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1 Introduction

In this paper, we study the following linear optimization model whose constraints are
formed as a fuzzy system defined by the convex combination operator:

min c x
Aφx = b
x ∈ [0, 1]n

(1)

where I = { 1, 2, ...,m } , J = { 1, 2, ..., n }, A = (aij)m×n, 0 ≤ aij ≤ 1 (∀i ∈ I and
∀j ∈ J), is a fuzzy matrix, b = (bi)m×1, 0 ≤ bi ≤ 1 (∀i ∈ I), is an m-dimensional fuzzy
vector, and ”φ” is the max-convex combination composition, that is, λx+ (1−λ)y where
λ ∈ [0, 1].
Furthermore, let S(A, b) denote the feasible solutions sets of problem (1), that is, S(A, b) =
{x ∈ [0, 1]n : Aφx = b}. Additionally, if ai denotes the i’th row of matrix A, then prob-
lem (1) can be also expressed as follows:

min cx
φ (ai , x) = bi , i ∈ I
x ∈ [0, 1]n

(2)

where the constraints mean φ (ai, x) = max
j∈J

{φ (aij, xj) } = bi (∀i ∈ I) and φ (aij, xj) =

λ aij + (1 − λ)xj where λ ∈ [0, 1].
The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and ap-
plied in problems of the medical diagnosis [39]. Nowadays, it is well known that many
issues associated with a body knowledge can be treated as FRE problems [35]. Gener-
ally, when inference rules and their consequences are known, the problem of determining
antecedents is reduced to solving an FRE [25,33].
The solvability determination and the finding of solutions set are the primary (and the
most fundamental) subject concerning with FRE problems. Actually, The solution set of
FRE is often a non-convex set that is completely determined by one maximum solution
and a finite number of minimal solutions [5]. This non-convexity property is one of two
bottlenecks making major contribution to the increase of complexity in problems that are
related to FRE, especially in the optimization problems subjected to a system of fuzzy re-
lations. The other bottleneck is concerned with detecting the minimal solutions for FREs
[2]. Markovskii showed that solving max-product FRE is closely related to the covering
problem which is an NP-hard problem [32]. In fact, the same result holds true for a more
general t-norms instead of the minimum and product operators [2,3,12,13,15,16,28,29,32].
Over the last decades, the solvability of FRE defined with different max-t compositions
have been investigated by many researchers [15,16,34,36,37,40,42,
43,45,48,51]. Moreover, some researchers introduced and improved theoretical aspects
and applications of fuzzy relational inequalities (FRI) [12 – 14,17,18,26,50]. Li and Yang
[26] studied a FRI with addition-min composition and presented an algorithm to search
for minimal solutions. Ghodousian et al. [13] focused on the algebraic structure of two
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fuzzy relational inequalities Aφx ≤ b1 and Dφx ≥ b2, and studied a mixed fuzzy system
formed by the two preceding FRIs, where ϕ is an operator with (closed) convex solutions.
The problem of optimization subject to FRE and FRI is one of the most interesting
and on-going research topic among the problems related to FRE and FRI theory [1,8,11-
16,23,27,30,38,41,46,50]. Fang and Li [9] converted a linear optimization problem sub-
jected to FRE constraints with max-min operation into an integer programming problem
and solved it by branch and bound method using jump-tracking technique. In [23] an ap-
plication of optimizing the linear objective with max-min composition was employed for
the streaming media provider. Wu et al. [44] improved the method used by Fang and Li,
by decreasing the search domain. The topic of the linear optimization problem was also
investigated with max-product operation [20,31]. Loetamonphong and Fang defined two
sub-problems by separating negative and non-negative coefficients in the objective func-
tion and then obtained the optimal solution by combining those of the two sub-problems
[31]. Also, in [20] some necessary conditions of the feasibility and simplification tech-
niques were presented for solving FRE with max-product composition. Moreover, some
generalizations of the linear optimization with respect to FRE have been studied with the
replacement of max-min and max-product compositions with different fuzzy compositions
such as max-average composition [46] and max-t-norm composition [15,16,21,27,41].
Recently, many interesting generalizations of the linear programming subject to a system
of fuzzy relations have been introduced and developed based on composite operations
used in FRE, fuzzy relations used in the definition of the constraints, some developments
on the objective function of the problems and other ideas [6,10,15,16,18,24,30,47]. For
example, Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem by
considering fuzzy coefficients.
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12-14,17,18,49,50]. Xiao et al. [50] introduced the latticized linear
programming problem subject to max-product fuzzy relation inequalities. Ghodousian
et al. [12] introduced a system of fuzzy relational inequalities with fuzzy constraints
(FRI-FC) in which the constraints were defined with max-min composition.
In this paper, an algorithm is proposed to find all the optimal solutions of problem (1).
Firstly, we describe some structural details of such FREs such as the theoretical properties
of the fuzzy equalities defined with convex combination operator and necessary and suffi-
cient conditions for the feasibility of the problem. Then, the feasible region is completely
determined by a finite number of convex cells. Finally, an algorithm is presented to solve
the main problem.
The remainder of the paper is organized as follows. Section 2 gives some basic results
on the fuzzy equalities defined by convex combination operator. Also, some feasibility
conditions are derived. In section 3, the feasible region is characterized in terms of a finite
number of closed convex cells. The optimal solution of the problem is described in Section
4 and, finally in section 5 an example is presented to illustrate the algorithm.
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2 Basic properties

In this section, the structural properties of each fuzzy equation φ (ai, x) = bi is investigated
and its solutions are found. Let S(ai, bi) denote the feasible solutions set of i‘th equation,
that is, S(ai, bi) = {x ∈ [0, 1]n : φ (ai, x) = bi}. So, S(A, b) =

⋂
i∈I

S(ai, bi).

Lemma 1. Let i ∈ I, j0 ∈ J and aij0 > bi/λ. Then, S(ai, bi) = ∅.

Proof. Since φ is an increasing function on [0, 1]2 in both variables, we note that
φ (aij0 , xj) > φ ( bi/λ , xj) = bi + (1 − λ)xj0

≥ bi. Thus, for each x ∈ [0, 1]n we have
φ (ai, x) = max

j∈J
{φ (aij, xj) } ≥ φ (aij0 , xj0) > bi. Hence, x /∈ S(ai, bi), ∀x ∈ [0, 1]n. □

Lemma 2. Let aij0 ≤ bi/λ for some i ∈ I and j0 ∈ J . If bi ≥ 1 − λ and aij0 <
(bi + λ− 1)/λ, then φ (aij0 , xj0) < bi, ∀xj0 ∈ [0, 1].

Proof. Since bi ≥ 1 − λ, then (bi + λ − 1)/λ ≥ 0. Now, the result follows from the
relations φ (aij0 , xj0) < φ ( (bi + λ− 1)/λ, 1 ) = bi. □

Lemma 3. Let aij0 ≤ bi/λ for some i ∈ I and j0 ∈ J . Also, suppose that either bi < 1−λ
or aij0 ≥ (bi + λ− 1)/λ. Then, xj0 = (bi − λ aij0)

/
(1 − λ) is the unique solution to the

equality φ (aij0 , xj0) = bi.

Proof. It is easy to verify that φ (aij0 , xj0) = bi. Now, since φ is an increasing func-
tion, we have φ (aij0 , xj) > bi if xj > (bi − λ aij0)/(1 − λ) and φ (aij0 , xj) < bi if
xj < (bi − λ aij0)/(1 − λ). □

From Lemmas 1, 2 and 3, the following theorem is resulted that gives a necessary and
sufficient condition for the feasibility of the set S(ai, bi).

Theorem 1. For a fixed i ∈ I, S(ai, bi) ̸= ∅ if and only if

(a) aij ≤ bi/λ, ∀j ∈ J .

(b) There exist some j0 ∈ J such that either bi < 1 − λ or aij0 ≥ (bi + λ− 1)/λ.

Definition 1. For an arbitrary fixed i ∈ I, let J −(i) = {j ∈ J : aij > bi/λ}. Ad-
ditionally, define J ∞(i) = {j ∈ J : bi ≥ 1 − λ, aij < (bi + λ− 1)/λ} and J(i) = J −
{J −(i) ∪ J ∞(i)}.

According to Theorem 1, the following corollary is directly attained. This corollary char-
acterizes all the feasible solutions of S(ai, bi).

Corollary 1. x′ ∈ S(ai, bi) if and only if J −(i) = ∅ , J(i) ̸= ∅ and

(a) x′
j ∈ [0, 1], ∀j ∈ J ∞(i).

(b) x′
j ≤ (bi − λ aij)/(1 − λ), ∀j ∈ J(i).

(c) There exist at least some j0 ∈ J(i) such that x′
j0

= (bi − λ aij0)/(1 − λ).
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Definition 2. Suppose that S(ai, bi) ̸= ∅(hence, J −(i) = ∅ from Corollary 1). Define
X(i) ∈ [0, 1]n such that

X(i)j =

{
(bi − λ aij)

/
(1 − λ) , if j ∈ J(i)

1 , if j ∈ J ∞(i)

Theorem 2. Suppose that S(ai, bi) ̸= ∅. Then, X(i) is the maximum solution of S(ai, bi).

Proof. Since S(ai, bi) ̸= ∅, then J −(i) = ∅. Based on Corollary 1, X(i) ∈ S(ai, bi).
Suppose that x′ ∈ S(ai, bi). So, from Corollary 1, x′

j ≤ (bi−λ aij)/(1−λ), ∀j ∈ J(i), and

x′
j ≤ 1, ∀j ∈ J ∞(i). Therefore, x′

j ≤ X(i)j, ∀j ∈ J . □

Definition 3. Let i ∈ I and S(ai, bi) ̸= ∅. For each j ∈ J(i), define X(i, j) ∈ [0, 1]n such
that

X(i, j)k =

{
(bi − λ aij)

/
(1 − λ) , k = j

0 , otherwise

Remark 1. Suppose that S(ai, bi) ̸= ∅ and j ∈ J(i). Then, from Definitions 2 and 3, we
have X(i)j = X(i, j)j.

Theorem 3. Suppose that S(ai, bi) ̸= ∅ and j0 ∈ J(i). Then, X(i, j0) is a minimal
solution of S(ai, bi).

Proof. From Corollary 1, X(i, j0) ∈ S(ai, bi). Suppose that x′ ∈ S(ai, bi) , x′ ≤ X(i, j0)
and x′ ̸= X(i, j0). So, x′

j ≤ X(i, j0)j, ∀j ∈ J and x′ ̸= X(i, j0). Therefore, x′
j = 0,

∀j ∈ J − {j0}, and x′
j0
< (bi − λ aij0)/(1 − λ). Hence, from Lemmas 1, 2 and 3 we have

φ (ai, x
′) = max

{
max

j∈J−{j0}
{φ (aij, x

′
j) } , φ (aij0 , x

′
j0)

}
= φ (aij0 , x

′
j0

) < bi that contradicts

x′ ∈ S(ai, bi). □

The following theorem shows that S(ai, bi) can be stated in terms of the unique maximum
solution and a finite number of minimal solutions.

Theorem 4. S(ai, bi) =
⋃

j∈J(i)
[X(i, j) , X(i) ].

Proof. Let x′ ∈ S(ai, bi). From Theorem 2, x′ ≤ X(i). Furthermore, there exist at
least some j0 ∈ J(i) such that x′

j0
= (bi − λ aij0)/(1 − λ) (Corollary 1). Thus, from

Definition 3 we have X(i, j0) ≤ x′. Hence, x′ ∈ [X(i, j0) , X(i) ]. Conversely, let x′ ∈⋃
j∈J(i) [X(i, j) , X(i) ]. Therefore, φ (aij, x

′
j) ≤ φ (aij, X(i)j) ≤ bi, ∀j ∈ J . Moreover,

there exists some j0 ∈ J(i) such that x′ ∈ [X(i, j0) , X(i) ]. So, Remark 1 implies x′
j0

=

X(i, j0)j0 = X(i)j0 and therefore, φ (aij0 , x
′
j0

) = bi. Thus, we have

φ (ai, x
′) = max

j∈J
{φ (aij, x

′
j) } = max

{
max

j∈J−{j0}
{φ (aij, x

′
j) } , φ (aij0 , x

′
j0)

}
= φ (aij0 , x

′
j0

) = bi

which implies that x′ ∈ S(ai, bi). □
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3 Feasible region of Problem (1)

In this section, a necessary and sufficient condition is derived to determine the feasibility
of the main problem.

Definition 4. Let X(i) be as in Definition 2, ∀i ∈ I. We define X = min
i∈I

{
X(i)

}
.

Definition 5. Let e : I →
⋃
i∈I

J(i) so that e(i) ∈ J(i), ∀i ∈ I, and let E be the set of

all vectors e. For the sake of convenience, we represent each e ∈ E as an m-dimensional
vector e = [j1, j2, ..., jm] in which jk = e(k), k = 1, 2, ...,m.

Definition 6. Let e = [j1, j2, ..., jm] ∈ E. We define X(e) ∈ [0, 1]n such that X(e)j =

max
i∈I

{
X(i, e(i))j

}
= max

i∈I

{
X(i, ji)j

}
, ∀j ∈ J .

The following theorem indicates that the feasible region of problem 1 is completely found
by a finite number of closed convex cells.

Theorem 5. S(A, b) =
⋃
e∈E

[X(e), X].

Proof. Since S(A, b) =
⋂
i∈I

S(ai, bi), from Theorem 4 we have S(A, b) =
⋂
i∈I

⋃
j∈Ji

[X(i, j) , X(i) ].

So, S(A, b) =
⋃
e∈E

⋂
i∈I

[X(i, e(i)) , X(i) ] (see Definitions 5 and 6), i.e., S(A, b) =
⋃
e∈E

[
max
i∈I

{X(i, e(i))} ,min
i∈I

{
X(i)

}]
.

Now, the result follows from Definitions 4 and 6. □

The following Corollary gives a simple necessary and sufficient condition for the feasibility
of S(A, b).

Corollary 2. S(A, b) ̸= ∅ iff X ∈ S(A, b).

4 Resolution of Problem (1)

It can be easily verified that X is the optimal solution for

min
{
Z1 =

∑n
j=1 c

−
j xj : Aφx = b, x ∈ [0, 1]n

}
, and the optimal solution for

min
{
Z2 =

∑n
j=1 c

+
j xj : Aφx = b, x ∈ [0, 1]n

}
is X(e∗) for some e∗ ∈ E, where c+j =

max{cj, 0} and c−j = min{cj, 0} for j = 1, 2, ..., n [9,13,19,28]. According to the fore-
going results, the following theorem shows that the optimal solution of Problem (1) can
be obtained by the combination of X and X(e∗).

Theorem 6. Suppose that S(A, b) ̸= ∅, and X and X(e∗) are the optimal solutions of sub-
problems Z1 and Z2, respectively. Then cTx∗ is the lower bound of the optimal objective
function in (1), where x∗ = [x∗

1, x
∗
2, ..., x

∗
n] is defined as follows:

x∗
j =

{
Xj cj < 0

X(e∗)j cj ≥ 0
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for j = 1, 2, ..., n.

Proof. For a general case, see the proof of Theorem 4.1 in [13]. □

Corollary 3. Suppose that S(A, b) ̸= ∅. Then, x∗ as defined in Theorem 5, is the optimal
solution of problem (1).

Proof. According to the definition of vector x∗, we have X(e∗)j ≤ x∗
j ≤ Xj, ∀j ∈ J ,

which implies x∗ ∈
⋃
e∈E

[X(e), X] = S(A, b). □

5 Numerical example

Consider the following linear programming problem constrained with a fuzzy system de-
fined by the convex combination operator:

min Z = −2.6151x1 − 7.7759x2 + 5.6050x3 − 2.2052x4 − 5.1662x5 − 1.9217x6 − 8.0709x7
0.8212 0.4727 0.1980 0.9340 0.5140 0.5688 0.2783
0.4497 0.0561 0.1013 0.7943 0.5106 0.5285 0.7896
0.0644 0.6826 0.4485 0.6068 0.2264 0.3967 0.2136
0.5390 0.9435 0.1169 0.8258 0.7719 0.9961 0.2425
0.0870 0.4266 0.0345 0.0027 0.3657 0.4706 0.0085

φx =


0.8381
0.8358
0.587
0.7119
0.3839


x ∈ [0, 1]7

where | I | = 5, | J | = 7 and φ (x, y) = λx + (1 − λ)y in which λ = 2/3. Moreover, Z1 =
−2.6151x1− 7.7759x2− 2.2052x4− 5.1662x5− 1.9217x6− 8.0709x7 and Z2 = 5.6050x3.
For each i ∈ I, we have J −(i) = ∅. Also, J(1) = {1, 4}, J(2) = {4, 7}, J(3) = {2, 3, 4, 6},
J(4) = {2, 4, 5, 6} and J(5) = {1, 2, 5, 6}. Therefore, by Theorem 1, S(ai, bi) ̸= ∅, ∀i ∈ I.
According to Definition 2, the maximum solutions of S(ai, bi) ̸= ∅, ∀i ∈ I, are attained
as follows:

X(1) = [0.8719, 1, 1, 0.6463, 1, 1, 1]
X(2) = [1, 1, 1, 0.9188, 1, 1, 0.9282]
X(3) = [1, 0.3958, 0.864, 0.5474, 1, 0.9676, 1]
X(4) = [1, 0.2487, 1, 0.4841, 0.5919, 0.1435, 1]
X(5) = [0.9777, 0.2985, 1, 1, 0.4203, 0.2105, 1]

Hence, by Definition 4, we have

X = [0.8719, 0.2487, 0.864, 0.4841, 0.4203, 0.1435, 0.9282].

Also, by Definition 3 and Theorem 3, for example, the minimal solutions of S(a1, b1) are
obtained as follows:

X(2, 4) = [0, 0, 0, 0.9188, 0, 0, 0], X(2, 7) = [0, 0, 0, 0, 0, 0, 0.9282]
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Therefore, by Theorem 4, S(a2, b2) = [X(2, 4), X(2) ] ∪ [X(2, 7), X(2) ].
According to Corollary 2, since X ∈ S(A, b), then the problem is feasible. On the other
hand, from Definition 6, we have |E | = 256. Therefore, the number of all vectors e ∈ E
is equal to 256. However, each solution X(e) generated by vectors e ∈ E is not necessary
a feasible minimal solution. By pairwise comparison between vectors X(e), it turns out
that the feasible region has 3 minimal solutions as follows:

e1 = [1, 7, 3, 2, 5]
X(e1) = [0.8719, 0.2487, 0.864, 0, 0.4203, 0, 0.9282]

e2 = [1, 7, 3, 4, 5]
X(e2) = [0.8719, 0, 0.864, 0.4841, 0.4203, 0, 0.9282]

e3 = [1, 7, 3, 6, 5]
X(e3) = [0.8719, 0, 0.864, 0, 0.4203, 0.1435, 0.9282]

By comparison of the values of the objective function for the minimal solutions, X(e1) is
optimal for Z2 (i.e., e∗ = e1). Thus, from Theorem 6,

x∗ = [0.8719, 0.2487, 0.864, 0.4841, 0.4203, 0.1435, 0.9282]

and then Z∗ = cTx∗ = − 10.3773.

Conclusion

In this paper, we proposed an algorithm to solve the linear optimization model constrained
with convex combination fuzzy relational equalities. The feasible solutions set of each
FRE was obtained and their feasibility conditions were described. Based on the foregoing
results, the feasible region of the problem is completely resolved. It was shown that
the feasible solutions set can be write in terms of a finite number of closed convex cells.
Finally, a method was introduced for finding the optimal solutions of the problem.
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