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ABSTRACT: The transport of dissolved contaminants in groundwater is usually described by the advection
dispersion equation with reaction. Several numerical methods for solving the one-dimensional are available
including finite difference methods, finite volume methods, and finite element methods. Stringent conditions,
such as small Peclet (Pe) and Courant (Cr) numbers, must be satisfied to ensure the accuracy and stability of
the numerical solutions. The practical finite analytic (PFA) method was applied to the solution of two solute
transport problems: 1- One-dimensional advection–dispersion equation with reaction under advection-
dominated conditions, and 2- One-dimensional pure advection equation with reaction. A triangular explicit
PFA (EPFA) spatial-temporal computational molecule was developed. The EPFA solutions were compared
with solutions from the quadratic upwind differencing (QUICK) scheme. For both cases, the EPFA solution
gives accurate results as long as the Courant (Cr) was close to one. Stability analysis shows that the EPFA
molecule is always stable for high Pe number.

Key words: Advection-dominated transport, Explicit practical finite analytic methods (EPFA), QUICK scheme,
                    Refined QUICK solution (RQS)

INTRODUCTION
The transport of dissolved contaminants in porous

media is usually described by the advection dispersion
equation with and without reaction (ADE and ADER).
Several numerical methods for solving the one-
dimensional ADER are available including finite
difference methods (FD), finite volume methods (FV),
and finite element methods (FE). Oscillations,
dissipations and numerical dispersion are the main
problems correspond to numerical methods (Ataie et
al., 1996, Ataie et al., 1999, Batu, 2006, Dehghan, 2004,
Morton, 1996). More importantly, many of the numerical
schemes, including explicit and implicit approaches,
used in these methods fail to produce monotonic
solutions when there is a sharp discontinuity in the
physical solution (Leer, 1973, Leonard, 1979, Versteeg
and Malalasekera, 2007). Accurate explicit methods such
as Lax-Wendroff (LW) and McCormack method, which
are based on two predictor-corrector steps (Anderson
et al., 1984, Thommen, 1966), and accurate implicit
methods such as implicit Petrov Galerkin and implicit
Taylor Galerkin usually suffer from oscillations and
numerical dispersion, particularly at large Pe and need

correction approaches (Finlayson, 1992). For example
Li and Jackson (2007) used correction methods for
two explicit and implicit FD schemes including the
McCormack and Salvey method to solve advection-
dominated problems in surface water. Arbogast and
Wheeler (1995) proposed the characteristic mixed FE
method (CMFE) to improve the accuracy of the FE
method. This method is theoretically based on local
mass conservation, but the ability to ensure mass
conservation in numerical solution is uncertain.
Douglas and Russell (1982) combined the FE method
with the method of characteristics (MOC) to decrease
truncation error, but this method is difficult to apply
for flux boundary conditions (BC). Ataei et al., (1996,
1999) proposed a correction scheme to remove
numerical dispersion in ADER, but did not apply this
method for advection-dominated problems. In most
flow simulations, the main source of problems in
simulating the ADER is the advection term and using
high resolutions may not be a good remedy for this
problem. Discretization of advection terms in the
ADER has extensively documented (Asensio et al.,
2007, Finlayson, 1992, Wang et al., 1999, Henao et al.,
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2010, Leonard, 1979). Proper treatment of the advection
terms becomes more important in advection-dominated
flows. However, excessive computational time and
limited accuracy due to overshoot or numerical
dissipation are still the most important disadvantages
of the proposed solutions for advection-dominated
problems (Wang et al., 1999). Stringent conditions,
such as small Peclet (Pe) and Courant (Cr) numbers,
must be satisfied to ensure the accuracy and stability
of the numerical solutions. A novel approach called
the practical finite analytic (PFA) method, for solving
partial differential equations  was proposed by Civan
(1995, 2008). In this method, an analytical solution
based on power series is developed to solve ADER for
nodes of an arbitrary molecule (in this study a triangular
molecule was selected). These analytical solutions are
functions of spatial space, x, time, t, velocity, Vx,
dispersion, Dx, and reaction term, K. These analytical
solutions construct a set of algebraic equations. If the
determinant of the matrix of coefficients corresponding
to the algebraic equations is set to zero, the
relationship between the nodes of a computational
molecule can be determined. These relationships give
the coefficients used for the all grid nodes unless the
spatial discretization or time step are not uniform. Since
the PFA method does not rely on Taylor series
approximations of the derivatives, it does not suffer
from numerical dispersion and spurious oscillations.
In addition, this method applies a universal procedure
regardless of the types of boundary conditions
involved in the differential equations and also without
sacrificing the accuracy in the implementation of the
boundary conditions (Civan, 2008). However, the PFA
method has chiefly been applied to heat conduction
problems (Fukuyo, 2005, Fukuyo, 2004) and simulation
of the ADER by the PFA method has not been fully
investigated. The main objective of this study is to
extend the PFA method that was previously developed
by Civan (1995) to simulation of the ADER. This is the
first time that the application of this method has been
evaluated for advection-dominated problems with
inclusion of reaction.

In this study advection-dominated transport with
reaction in porous media with several reaction terms is

considered. A computational PFA molecule, triangular
explicit PFA (EPFA), is considered. The von Neumann
stability analysis is used to determine the stable range
of Courant number, Cr, dispersion number, Ds, and sink/
source number, Sr. Finally, the results of the triangular
explicit molecule were compared with a QUICK scheme
with the same discretizations and with a refined QUICK
solution (RQS) obtained using the high resolution
QUICK scheme with very fine time and space
discretizations.

MATERIALS & METHODS
The one dimensional ADER is:
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where C is the concentration, xV  is the velocity in
x direction, Dx is the dispersion coefficient, and K is
the first-order reaction rate coefficient. Note that  and
Dx are considered to be positive and constant values
for this study. The general solution of equation (1) can
be represented by a time-space power series as:
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where pqa , the recurrence relationship and UB is the
upper bound of the series and usually the greater the
UB value, the more accurate is the result. Applying
equation (2) to equation (1), a recurrence relationship
can be derived:
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Substituting equation (3) into equation (2) results in:
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where mb  and ),( txBm  denote the new unknown
coefficients and the basis functions, respectively. As
mentioned by Civan (1995, 2008), there is no need to
calculate the unknown coefficients. In this study, the
PFA molecule has four nodes and therefore requires
three basis functions (BFs) (Table 1). The order of

Table 1. The respective basis function for the triangular EPFA
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accuracy for this stencil (the triangular molecule) would
be zero to third order in time and space.

Fig. 1 demonstrates the general computational
molecule used in this paper. The EPFA computational
molecule is based on explicit technique. The triangular
EPFA uses four nodes including 3 and 6 to 8. Ai
represents the coefficients correspond to each node.
For this molecule, A1, A2, A4 and A5 are equal to zero.

Applying equation (4) with the aforementioned
basis functions to the triangular four point molecule
produces a system of linear algebraic equations for
interior nodes, i = 1: Nx-1, which leads to the final
expression as below:
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where Nx is the number of discretization in x
domain, n is the time index and i is the space index.
Since the PFA molecules are being tested for advection-
dominated problems, the results are compared with the
QUICK method which is a robust scheme based on a
FD approach. All nodes in Fig. 1 used for the QUICK
scheme. The QUICK scheme was obtained as follows
(Leonard, 1979):
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The temporal weighting for the implicit QUICK scheme
was equal to 0.5. For the QUICK molecule, the linear
algebraic equation used for i = 2: Nx-1 would be:
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In the QUICK scheme, in order to avoid using artificial
BC, the following approximation was used for i = 1,
which is identical to the central difference method:
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The stencil used for the first node, i = 1, includes
nodes 2 to 4 and 6 to 8. The values of these coefficients
are shown in Tables 2-3 in terms of dimensionless
variables including Courant number (Cr), Dispersion
number (Ds), and sink and source number (Sr) defined
as the following:
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When the value of UB in equation (4) decreases,
the number of terms in the coefficients will also
decrease but less complex basis functions will result
in less complex coefficients with lower order of
accuracy. Gaussian elimination technique for matrix
inversion was used to solve the final form of Rx = b
where R is the matrix of coefficients, b is representative
of BCs and concentration of previous time step, and x
is the concentration vector.
The one dimensional AER is:
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In this case, the pure advection equation with
reaction was considered. When the ratio of advection
to dispersion numbers is very large, the behaviour of
ADER equation changes from a parabolic equation to
a wave equation which needs a special attention
(advection-dominated problems in extreme cases, i.e.
Dx=0). Therefore, it is reasonable to check the results
of the triangular molecule for these types of equations
as well. The basis functions and relevant coefficients
of the triangular EPFA in this case are similar to the
section 2.1 except the dispersion number is equal to
zero. This also holds for the respective coefficients of
the QUICK scheme. The stability criteria for the PFA
method can be determined using von Neumann’s
method (Duffy, 2006). Although, this method is a local
stability type, it gives helpful information about the

Fig. 1. The general computational molecule
including triangular EPFA and QUICK scheme
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stability criteria. In von Neumann’s method a general one-
step scheme for an initial value problem in vector form is:

nn BGB


1    0n                                                          (13)

where G is an amplification factor and B is a
function. In order to reach a stable condition, one must
satisfy the inequality:

nn BB
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or:
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The amplification factor for the stencils is:
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where x  is the phase angle. For all molecules G
can be calculated based on the relevant coefficient for

that molecule. Equation (14) can be solved for G  as a
function of x , given a constant Cr, Ds and Sr
numbers. This equation is stable if the calculated curve

is confined in the unit circle. This study focuses on
advection-dominated problems which is characterized
by high Pe number, i.e. Pe>10. Pe is defined by the
ratio of Cr to Ds number:
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The results of the stability analysis for 10 Cr ,
10  Ds  and 5.20  Sr  for the triangular EPFAA are

demonstrated in Fig. 2. The stability analysis shows
that the triangular EPFA is always stable for high Pe
numbers. However, when the Ds increases, i.e. the
transport mechanism is mostly due to dispersion than
advection, the yielded results may become unstable.
As can be seen by Fig 2, to find stable area, all three
curves, Cr-Sr, Cr-Ds and Ds-Sr should be considered
simultaneously.

Although Fig 2 demonstrates the stable area for
triangular EPFA, for high Pe numbers, this molecule
produce an undershoot/overshoot after the front for
Cr<1 and has no oscillations for 1Cr  or Cr = 1.

Table 2. The coefficients used for the triangular EPFA molecule

 

Table 3. The coefficients used for the implicit QUICK scheme
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 Fig. 2. The stable region (blue area) for the triangular EPFA molecule for 10  Cr , 10  Ds  and

5.20  Sr

Table 4. Domain and physical parameters used in case 1

Domain length )(5000 mX   

Velocity in x direction )/(5.1 dmVx   

Dispersion coefficient  )/(01.0 2 dmD x   

Initial concentration  )/(0 lmgC IC   

Concentration at the left boundary  )/(10 lmgC   

Final time  )(100 dT  

 

RESULTS & DISCUSSION
Since the exact solutions are not accurate for

problems at high Pe numbers, the performance of the
triangular EPFA molecule for high Pe numbers was
compared with the RQS.

Numerical results were compared with the RQS
obtained by the high resolution QUICK scheme for
the following initial and boundary conditions:
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where CIC denotes initial concentration (IC).
The parameters chosen for this example are listed
in Table 4.

Table 5 demonstrates the various space and time
discretizations, i.e. Nx and Nt, used to investigate the
behaviour of the triangular EPFA. These are the
minimum Nx and Nt that triangular EPFA molecule
requires to yield accurate results with no oscillations.
In addition, different reaction terms K was chosen to
test the PFA method. To compare the results of the
triangular EPFA with the QUICK scheme, the same value
of Nx and Nt are used for both numerical methods.
However, obtained results (Figs 3 and 4) show that the
Nx and Nt should be increased. Therefore, to test the
triangular molecule for higher Pe numbers, it was

Table 5. Solution of ADER, space and time discretizations for different numerical methods

K Stencil Nx Nt Pe Cr Sr 

0.001 
EPFA and QUICK methods 600 183 125 0.99 4105.5   

RQS 2500 1800 30 0.42 5105.5   

0.01 
EPFA and QUICK methods 600 183 125 0.99 3105.5   

RQS 2000 1800 37.50 0.34 4105.5   

0.1 EPFA and QUICK methods 50 15 1500 1.07 0.71 
RQS 200 50 375 1.22 0.21 
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Fig. 3. Case 1; solution of ADER, the triangular EPFA result compared to the QUICK scheme and RQS for
different values of K

 
(3a) 

 
(3b) 

 
(3c) 

 

compared with the RQS which is based on high
resolution QUICK scheme. Since the Pe number in this
study is only changing due to a change in Δx (velocity
and dispersion do not change), the triangular molecule
can be compared with the RQS.

To compare the numerical methods accurately, the
results are shown only after and before the shock front.
As can be seen by Figs 3a and 3b, the triangular EPFA
does not have oscillations while the QUICK scheme
yields unstable results for the corresponding Pe
number. According to Figs 3a and 3b, there is a phase
mismatch between the triangular EPFA and RQS which
can be removed by selecting finer mesh (e.g. the Nx =
1200, Nt = 367 and Cr = 0.99 which is half of the Nx, and
one sixth of Nt corresponding to RQS). The reaction
term K stabilizes the solution and as this term increases,
the QUICK solution yields results with fewer
oscillations (Compare Figs 3a with 3b and Figs 3b with

3c). There is not much difference between the results
of the numerical methods for large value of K (Fig 3c).
However, like the solutions of ADER with K = 0.001,
0.01, the triangular EPFA yields results with smaller
values of Nx and Nt.

The domain and physical parameters and
numerical parameters used in this case are listed in
Tables 4 and 6 respectively. The BCs and IC are the
same as the section 3.1 (equations 22-24). As mentioned
earlier, the importance of this section is to check the
behaviour of the triangular EPFA under extreme cases,
i.e. pure advection cases. The results are compared
with different values of reaction terms. As expected,
the front of the respective curves (Figs 4a and 4b) in
this case is sharper because of the absence of the
dispersion. Like section 3.1, the results of triangular
EPFA are obtained with smaller Nx and Nt compared to
the RQS. However, for larger values of K, the results of
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Table 6. Solution of AER, space and time discretizations for different numerical methods

K Stencil Nx Nt Cr Sr 

0.001 
EPFA and QUICK methods 600 181 1 4106.5   

RQS 7500 3000 0.75 31033.3   

0.01 
EPFA and QUICK methods 600 181 1 3106.5   

RQS 7500 3000 0.75 41033.3   

0.1 EPFA and QUICK methods 36 11 1.08 1 
RQS 130 35 1.14 0.29 

 

Fig. 4. Case 2; solution of AER, the triangular EPFA result compared to the QUICK scheme and RQS
for different values of K

 

(4a) 

 

(4b) 

 

(4c) 
 

all numerical schemes are roughly similar. It has been
determined that for larger values of K such as 0.1 and
greater, the results of other numerical schemes like
Crank-Nicolson centred in dispersion and upwind in
advection terms is also accurate for high Pe numbers.
This phenomenon corresponds to the effect of reaction
term on AER or ADER solutions. Therefore, there is
not much difference between the results of triangular
EPFA, QUICK scheme and RQS for K = 0.1 (see Fig.4c).

However, as can be seen by Fig. 4c, the results of the
triangular EPFA and RQS are more similar. The
oscillations of the QUICK scheme decreases when
the reaction term increases (compare Figs 6 and 7).
In addition, according to Figs 4a and 4b, the RQS
never reach stable results even in large discretizations
given in Table 6. It has been determined that the
triangular molecule yields results of free oscillations
for smaller discretizations (e.g. Nx = 400 and Nt
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=121 and Nx = 200 and Nt = 61 with Cr = 1). Like
previous section, there is a phase mismatch between
the results of triangular EPFA and RQS which can be
eliminated for higher number of discretizations.  In
both cases, the results obtained by the triangular EPFA
are free of oscillations when 1Cr  (See Tables 5
and 6). In addition, the difference between the PFA
solution and RQS can be resolved by choosing the
following ways: 1- selecting finer mesh; 2- selecting
more accurate basis functions, i.e. the order of
accuracy with respect to x and t will increase; 3-
selecting molecules with more nodes such as a
rectangular molecule (nodes 2-4 and 6-8) or a
trapezoidal molecule (nodes 2-3 and 6-8). The
aforementioned cases show that the triangular EPFA
is able to capture a fully sharp profile with no smearing.
It is noteworthy that this molecule uses an explicit
stencil and the numbers of time and space steps used
by this molecule are much smaller than the implicit RQS.

CONCLUSIONS
This study is focused on the solution of advection-

dominated transport with inclusion of reaction
phenomenon in porous media. The explicit PFA method
based on a power series, and the QUICK scheme, which
is a robust numerical method for solution of ADER at
high Pe numbers, were used to solve a problem with
dirichlet BCs. The results show that the triangular EPFA
molecule has a good behaviour for different values of
reaction terms at high Pe numbers as long as Cr number
is almost equal to one, i.e. corresponding results are
free of overshoots or undershoots. This is significant
because of the simplicity in explicit approaches and
the accuracy with coarse time and space discretization.
In addition, stability analysis shows that the triangular
EPFA molecule is always stable for Cr numbers less
than unity for high Pe numbers, i.e. small values of Ds.
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