PMID] Huehn, S., La Ragione, R. M., Anjum, M., Saunders, M., Woodward, M. J., & Bunge, C., et al. (2010). Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathogens and Disease, 7(5), 523-535. [DOI:10.1089/fpd.2009.0447] [PMID] Jovčić, B., Novović, K., Filipić, B., Velhner, M., Todorović, D., & Matović, K., et al. (2020). Genomic characteristics of colistin-resistant Salmonella enterica subsp. Enterica serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics (Basel, Switzerland), 9(12), 886. [DOI:10.3390/antibiotics9120886] [PMID] [PMCID] Karasova, D., Havlickova, H., Sisak, F., & Rychlik, I. (2009). Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Veterinary Microbiology, 139(3-4), 304-309. [DOI:10.1016/j.vetmic.2009.06.023] [PMID] Kardos, G., Farkas, T., Antal, M., Nógrády, N. & Kiss, I. (2007). Novel PCR assay for identification of Salmonella enterica serovar Infantis. Letters in Applied Microbiology, 45(4), 421-425. [DOI:10.1111/j.1472-765X.2007.02220.x] [PMID] Krawiec, M., Kuczkowski, M., Kruszewicz, A. G., & Wieliczko, A. (2015). Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Veterinary Research, 11, 15. [DOI:10.1186/s12917-015-0332-x] [PMID] [PMCID] Krzyzanowski, F., Jr, Zappelini, L., Martone-Rocha, S., Dropa, M., Matté, M. H., & Nacache, F., et al. (2014). Quantification and characterization of Salmonella spp. isolates in sewage sludge with potential usage in agriculture. BMC Microbiology, 14, 263. [DOI:10.1186/s12866-014-0263-x] [PMID] [PMCID] Lamas, A., Miranda, J. M., Regal, P., Vázquez, B., Franco, C. M., & Cepeda, A. (2018). A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiological Research, 206, 60-73. [DOI:10.1016/j.micres.2017.09.010] [PMID] Lapierre, L., Cornejo, J., Zavala, S., Galarce, N., Sánchez, F., & Benavides, M. B., et al. (2020). Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: First findings in Chile. Animals, 10(6), 1049. [DOI:10.3390/ani10061049] [PMID] [PMCID] Li, C., Wang, Y., Gao, Y., Li, C., Ma, B., & Wang, H. (2021). Antimicrobial resistance and CRISPR typing among Salmonella isolates from poultry farms in China. Frontiers in Microbiology, 12, 730046. [DOI:10.3389/fmicb.2021.730046] [PMID] [PMCID] Mejía, L., Medina, J. L., Bayas, R., Salazar, C. S., Villavicencio, F., & Zapata, S., et al. (2020). Genomic epidemiology of salmonella infantis in ecuador: From poultry farms to human infections. Frontiers in Veterinary Science, 7, 547891. [DOI:10.3389/fvets.2020.547891] [PMID] [PMCID] Mishra, P. K. K., Gattani, A., & Mahawar, M. (2020). Isolation and identification of protein l-Isoaspartate-O-Methyltransferase (PIMT) interacting proteins in salmonella typhimurium. Current Microbiology, 77(5), 695-701. [DOI:10.1007/s00284-019-01724-6] [PMID] Moest, T. P. & Méresse, S. (2013). Salmonella T3SSs: Successful mission of the secret(ion) agents. Current Opinion in Microbiology, 16(1), 38-44. [DOI:10.1016/j.mib.2012.11.006] [PMID] Peighambari, S. M., Sorahi Nobar, M., & Morshed, R. (2015). Detection of Salmonella entrica serovar Infantis among serogroup C Salmonella isolates from poultry using PCR and determination of drug resistance patterns. Iranian Veterinary Journal, 11, 54-60. [DOI:10.22055/ivj.2015.10112] Perrett, C. A. & Jepson, M. A. (2009). Regulation of Salmonella-induced membrane ruffling by SipA differs in strains lacking other effectors. Cellular Microbiology, 11(3), 475-487. [DOI:10.1111/j.1462-5822.2008.01268.x] [PMID] Quino, W., Caro-Castro, J., Mestanza, O., Hurtado, C. V., Zamudio, M. L., & Gavilan, R. G. (2020). Phylogenetic structure of Salmonella Enteritidis provides context for a foodborne outbreak in Peru. Scientific Reports, 10(1), 22080.[DOI:10.1038/s41598-020-78808-y] [PMID] [PMCID] Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., & Lawhon, S., et al. (2005). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infection and Immunity, 73(1), 146-154. [DOI:10.1128/IAI.73.1.146-154.2005] [PMID] [PMCID] Rincón-Gamboa, S. M., Poutou-Piñales, R. A., & Carrascal-Camacho, A. K. (2021). Antimicrobial resistance of non-typhoid Salmonella in meat and meat products. Foods (Basel, Switzerland), 10(8), 1731. [DOI:10.3390/foods10081731] [PMID] [PMCID] Samiullah, S. (2013). Salmonella Infantis, a potential human pathogen has an association with table eggs. International Journal of Poultry Science, 12(3), 185-191. [DOI:10.3923/ijps.2013.185.191] Karacan Sever, N., & Akan, M. (2019). Molecular analysis of virulence genes of Salmonella Infantis isolated from chickens and turkeys. Microbial Pathogenesis, 126, 199-204. [DOI:10.1016/j.micpath.2018.11.006] [PMID] Sevilla-Navarro, S., Catalá-Gregori, P., García, C., Cortés, V., & Marin, C. (2020). Salmonella Infantis and Salmonella Enteritidis specific bacteriophages isolated form poultry feces as a complementary tool for cleaning and disinfection against Salmonella. Comparative Immunology, Microbiology and Infectious Diseases, 68, 101405. [DOI:10.1016/j.cimid.2019.101405] [PMID] Shah, D. H., Zhou, X., Addwebi, T., Davis, M. A., Orfe, L., & Call, D. R., et al. (2011). Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. Microbiology (Reading, England), 157(5), 1428-1445. [DOI:10.1099/mic.0.044461-0] [PMID] [PMCID] Shi, C., Singh, P., Ranieri, M. L., Wiedmann, M., & Moreno Switt, A. I. (2015). Molecular methods for serovar determination of Salmonella. Critical Reviews in Microbiology, 41(3), 309-325. [DOI:10.3109/1040841X.2013.837862] [PMID] Shome, A., Kumawat, M., Pesingi, P. K., Bhure, S. K. & Mahawar, M. (2020). Isolation and identification of periplasmic proteins in Salmonella Typhimurium. International Journal of Current Microbiology and Applied Sciences, 9(6), 1923-193. [DOI:10.20546/ijcmas.2020.906.238] Skyberg, J. A., Logue, C. M. & Nolan, L. K. (2006). Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Diseases, 50(1), 77-81. [DOI:10.1637/7417.1] [PMID] Taheri, H., Peighambari, S. M., Shahcheraghi, F., & Solgi, H. (2018). Pulse-field gel electrophoresis (PFGE) of Salmonella serovar Infantis isolates from poultry. Iranian Journal of Veterinary Medicine, 12(3), 187-197. [DOI:10.22059/IJVM.2018.236580.1004821] Tarabees, R., Elsayed, M. S. A., Shawish, R., Basiouni, S., & Shehata, A. A. (2017). Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. Journal of Infection in Developing Countries, 11(4), 314-319. [DOI:10.3855/jidc.8043] [PMID] European Food Safety Authority, & European Centre for Disease Prevention and Control. (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal. European Food Safety Authority, 15(12), e05077. [DOI:10.2903/j.efsa.2017.5077] [PMID] Thorns, C. J. (2000). Bacterial food-borne zoonoses. Revue Scientifique et Technique (International Office of Epizootics), 19(1), 226-239. [DOI:10.20506/rst.19.1.1219] [PMID] Wajid, M., Saleemi, M. K., Sarwar, Y., & Ali, A. (2019). Detection and characterization of multidrug-resistant Salmonella enterica serovar Infantis as an emerging threat in poultry farms of Faisalabad, Pakistan. Journal of Applied Microbiology, 127(1), 248-261. [DOI:10.1111/jam.14282] [PMID] Wessels, K., Rip, D., & Gouws, P. (2021). Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods (Basel, Switzerland), 10(8), 1742. [DOI:10.3390/foods10081742] [PMID] [PMCID] Wilharm, G. & Heider, C. (2014). Interrelationship between type three secretion system and metabolism in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology, 4, 150. [DOI:10.3389/fcimb.2014.00150] [PMID] [PMCID] Yu, X., Zhu, H., Bo, Y., Li, Y., Zhang, Y., & Liu, Y., et al.(2021). Prevalence and antimicrobial resistance of Salmonella enterica subspecies enterica serovar Enteritidis isolated from broiler chickens in Shandong province, China, 2013-2018. Poultry Science, 100(2), 1016-1023. [DOI:10.1016/j.psj.2020.09.079] [PMID] [PMCID] Zhou, D., Hardt, W. D., & Galán, J. E. (1999). Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infection and Immunity, 67(4), 1974-1981. [DOI:10.1128/IAI.67.4.1974-1981.1999] [PMID] [PMCID] Zou, W., Al-Khaldi, S. F., Branham, W. S., Han, T., Fuscoe, J. C., & Han, J., et al. (2011). Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. Journal of Infection in Developing Countries, 5(2), 94-105. [DOI:10.3855/jidc.1396] [PMID] | ||
مراجع | ||
Almeida, F., Pitondo-Silva, A., Oliveira, M. A., & Falcão, J. P. (2013). Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in Sao Paulo state, Brazil. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 19, 145–151. [DOI:10.1016/j.meegid.2013.07.004] [PMID]
Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: The role of poultry meat. Clinical Microbiology and Infection, 22(2), 110-121. [DOI:10.1016/j.cmi.2015.12.004] [PMID]
Belachew, T., Mulusew, E., Tolosa, Y., Asefa, Z., Negussie, H., & Sori, T. (2021). Prevalence and antimicrobial-susceptibility profiles of Salmonella in smallhold broiler supply chains in central Ethiopia. Infection and Drug Resistance, 14, 4047-4055. [DOI:10.2147/IDR.S331249] [PMID] [PMCID]
Chiu, C. H., Su, L. H., Chu, C. H., Wang, M. H., Yeh, C. M., & Weill, F. X., et al. (2006). Detection of multidrug-resistant Salmonella enterica serovar typhimurium phage types DT102, DT104, and U302 by multiplex PCR. Journal of Clinical Microbiology, 44(7), 2354-2358. [DOI:10.1128/JCM.00171-06] [PMID] [PMCID]
Elkenany, R., Elsayed, M. M., Zakaria, A. I., El-Sayed, S. A., & Rizk, M. A. (2019). Antimicrobial resistance profiles and virulence genotyping of Salmonella enterica serovars recovered from broiler chickens and chicken carcasses in Egypt. BMC Veterinary Research, 15(1), 124. [DOI:10.1186/s12917-019-1867-z] [PMID] [PMCID]
Dantas, S. T. A., Camargo, C. H., Tiba-Casas, M. R., Vivian, R. C., Pinto, J. P. A. N., & Pantoja, J. C. F., et al. (2020). Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Research International (Ottawa, Ont.), 129, 108835. [DOI:10.1016/j.foodres.2019.108835] [PMID]
Elemfareji, O. I., & Thong, K. L. (2013). Comparative virulotyping of Salmonella typhi and Salmonella enteritidis. Indian Journal of Microbiology, 53(4), 410-417. [DOI:10.1007/s12088-013-0407-y] [PMID] [PMCID]
Fabrega, A. & Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clinical Microbiology Reviews, 26(2), 308-341. [DOI:10.1128/CMR.00066-12] [PMID] [PMCID]
Figueiredo, R., Card, R., Nunes, C., AbuOun, M., Bagnall, M. C., & Nunez, J., et al. (2015). Virulence characterization of Salmonella enterica by a new microarray: Detection and evaluation of the cytolethal distending toxin gene activity in the unusual host S. Typhimurium. Plos One, 10(8), e0135010. [DOI:10.1371/journal.pone.0135010] [PMID] [PMCID]
Foley, S. L., Johnson, T. J., Ricke, S. C., Nayak, R., & Danzeisen, J. (2013). Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiology and Molecular Biology Reviews, 77(4), 582-607. [DOI:10.1128/MMBR.00015-13] [PMID] [PMCID]
Fuche, F. J., Sow, O., Simon, R. & Tennant, S. M. (2016). Salmonella serogroup C: Current status of vaccines and why they are needed. Clinical and Vaccine Immunology, 23(9), 737-745. [DOI:10.1128/CVI.00243-16] [PMID] [PMCID]
García-Soto, S., Abdel-Glil, M. Y., Tomaso, H., Linde, J., & Methner, U. (2020). Emergence of multidrug-resistant Salmonella enterica subspecies enterica serovar Infantis of multilocus sequence type 2283 in German broiler farms. Frontiers in Microbiology, 11, 1741. [DOI:10.3389/fmicb.2020.01741] [PMID] [PMCID]
Gole, V. C., Chousalkar, K. K., & Roberts, J. R. (2013). Survey of Enterobacteriaceae contamination of table eggs collected from layer flocks in Australia. International Journal of Food Microbiology, 164(2-3), 161-165. [DOI:10.1016/j.ijfoodmicro.2013.04.002] [PMID]
Hendriksen, R. S., Vieira, A. R., Karlsmose, S., Lo Fo Wong, D. M., Jensen, A. B., & Wegener, H. C., et al. (2011). Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathogens and Disease, 8(8), 887-900. [DOI:10.1089/fpd.2010.0787] [PMID]
Hindermann, D., Gopinath, G., Chase, H., Negrete, F., Althaus, D., & Zurfluh, K., et al. (2017). Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010-2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Frontiers in Microbiology, 8, 1322. [DOI:10.3389/fmicb.2017.01322] [PMID] [PMCID]
Hopkins, K. L., & Threlfall, E. J. (2004). Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. Journal of Medical Microbiology, 53(6), 539-543. [DOI:10.1099/jmm.0.05510-0] [PMID]
Huehn, S., La Ragione, R. M., Anjum, M., Saunders, M., Woodward, M. J., & Bunge, C., et al. (2010). Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathogens and Disease, 7(5), 523-535. [DOI:10.1089/fpd.2009.0447] [PMID]
Jovčić, B., Novović, K., Filipić, B., Velhner, M., Todorović, D., & Matović, K., et al. (2020). Genomic characteristics of colistin-resistant Salmonella enterica subsp. Enterica serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics (Basel, Switzerland), 9(12), 886. [DOI:10.3390/antibiotics9120886] [PMID] [PMCID]
Karasova, D., Havlickova, H., Sisak, F., & Rychlik, I. (2009). Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Veterinary Microbiology, 139(3-4), 304-309. [DOI:10.1016/j.vetmic.2009.06.023] [PMID]
Kardos, G., Farkas, T., Antal, M., Nógrády, N. & Kiss, I. (2007). Novel PCR assay for identification of Salmonella enterica serovar Infantis. Letters in Applied Microbiology, 45(4), 421-425. [DOI:10.1111/j.1472-765X.2007.02220.x] [PMID]
Krawiec, M., Kuczkowski, M., Kruszewicz, A. G., & Wieliczko, A. (2015). Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Veterinary Research, 11, 15. [DOI:10.1186/s12917-015-0332-x] [PMID] [PMCID]
Krzyzanowski, F., Jr, Zappelini, L., Martone-Rocha, S., Dropa, M., Matté, M. H., & Nacache, F., et al. (2014). Quantification and characterization of Salmonella spp. isolates in sewage sludge with potential usage in agriculture. BMC Microbiology, 14, 263. [DOI:10.1186/s12866-014-0263-x] [PMID] [PMCID]
Lamas, A., Miranda, J. M., Regal, P., Vázquez, B., Franco, C. M., & Cepeda, A. (2018). A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiological Research, 206, 60-73. [DOI:10.1016/j.micres.2017.09.010] [PMID]
Lapierre, L., Cornejo, J., Zavala, S., Galarce, N., Sánchez, F., & Benavides, M. B., et al. (2020). Phenotypic and genotypic characterization of virulence factors and susceptibility to antibiotics in Salmonella Infantis strains isolated from chicken meat: First findings in Chile. Animals, 10(6), 1049. [DOI:10.3390/ani10061049] [PMID] [PMCID]
Li, C., Wang, Y., Gao, Y., Li, C., Ma, B., & Wang, H. (2021). Antimicrobial resistance and CRISPR typing among Salmonella isolates from poultry farms in China. Frontiers in Microbiology, 12, 730046. [DOI:10.3389/fmicb.2021.730046] [PMID] [PMCID]
Mejía, L., Medina, J. L., Bayas, R., Salazar, C. S., Villavicencio, F., & Zapata, S., et al. (2020). Genomic epidemiology of salmonella infantis in ecuador: From poultry farms to human infections. Frontiers in Veterinary Science, 7, 547891. [DOI:10.3389/fvets.2020.547891] [PMID] [PMCID]
Mishra, P. K. K., Gattani, A., & Mahawar, M. (2020). Isolation and identification of protein l-Isoaspartate-O-Methyltransferase (PIMT) interacting proteins in salmonella typhimurium. Current Microbiology, 77(5), 695-701. [DOI:10.1007/s00284-019-01724-6] [PMID]
Moest, T. P. & Méresse, S. (2013). Salmonella T3SSs: Successful mission of the secret(ion) agents. Current Opinion in Microbiology, 16(1), 38-44. [DOI:10.1016/j.mib.2012.11.006] [PMID]
Peighambari, S. M., Sorahi Nobar, M., & Morshed, R. (2015). Detection of Salmonella entrica serovar Infantis among serogroup C Salmonella isolates from poultry using PCR and determination of drug resistance patterns. Iranian Veterinary Journal, 11, 54-60. [DOI:10.22055/ivj.2015.10112]
Perrett, C. A. & Jepson, M. A. (2009). Regulation of Salmonella-induced membrane ruffling by SipA differs in strains lacking other effectors. Cellular Microbiology, 11(3), 475-487. [DOI:10.1111/j.1462-5822.2008.01268.x] [PMID]
Quino, W., Caro-Castro, J., Mestanza, O., Hurtado, C. V., Zamudio, M. L., & Gavilan, R. G. (2020). Phylogenetic structure of Salmonella Enteritidis provides context for a foodborne outbreak in Peru. Scientific Reports, 10(1), 22080.[DOI:10.1038/s41598-020-78808-y] [PMID] [PMCID]
Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., & Lawhon, S., et al. (2005). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infection and Immunity, 73(1), 146-154. [DOI:10.1128/IAI.73.1.146-154.2005] [PMID] [PMCID]
Rincón-Gamboa, S. M., Poutou-Piñales, R. A., & Carrascal-Camacho, A. K. (2021). Antimicrobial resistance of non-typhoid Salmonella in meat and meat products. Foods (Basel, Switzerland), 10(8), 1731. [DOI:10.3390/foods10081731] [PMID] [PMCID]
Samiullah, S. (2013). Salmonella Infantis, a potential human pathogen has an association with table eggs. International Journal of Poultry Science, 12(3), 185-191. [DOI:10.3923/ijps.2013.185.191]
Karacan Sever, N., & Akan, M. (2019). Molecular analysis of virulence genes of Salmonella Infantis isolated from chickens and turkeys. Microbial Pathogenesis, 126, 199-204. [DOI:10.1016/j.micpath.2018.11.006] [PMID]
Sevilla-Navarro, S., Catalá-Gregori, P., García, C., Cortés, V., & Marin, C. (2020). Salmonella Infantis and Salmonella Enteritidis specific bacteriophages isolated form poultry feces as a complementary tool for cleaning and disinfection against Salmonella. Comparative Immunology, Microbiology and Infectious Diseases, 68, 101405. [DOI:10.1016/j.cimid.2019.101405] [PMID]
Shah, D. H., Zhou, X., Addwebi, T., Davis, M. A., Orfe, L., & Call, D. R., et al. (2011). Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. Microbiology (Reading, England), 157(5), 1428-1445. [DOI:10.1099/mic.0.044461-0] [PMID] [PMCID]
Shi, C., Singh, P., Ranieri, M. L., Wiedmann, M., & Moreno Switt, A. I. (2015). Molecular methods for serovar determination of Salmonella. Critical Reviews in Microbiology, 41(3), 309-325. [DOI:10.3109/1040841X.2013.837862] [PMID]
Shome, A., Kumawat, M., Pesingi, P. K., Bhure, S. K. & Mahawar, M. (2020). Isolation and identification of periplasmic proteins in Salmonella Typhimurium. International Journal of Current Microbiology and Applied Sciences, 9(6), 1923-193. [DOI:10.20546/ijcmas.2020.906.238]
Skyberg, J. A., Logue, C. M. & Nolan, L. K. (2006). Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Diseases, 50(1), 77-81. [DOI:10.1637/7417.1] [PMID]
Taheri, H., Peighambari, S. M., Shahcheraghi, F., & Solgi, H. (2018). Pulse-field gel electrophoresis (PFGE) of Salmonella serovar Infantis isolates from poultry. Iranian Journal of Veterinary Medicine, 12(3), 187-197. [DOI:10.22059/IJVM.2018.236580.1004821]
Tarabees, R., Elsayed, M. S. A., Shawish, R., Basiouni, S., & Shehata, A. A. (2017). Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. Journal of Infection in Developing Countries, 11(4), 314-319. [DOI:10.3855/jidc.8043] [PMID]
European Food Safety Authority, & European Centre for Disease Prevention and Control. (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal. European Food Safety Authority, 15(12), e05077. [DOI:10.2903/j.efsa.2017.5077] [PMID]
Thorns, C. J. (2000). Bacterial food-borne zoonoses. Revue Scientifique et Technique (International Office of Epizootics), 19(1), 226-239. [DOI:10.20506/rst.19.1.1219] [PMID]
Wajid, M., Saleemi, M. K., Sarwar, Y., & Ali, A. (2019). Detection and characterization of multidrug-resistant Salmonella enterica serovar Infantis as an emerging threat in poultry farms of Faisalabad, Pakistan. Journal of Applied Microbiology, 127(1), 248-261. [DOI:10.1111/jam.14282] [PMID]
Wessels, K., Rip, D., & Gouws, P. (2021). Salmonella in chicken meat: Consumption, outbreaks, characteristics, current control methods and the potential of bacteriophage use. Foods (Basel, Switzerland), 10(8), 1742. [DOI:10.3390/foods10081742] [PMID] [PMCID]
Wilharm, G. & Heider, C. (2014). Interrelationship between type three secretion system and metabolism in pathogenic bacteria. Frontiers in Cellular and Infection Microbiology, 4, 150. [DOI:10.3389/fcimb.2014.00150] [PMID] [PMCID]
Yu, X., Zhu, H., Bo, Y., Li, Y., Zhang, Y., & Liu, Y., et al.(2021). Prevalence and antimicrobial resistance of Salmonella enterica subspecies enterica serovar Enteritidis isolated from broiler chickens in Shandong province, China, 2013-2018. Poultry Science, 100(2), 1016-1023. [DOI:10.1016/j.psj.2020.09.079] [PMID] [PMCID]
Zhou, D., Hardt, W. D., & Galán, J. E. (1999). Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infection and Immunity, 67(4), 1974-1981. [DOI:10.1128/IAI.67.4.1974-1981.1999] [PMID] [PMCID]
Zou, W., Al-Khaldi, S. F., Branham, W. S., Han, T., Fuscoe, J. C., & Han, J., et al. (2011). Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. Journal of Infection in Developing Countries, 5(2), 94-105. [DOI:10.3855/jidc.1396] [PMID] | ||
آمار تعداد مشاهده مقاله: 364 تعداد دریافت فایل اصل مقاله: 584 |