تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,021 |
تعداد مشاهده مقاله | 125,498,052 |
تعداد دریافت فایل اصل مقاله | 98,759,876 |
Effects of Spirulina platensis on Iron Oxide Nanoparticles Induced-oxidative Stress and Liver Damage in Grey Mullet (Mugil cephalus) | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 8، دوره 17، شماره 1، فروردین 2023، صفحه 75-86 اصل مقاله (1.78 M) | ||
نوع مقاله: Anatomy- Histology | ||
شناسه دیجیتال (DOI): 10.22059/ijvm.17.1.1005284 | ||
نویسندگان | ||
Omid Koohkan1؛ Hassan Morovvati* 1؛ Ali Taheri Mirghaed2 | ||
1Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Aquatic Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Background: Nanoparticles are increasingly exposed to ecosystems and people due to their large-scale manufacture and usage. The use of nanomaterials has increased their discharge into the aquatic environment. Objectives: This research evaluated the protective effect of Spirulina platensis against liver damage and oxidative stress in grey mullet (Mugil cephalus) after exposure to Iron oxide nanoparticles. Methods: Juvenile grey mullets were randomly classified into 12 equal groups: Group 0, 96h control group; Group 1, 60 days control group; Group 2, iron oxide nanoparticles (IONPs) at 15mg/kg for 96h; Group 3, IONPs at 15mg/kg for 60 days; Group 4, S. platensis at 300mg/kg for 96h; Group 5, S. platensis at 300mg/kg for 60 days, Group 6, IONPs at 15mg/kg+S. platensis at 300mg/kg for 96h; Group 7, IONPs at 15mg/kg+S. platensis at 300mg/kg for 60 days; Group 8, IONPs at 15mg/kg (for 2 weeks) followed by S. platensis at 300mg/kg for 96h; Group 9, IONPs at 15mg/kg (for 2 weeks) followed by S. platensis at 300mg/kg for 60 days; Group 10, S. platensis at 300mg/kg (for 2 weeks) followed by IONPs at 15mg/kg for 96h; Group 11, S. platensis at 300mg/kg (for 2 weeks) followed by IONPs at 15mg/kg for 60 days. At the end of the experiment, samples of the liver were extracted and subjected to analyses to measure reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) Results: MDA levels in the liver were shown to have dramatically risen in the current investigation, but antioxidant SOD and GSH activity in the IONPs-treated group had significantly reduced compared to the controls. When compared to fish solely treated with IONPs, S. platensis treatment dramatically reduced liver MDA and CAT activity and raised SOD and GSH. Conclusion: All prior metrics significantly improved when IONPs-induced liver damage in fish was prevented by spirulina. By scavenging free radicals, reducing inflammation, and restoring endogenous antioxidant defense systems, S. platensis therapy has a protective effect in the liver of grey mullet against damage and oxidative stress in the IONPs. | ||
کلیدواژهها | ||
Antioxidant؛ Iron oxide nanoparticles؛ Liver؛ Mugil cephalus؛ Spirulina platensis | ||
اصل مقاله | ||
1. Introduction Determination of stress oxidative and antioxidant in liver
Histopathological changes
Liver sections of animals treated with IONPs for 3 days, revealed a rise of the melanomacrophage centers and hyperemia (Figure 5b), which was more severe in the 60-day group (Figure 6a) (Figures 6b, 7a).
A substantial degree of vacuole degradation was detected in several samples (Figure 7a, 7b).
It is interesting to note that S. platensis therapy stopped the histopathological changes caused by IONPs. Lesions seen in the livers of S. platensis plus IONPs intoxicated animals were much less than those seen in the IONPs alone group (Figure 8a, 8b).
The severity of the liver lesions seen in the gray mullet’s liver after various treatments are shown in Table 1.
Funding
| ||
مراجع | ||
Abd El-Baky, H. H., El Baz, F. K., & El-Baroty, G. S. (2009). Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta Physiologiae Plantarum, 31, 623-631. [Link] Abdelhalim, M. A., & Jarrar, B. M. (2012). Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration. Journal of nanobiotechnology, 10, 5. [PMID] [PMCID] Amin, A., Hamza, A. A., Daoud, S., & Hamza, W. (2006). Spirulina protects against cadmium-induced hepatotoxicity in rats. American Journal of Pharmacology and Toxicology, 1(2), 21-25. [DOI:10.3844/ajptsp.2006.21.25] Badi, N., Fazelipour, S., Naji, T., Babaei, M., & Kalantari Hesari, A. (2022). Histomorphometric and biochemical study of liver and thyroid hormones following administration of MoO3 nanoparticles in female rats. Iranian Journal of Veterinary Medicine, 16(2), 188-201. [Link] Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrences, and uses. Weinheim: Wiley-VCH. [Link] Darenskaya, M. A., Kolesnikov, S. I., Rychkova, L. V., Grebenkina, L. A., & Kolesnikova, L. I. (2018). Oxidative stress and antioxidant defense parameters in different diseases: Ethnic aspects. Free Radical Biology and Medicine, 120(Supplement 1,), S60. [DOI:10.1016/j.freeradbiomed.2018.04.199] Dashtipour, K., Liu, M., Kani, C., Dalaie, P., Obenaus, A., & Simmons, D., et al. (2015). Iron accumulation is not homogenous among patients with Parkinson’s disease. Parkinson's Disease, 2015, 324843. [PMID] [PMCID] El-Baky, A., Hanaa, H., El Baz, F. K., & El-Baroty, G. S. (2009).Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta physiologiae plantarum, 31(3), 623-631. [Link] Elmallah, M., Elkhadragy, M. F., Al-Olayan, E. M., & Abdel Moneim, A. E. (2017). Protective effect of fragaria ananassa crude extract on cadmium-induced lipid peroxidation, antioxidant enzymes suppression, and apoptosis in rat testes. International Journal of Molecular Sciences, 18(5), 957. [PMID] [PMCID] Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070-101. [PMID] [PMCID] Farag, M. R., Alagawany, M., El-Hack, M. E. A., & Dhama, K. (2016). Nutritional and healthical aspects of Spirulina (Arthrospira) for poultry, animals and human. International Journal of Pharmacology, 12(1), 36-51. [DOI:10.3923/ijp.2016.36.51] Garner, K. L., & Keller, A. A. (2014). Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. Journal of Nanoparticle Research, 16, 2503. [Link] Gokduman, K., Bestepe, F., Li, L., Yarmush, M. L., & Usta, O. B. (2018). Dose-, treatment-and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine, 13(11), 1267-1284. [PMID] [PMCID] Grover, V. A., Hu, J., Engates, K. E., & Shipley, H. J. (2012). Adsorption and desorption of bivalent metals to hematite nanoparticles. Environmental Toxicology and Chemistry, 31(1), 86-92. [DOI:10.1002/etc.712] [PMID] Hassan, A. M., Abdel-Aziem, S. H., & Abdel-Wahhab, M. A. (2012). Modulation of DNA damage and alteration of gene expression during aflatoxicosis via dietary supplementation of Spirulina (Arthrospira) and Whey protein concentrate. Ecotoxicology and Environmental Safety, 79, 294–300. [PMID] Hussein, S. A., Abd el-hamid, O. M., El-tawil, O. S., Laz, E. S., & Taha, W. M. (2019). Attenuating effect of Spirulina platensis against mycotoxin induced oxidative stress and liver damage in male albino rats. International Journal of Pharma Sciences, 9(2), 2039-2044. [Link] Jarockyte, G., Daugelaite, E., Stasys, M., Statkute, U., Poderys, V., & Tseng, T. C., et al. (2016). Accumulation and toxicity of superparamagnetic iron oxide nanoparticles in cells and experimental animals. International Journal of Molecular Sciences, 17(8), 1193. [PMID] [PMCID] Karadeniz, A., & Cemek, M. (2006). Protective effect of Spirulina platensis against lead toxication in rats. Journal of Animal and Veterinary Advances, 5(12), 1113-1116. [Link] Karadeniz, A., Cemek, M., & Simsek, N. (2009). The effects of Panax ginseng and Spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicology and Environmental Safety, 72(1), 231-235. [PMID] Keerthika, V., Ramesh, R., & Rajan, M. R. (2017). Toxicity assessment of iron oxide nanoparticles in Labeo rohita. International Journal of Fisheries and Aquatic Studies, 5(4), 01-06. [Link] Kim, J. H., & Kang, J. C. (2015). The lead accumulation and hematological findings in juvenile rock fish Sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicology and Environmental Safety, 115, 33-39. [DOI:10.1016/j.ecoenv.2015.02.009] [PMID] Kim, J. H., Oh, C. W., & Kang, J. C. (2017). Antioxidant responses, neurotoxicity, and metallothionein gene expression in juvenile Korean rockfish Sebastes schlegelii under dietary lead exposure. Journal of Aquatic Animal Health, 29(2), 112-119. [PMID] Malvindi, M. A., De Matteis, V., Galeone, A., Brunetti, V., Anyfantis, G. C., & Athanassiou, A., et al. (2014). Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PloS one, 9(1), e85835. [PMID] [PMCID] Mody, V. V., Cox, A., Shah, S., Singh, A., Bevins, W., & Parihar, H. (2014). Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience, 4, 385-392. [DOI:10.1007/s13204-013-0216-y] Núñez, M. T., Urrutia, P., Mena, N., Aguirre, P., Tapia, V., & Salazar, J. (2012). Iron toxicity in neurodegeneration. Biometals, 25(4), 761-776. [PMID] Pongrac, I. M., Pavičić, I., Milić, M., Brkić Ahmed, L., & Babič, M., et al. (2016). Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 11, 1701–1715. [PMID] [PMCID] Rahmati, M., Morovvati, H., & Abdi, R. (2022). Histomorphometric Analysis of Skin and Stress Indices of Nile Tilapia (Oreochromis niloticus) Exposed to Different Concentrations of Ammonia. Iranian Journal of Veterinary Medicine, 16(3), 288-297. [DOI:10.22059/IJVM.2022.337549.1005230] Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D. A., & Syed, A. F. (2010). Metal‐based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2(5), 544-568. [PMID] Vidya, P. V., & Chitra, K. C. (2019). Irreversible histopathological modifications induced by iron oxide nanoparticles in the fish, Oreochromis mossambicus (Peters, 1852). Biological Forum – An International Journal, 11( 1), 01-06. [Link] Wu, X., & Dhanasekaran, S. (2020). Protective effect of leaf extract of Abutilon indicum on DNA damage and peripheral blood lymphocytes in combating the oxidative stress. Saudi Pharmaceutical Journal : SPJ : The Official Publication of The Saudi Pharmaceutical Society, 28(8), 943–950. [PMID] [PMCID] Yarjanli, Z., Ghaedi, K., Esmaeili, A., Rahgozar, S., & Zarrabi, A. (2017). Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience, 18(1), 51. [PMID] [PMCID] Zhu, X., Tian, S., & Cai, Z. (2012). Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One, 7(9), 46286. [PMID] | ||
آمار تعداد مشاهده مقاله: 827 تعداد دریافت فایل اصل مقاله: 746 |